1887

Chapter 5 : Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization ()

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap05-2.gif

Abstract:

Much progress has been made in one's understanding of the mechanism of rickettsial actin-based motility, although the process of cell-to-cell spread remains poorly understood. This chapter examines historical and recent developments in our understanding of how rickettsiae establish intracellular infection. The focus is on the three major stages that include: (i) escape from the phagosome, (ii) intracellular growth, and (iii) actinbased motility. Several bacterial activities that may function in membrane disruption have since been discovered, including phospholipase A2 (PLA2), phospholipase D (PLD), and hemolysins (TlyA and TlyC). Each of these activities and its potential role in phagosome escape is discussed in the chapter. Interestingly, the growth kinetics for the spotted fever group rickettsiae (SFGR) species did not follow the simple kinetics observed for the typhus group rickettsiae (TGR) species . The function of intracellular movement is to promote cell-to-cell spread, a process that is discussed in the chapter.

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5

Key Concept Ranking

Bacterial Proteins
0.52252454
Type IV Secretion Systems
0.4051616
0.52252454
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Rickettsial invasion occurs in five stages over the first 20 min of infection. These include (i) adhesion to the host cell plasma membrane, (ii) engulfment, (iii) inclusion in a phagosome, (iv) phagosome lysis, and (v) release into the cytosol. (Artwork adapted from by Taro Ohkawa.)

doi:10.1128/9781555817336.ch5.f1

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

SFGR and TGR have different effects on host cell structure and physiology. (Top left) SFGR species have little effect on host cell ultrastructure at times shortly after infection (24 h). (Bottom left) However, progressive changes occur during longer infections (48 h and beyond), including dilation of the RER and outer nuclear envelope, loss of a distinct Golgi apparatus, and swollen mitochondria. Cells eventually lyse during very long infections (more than 120 h; not shown). (Top right) TGR species are initially observed in small numbers in the cytosol early in infection (30 h), and as infection progresses the number of bacteria increase with no effect on host cell ultrastructure (up to 96 h). (Bottom right) At very late times (96 to 120 h postinfection), host cell lysis and bacterial release occur. (Artwork adapted from and by Taro Ohkawa.)

doi:10.1128/9781555817336.ch5.f2

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

and actin comet tails are different in appearance and actin organization. Top panels show bacteria (blue) and actin (red) visualized by fluorescence microscopy, whereas bottom panels depict actin organization. (Left) SFGR comet tails are relatively straight, consist of a helical arrangement of actin bundles (top), and are composed of long parallel filaments (bottom). In contrast, comet tails are uniform in appearance (top) and are composed of short filaments organized into a dense meshwork (bottom). Bar (top panels), 5 µm. (Artwork adapted from by Taro Ohkawa.)

doi:10.1128/9781555817336.ch5.f3

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

The life cycle of SFGR observed from invasion through cell-to-cell spread. From right to left, the stages include adhesion and engulfment, inclusion in a phagosome, phagosome lysis, release into the cytosol, bacterial growth, actin-based motility, movement into a protrusion, engulfment by a neighboring cell, inclusion in a double-membrane vacuole, vacuole lysis, and release into the cytosol of the second cell. (Artwork by Taro Ohkawa.)

