1887

Chapter 6 : Establishing Intracellular Infection: Modulation of Host Cell Functions ()

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Establishing Intracellular Infection: Modulation of Host Cell Functions (), Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817336/9781555816773_Chap06-2.gif

Abstract:

Studies of representative members, primarily and , have shed much light on the exquisite mechanisms by which pathogens manipulate their host cells, and are discussed following overviews of the diseases that they cause, their notable genomic features, and their infection and developmental cycles. The secretion of type IV secretion system (T4SS) effectors into host cells is critical for survival of facultative and obligate intracellular bacterial pathogens. Apoptosis is initiated by enzymatic caspases, which are inactive until they are activated by apoptotic signaling pathways. The -occupied vacuole (ApV) excludes fusion with secretory vesicles and specific granules harboring NADPH oxidase and proteolytic enzymes. Preferentially recruiting Rab GTPases that are predominantly found on slow recycling endosomes potentially provides with four intracellular survival advantages. First, is auxotrophic for 16 amino acids. Second, the mechanism by which obtains LDL endocytic pathway-derived cholesterol for incorporation into its cell wall is unknown. Third, continual delivery of recycling endosomes to the ApV would conceivably provide an unlimited supply of host membrane material to allow for expansion of the AVM, which would be necessary to accommodate growing intravacuolar bacterial populations. Fourth, by coating the AVM with recycling endosome- associated Rab GTPases, the ApV camouflages itself as a recycling endosome, which is likely a means by which it protects itself from fusing with lysosomes. Finally, much of what authors know regarding pathogen manipulation of host cell functions is derived from studies of and .

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

infection cycle in a myeloid host cell. This model is based on observations of -infected HL-60 cells. (1 to 3) An dense-cored bacterium binds to the host cell surface and triggers its own uptake to reside within a host cell-derived vacuole. (4) The dense-cored organism transitions to a reticulate cell. Arrowheads in corresponding electron micrograph point to two ApVs in which the bacteria are in the process of differentiating from the dense-cored to reticulate cell stage. The thick arrow denotes a vacuole harboring an bacterium that is still in the dense-cored cell form. (5 and 6) The reticulate cell form divides by binary fission to fill the expanding ApV with bacteria. (7) The reticulate cell bacteria transition to the dense-cored form. (8) The mature ApV opens to release dense-cored organisms into the media. Electron micrographs 8a and 8b present ApVs at different stages of opening. Also, a host cell that is filled with several large morulae can lyse