doi:10.1128/9781555817336.ch5.f4

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817336.chap5
1. Anderson, D. R.,, H. E. Hopps,, M. F. Barile,, and B. C. Bernheim. 1965. Comparison of the ultrastructure of several rickettsiae, ornithosis virus, and Mycoplasma in tissue culture. J. Bacteriol. 90:13871404.PubMed
2. Andersson, S. G.,, A. Zomorodipour,, J. O. Andersson,, T. Sicheritz-Ponten,, U. C. Alsmark,, R. M. Podowski,, A. K. Naslund,, A. S. Eriksson,, H. H. Winkler,, and C. G. Kurland. 1998. The genome sequence of Rickettsia prowazekii and the origin of mitochondria. Nature 396:133140V.CrossRef
3. Baldridge, G. D.,, N. Burkhardt,, M. J. Herron,, T. J. Kurtti,, and U. G. Munderloh. 2005. Analysis of fluorescent protein expression in transformants of Rickettsia monacensis, an obligate intracellular tick symbiont. Appl. Environ. Microbiol. 71:20952105.PubMed CrossRef
4. Baldridge, G. D.,, N. Y. Burkhardt,, M. B. Labruna,, R. C. Pacheco,, C. D. Paddock,, P. C. Williamson,, P. M. Billingsley,, R. F. Felsheim,, T. J. Kurtti,, and U. G. Munderloh. 2010. Wide dispersal and possible multiple origins of low-copy-number plasmids in Rickettsia species associated with blood-feeding arthropods. Appl. Environ. Microbiol. 76:17181731.PubMed CrossRef
5. Balraj, P.,, K. El Karkouri,, G. Vestris,, L. Espinosa,, D. Raoult,, and P. Renesto. 2008a. RickA expression is not sufficient to promote actin-based motility of Rickettsia raoultii. PLoS One 3:e2582.PubMed CrossRef
6. Balraj, P.,, C. Nappez,, D. Raoult,, and P. Renesto. 2008b. Western-blot detection of RickA within spotted fever group rickettsiae using a specific monoclonal antibody. FEMS Microbiol. Lett. 286:257262.PubMed CrossRef
7. Bernardini, M. L.,, J. Mounier,, H. d’Hauteville,, M. Coquis-Rondon,, and P. J. Sansonetti. 1989. Identification of icsA, a plasmid locus of Shigella flexneri that governs bacterial intra- and intercellular spread through interaction with F-actin. Proc. Natl. Acad. Sci. USA 86:38673871.PubMed CrossRef
8. Blanc, G.,, M. Ngwamidiba,, H. Ogata,, P. E. Fournier,, J. M. Claverie,, and D. Raoult. 2005. Molecular evolution of Rickettsia surface antigens: evidence of positive selection. Mol. Biol. Evol. 22:20732083.PubMed CrossRef
9. Cameron, L. A.,, T. M. Svitkina,, D. Vignjevic,, J. A. Theriot,, and G. G. Borisy. 2001. Dendritic organization of actin comet tails. Curr. Biol. 11:130135.PubMed CrossRef
10. Campellone, K. G.,, and M. D. Welch. 2010. A nucleator arms race: cellular control of actin assembly. Nat. Rev. Mol. Cell Biol. 11:237251.PubMed CrossRef
11. Cheville, N. F. 1994. Ultrastructural Pathology: an Introduction to Interpretation. Iowa State University Press, Ames, IA.
12. Clarke, D. H.,, and J. P. Fox. 1948. The phenomenon of in vitro hemolysis produced by the rickettsiae of typhus fever, with a note on the mechanism of rickettsial toxicity in mice. J. Exp. Med. 88:2541.PubMed CrossRef
13. Cohn, Z. A.,, F. M. Bozeman,, J. M. Campbell,, J. W. Humphries,, and T. K. Sawyer. 1959. Study on growth of Rickettsia. V. Penetration of Rickettsia tsutsugamushi into mammalian cells in vitro. J. Exp. Med. 109:271292.PubMed CrossRef
14. Driskell, L. O.,, X.-J. Yu,, L. Zhang,, Y. Liu,, V. L. Popov,, D. H. Walker,, A. M. Tucker,, and D. O. Wood. 2009. Directed mutagenesis of the Rickettsia prowazekii pld gene encoding phospholipase D. Infect. Immun. 77:32443248.PubMed CrossRef
15. Egile, C.,, T. P. Loisel,, V. Laurent,, R. Li,, D. Pantaloni,, P. J. Sansonetti,, and M. F. Carlier. 1999. Activation of the CDC42 effector N-WASP by the Shigella flexneri IcsA protein promotes actin nucleation by Arp2/3 complex and bacterial actin-based motility. J. Cell Biol. 146:13191332.PubMed CrossRef
16. Eremeeva, M. E.,, and D. J. Silverman. 1998. Rickettsia rickettsii infection of the EA.hy 926 endothelial cell line: morphological response to infection and evidence for oxidative injury. Microbiology 144:20372048.PubMed CrossRef
17. Firat-Karalar, E. N.,, and M. D. Welch. 2011. New mechanisms and functions of actin nucleation. Curr. Opin. Cell Biol. 23:413.PubMed CrossRef
18. Gouin, E.,, C. Egile,, P. Dehoux,, V. Villiers,, J. Adams,, F. Gertler,, R. Li,, and P. Cossart. 2004. The RickA protein of Rickettsia conorii activates the Arp2/3 complex. Nature 427:457461.PubMed CrossRef
19. Gouin, E.,, H. Gantelet,, C. Egile,, I. Lasa,, H. Ohayon,, V. Villiers,, P. Gounon,, P. J. Sansonetti,, and P. Cossart. 1999. A comparative study of the actin-based motilities of the pathogenic bacteria Listeria monocytogenes, Shigella flexneri and Rickettsia conorii. J. Cell Sci. 112:16971708.PubMed
20. Haglund, C. M.,, J. E. Choe,, C. T. Skau,, D. R. Kovar,, and M. D. Welch. 2010. Rickettsia Sca2 is a bacterial formin-like mediator of actin-based motility. Nat. Cell Biol. 12:10571063.PubMed CrossRef
21. Harlander, R. S.,, M. Way,, Q. Ren,, D. Howe,, S. S. Grieshaber,, and R. A. Heinzen. 2003. Effects of ectopically expressed neuronal Wiskott-Aldrich syndrome protein domains on Rickettsia rickettsii actin-based motility. Infect. Immun. 71:15511556.PubMed CrossRef
22. Heinzen, R. A. 2003. Rickettsial actin-based motility: behavior and involvement of cytoskeletal regulators. Ann. N. Y. Acad. Sci. 990:535547.PubMed CrossRef
23. Heinzen, R. A.,, S. S. Grieshaber,, L. S. Van Kirk,, and C. J. Devin. 1999. Dynamics of actin-based movement by Rickettsia rickettsii in Vero cells. Infect. Immun. 67:42014207.PubMed
24. Heinzen, R. A.,, S. F. Hayes,, M. G. Peacock,, and T. Hackstadt. 1993. Directional actin polymerization associated with spotted fever group Rickettsia infection of Vero cells. Infect. Immun. 61:19261935.PubMed
25. Jeng, R. L.,, E. D. Goley,, J. A. D’Alessio,, O. Y. Chaga,, T. M. Svitkina,, G. G. Borisy,, R. A. Heinzen,, and M. D. Welch. 2004. A Rickettsia WASP-like protein activates the Arp2/3 complex and mediates actin-based motility. Cell. Microbiol. 6:761769.PubMed CrossRef
26. Kespichayawattana, W.,, S. Rattanachetkul,, T. Wanun,, P. Utaisincharoen,, and S. Sirisinha. 2000. Burkholderia pseudomallei induces cell fusion and actin-associated membrane protrusion: a possible mechanism for cell-to-cell spreading. Infect. Immun. 68:53775384.PubMed
27. Kleba, B.,, T. R. Clark,, E. I. Lutter,, D. W. Ellison,, and T. Hackstadt. 2010. Disruption of the Rickettsia rickettsii Sca2 autotransporter inhibits actin-based motility. Infect. Immun. 78:22402247.PubMed CrossRef
28. Liu, Z. M.,, A. M. Tucker,, L. O. Driskell,, and D. O. Wood. 2007. Mariner-based transposon mutagenesis of Rickettsia prowazekii. Appl. Environ. Microbiol. 73:66446649.PubMed CrossRef
29. Loisel, T. P.,, R. Boujemaa,, D. Pantaloni,, and M. F. Carlier. 1999. Reconstitution of actin-based motility of Listeria and Shigella using pure proteins. Nature 401:613616.PubMed CrossRef
30. Martinez, J. J.,, and P. Cossart. 2004. Early signaling events involved in the entry of Rickettsia conorii into mammalian cells. J. Cell Sci. 117:50975106.PubMed CrossRef
31. McLeod, M. P.,, X. Qin,, S. E. Karpathy,, J. Gioia,, S. K. Highlander,, G. E. Fox,, T. Z. McNeill,, H. Jiang,, D. Muzny,, L. S. Jacob,, A. C. Hawes,, E. Sodergren,, R. Gill,, J. Hume,, M. Morgan,, G. Fan,, A. G. Amin,, R. A. Gibbs,, C. Hong,, X. J. Yu,, D. H. Walker,, and G. M. Weinstock. 2004. Complete genome sequence of Rickettsia typhi and comparison with sequences of other rickettsiae. J. Bacteriol. 186:58425855.PubMed CrossRef
32. Ngwamidiba, M.,, G. Blanc,, H. Ogata,, D. Raoult,, and P. E. Fournier. 2005. Phylogenetic study of Rickettsia species using sequences of the autotransporter protein-encoding gene sca2. Ann. N. Y. Acad. Sci. 1063:9499.PubMed CrossRef
33. Ogata, H.,, S. Audic,, P. Renesto-Audiffren,, P. E. Fournier,, V. Barbe,, D. Samson,, V. Roux,, P. Cossart,, J. Weissenbach,, J. M. Claverie,, and D. Raoult. 2001. Mechanisms of evolution in Rickettsia conorii and R. prowazekii. Science 293:20932098.PubMed CrossRef
34. Ogata, H.,, B. La Scola,, S. Audic,, P. Renesto,, G. Blanc,, C. Robert,, P. E. Fournier,, J. M. Claverie,, and D. Raoult. 2006. Genome sequence of Rickettsia bellii illuminates the role of amoebae in gene exchanges between intracellular pathogens. PLoS Genet. 2:e76.PubMed CrossRef
35. Ogata, H.,, P. Renesto,, S. Audic,, C. Robert,, G. Blanc,, P. E. Fournier,, H. Parinello,, J. M. Claverie,, and D. Raoult. 2005. The genome sequence of Rickettsia felis identifies the first putative conjugative plasmid in an obligate intracellular parasite. PLoS Biol. 3:e248.PubMed CrossRef
36. Ojcius, D. M.,, M. Thibon,, C. Mounier,, and A. Dautry-Varsat. 1995. pH and calcium dependence of hemolysis due to Rickettsia prowazekii: comparison with phospholipase activity. Infect. Immun. 63:30693072.PubMed
37. Pinkerton, H.,, and G. M. Hass. 1932. Spotted fever: I. Intranuclear rickettsiae in spotted fever studied in tissue culture. J. Exp. Med. 56:151156.PubMed CrossRef
38. Qin, A.,, A. M. Tucker,, A. Hines,, and D. O. Wood. 2004. Transposon mutagenesis of the obligate intracellular pathogen Rickettsia prowazekii. Appl. Environ. Microbiol. 70:28162822.PubMed CrossRef
39. Radulovic, S.,, J. M. Troyer,, M. S. Beier,, A. O. Lau,, and A. F. Azad. 1999. Identification and molecular analysis of the gene encoding Rickettsia typhi hemolysin. Infect. Immun. 67:61046108.PubMed
40. Rahman, M. S.,, N. C. Ammerman,, K. T. Sears,, S. M. Ceraul,, and A. F. Azad. 2010. Functional characterization of a phospholipase A2 homolog from Rickettsia typhi. J. Bacteriol. 192:32943303.PubMed CrossRef
41. Ramm, L. E.,, and H. H. Winkler. 1973a. Rickettsial hemolysis: adsorption of rickettsiae to erythrocytes. Infect. Immun. 7:9399.PubMed
42. Ramm, L. E.,, and H. H. Winkler. 1973b. Rickettsial hemolysis: effect of metabolic inhibitors upon hemolysis and adsorption. Infect. Immun. 7:550555.PubMed
43. Ramm, L. E.,, and H. H. Winkler. 1976. Identification of cholesterol in the receptor site for rickettsiae on sheep erythrocyte membranes. Infect. Immun. 13:120126.PubMed
44. Ray, K.,, B. Marteyn,, P. J. Sansonetti,, and C. M. Tang. 2009. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7:333340.PubMed CrossRef
45. Renesto, P.,, P. Dehoux,, E. Gouin,, L. Touqui,, P. Cossart,, and D. Raoult. 2003. Identification and characterization of a phospholipase D-superfamily gene in rickettsiae. J. Infect. Dis. 188:12761283.PubMed CrossRef
46. Robbins, J. R.,, and J. A. Theriot. 2003. Listeria monocytogenes rotates around its long axis during actin-based motility. Curr. Biol. 13:R754R756.PubMed CrossRef
47. Schaechter, M.,, F. M. Bozeman,, and J. E. Smadel. 1957. Study on the growth of rickettsiae. II. Morphologic observations of living rickettsiae in tissue culture cells. Virology 3:160172.PubMed
48. Serio, A. W.,, R. L. Jeng,, C. M. Haglund,, S. C. Reed, and M. D. Welch. 2010. Defining a core set of actin cytoskeletal proteins critical for actin-based motility of Rickettsia. Cell Host Microbe 7:388398.PubMed CrossRef
49. Silverman, D. J. 1984. Rickettsia rickettsii-induced cellular injury of human vascular endothelium in vitro. Infect. Immun. 44:545553.PubMed
50. Silverman, D. J.,, and L. A. Santucci. 1988. Potential for free radical-induced lipid peroxidation as a cause of endothelial cell injury in Rocky Mountain spotted fever. Infect. Immun. 56:31103115.PubMed
51. Silverman, D. J.,, and L. A. Santucci. 1990. A potential protective role for thiols against cell injury caused by Rickettsia rickettsii. Ann. N. Y. Acad. Sci. 590:111117.PubMed CrossRef
52. Silverman, D. J.,, L. A. Santucci,, N. Meyers,, and Z. Sekeyova. 1992. Penetration of host cells by Rickettsia rickettsii appears to be mediated by a phospholipase of rickettsial origin. Infect. Immun. 60:27332740.PubMed
53. Silverman, D. J.,, and C. L. Wisseman, Jr. 1979. In vitro studies of rickettsia-host cell interactions: ultrastructural changes induced by Rickettsia rickettsii infection of chicken embryo fibroblasts. Infect. Immun. 26:714727.PubMed
54. Silverman, D. J.,, C. L. Wisseman, Jr.,, and A. Waddell. 1980. In vitro studies of rickettsia-host cell interactions: ultrastructural study of Rickettsia prowazekii-infected chicken embryo fibroblasts. Infect. Immun. 29:778790.PubMed
55. Simser, J. A.,, A. T. Palmer,, V. Fingerle,, B. Wilske,, T. J. Kurtti,, and U. G. Munderloh. 2002. Rickettsia monacensis sp. nov., a spotted fever froup Rickettsia, from ticks (Ixodes ricinus) collected in a European city park. Appl. Environ. Microbiol. 68:45594566.PubMed CrossRef
56. Simser, J. A.,, M. S. Rahman,, S. M. Dreher-Lesnick,, and A. F. Azad. 2005. A novel and naturally occurring transposon, ISRpe1 in the Rickettsia peacockii genome disrupting the rickA gene involved in actin-based motility. Mol. Microbiol. 58:7179.PubMed CrossRef
57. Skoble, J.,, D. A. Portnoy,, and M. D. Welch. 2000. Three regions within ActA promote Arp2/3 complex-mediated actin nucleation and Listeria monocytogenes motility. J. Cell Biol. 150:527538.PubMed CrossRef
58. Stamm, L. M.,, J. H. Morisaki,, L. Y. Gao,, R. L. Jeng,, K. L. McDonald,, R. Roth,, S. Takeshita,, J. Heuser,, M. D. Welch,, and E. J. Brown. 2003. Mycobacterium marinum escapes from phagosomes and is propelled by actin-based motility. J. Exp. Med. 198:13611368.PubMed CrossRef
59. Suzuki, T.,, H. Miki,, T. Takenawa,, and C. Sasakawa. 1998. Neural Wiskott-Aldrich syndrome protein is implicated in the actin-based motility of Shigella flexneri. EMBO J. 17:27672776.PubMed CrossRef
60. Teysseire, N.,, J. A. Boudier,, and D. Raoult. 1995. Rickettsia conorii entry into Vero cells. Infect. Immun. 63:366374.PubMed
61. Teysseire, N.,, C. Chiche-Portiche,, and D. Raoult. 1992. Intracellular movements of Rickettsia conorii and R. typhi based on actin polymerization. Res. Microbiol. 143:821829.PubMed CrossRef
62. Theriot, J. A.,, T. J. Mitchison,, L. G. Tilney,, and D. A. Portnoy. 1992. The rate of actin-based motility of intracellular Listeria monocytogenes equals the rate of actin polymerization. Nature 357:257260.PubMed CrossRef
63. Tilney, L. G.,, and D. A. Portnoy. 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:15971608.PubMed CrossRef
64. Van Kirk, L. S.,, S. F. Hayes,, and R. A. Heinzen. 2000. Ultrastructure of Rickettsia rickettsii actin tails and localization of cytoskeletal proteins. Infect. Immun. 68:47064713.PubMed
65. Walker, D. H.,, and B. G. Cain. 1980. The rickettsial plaque. Evidence for direct cytopathic effect of Rickettsia rickettsii. Lab. Invest. 43:388396.PubMed
66. Walker, D. H.,, W. T. Firth,, J. G. Ballard,, and B. C. Hegarty. 1983. Role of phospholipase-associated penetration mechanism in cell injury by Rickettsia rickettsii. Infect. Immun. 40:840842.PubMed
67. Walker, D. H.,, A. Harrison,, F. Henderson,, and F. A. Murphy. 1977. Identification of Rickettsia rickettsii in a guinea pig model by immunofluorescent and electron microscopic techniques. Am. J. Pathol. 86:343358.PubMed
68. Walker, T. S.,, and H. H. Winkler. 1978. Penetration of cultured mouse fibroblasts (L cells) by Rickettsia prowazeki. Infect. Immun. 22:200208.PubMed
69. Welch, M. D.,, A. Iwamatsu,, and T. J. Mitchison. 1997. Actin polymerization is induced by the Arp2/3 protein complex at the surface of Listeria monocytogenes. Nature 385:265269.PubMed CrossRef
70. Welch, M. D.,, J. Rosenblatt,, J. Skoble,, D. Portnoy,, and T. J. Mitchison. 1998. Interaction of human Arp2/3 complex and the Listeria monocytogenes ActA protein in actin filament nucleation. Science 281:105108.PubMed CrossRef
71. Whitworth, T.,, V. L. Popov,, X.-J. Yu,, D. H. Walker,, and D. H. Bouyer. 2005. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73:66686673.PubMed CrossRef
72. Winkler, H. H.,, and R. M. Daugherty. 1989. Phospholipase A activity associated with the growth of Rickettsia prowazekii in L929 cells. Infect. Immun. 57:3640.PubMed
73. Winkler, H. H.,, and E. T. Miller. 1980. Phospholipase A activity in the hemolysis of sheep and human erythrocytes by Rickettsia prowazeki. Infect. Immun. 29:316321.PubMed
74. Winkler, H. H., and E. T. Miller. 1982. Phospholipase A and the interaction of Rickettsia prowazekii and mouse fibroblasts (L-929 cells). Infect. Immun. 38:109113.PubMed
75. Wisseman, C. L., Jr.,, E. A. Edlinger,, A. D. Waddell,, and M. R. Jones. 1976. Infection cycle of Rickettsia rickettsii in chicken embryo and L-929 cells in culture. Infect. Immun. 14:10521064.PubMed
76. Wisseman, C. L., Jr.,, and A. D. Waddell. 1975. In vitro studies on rickettsia-host cell interactions: intracellular growth cycle of virulent and attenuated Rickettsia prowazeki in chicken embryo cells in slide chamber cultures. Infect. Immun. 11:13911404.PubMed
77. Wolbach, S. B. 1919. Studies on Rocky Mountain spotted fever. J. Med. Res. 41:1198.41.PubMed
78. Wolbach, S. B.,, and M. J. Schlesinger. 1923. The cultivation of the micro-organisms of Rocky Mountain spotted fever (Dermacentroxenus rickettsi) and of typhus (Rickettsia prowazeki) in tissue cultures345.PubMed

Tables

Generic image for table
TABLE 1

Bacterial factors implicated in phagosome escape

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Generic image for table
TABLE 2

Bacterial factors implicated in actin-based motility

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5
Generic image for table
TABLE 3

Host cell factors implicated in actin-based motility

Citation: Welch M, Reed S, Haglund C. 2012. Establishing Intracellular Infection: Escape from the Phagosome and Intracellular Colonization (), p 154-174. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error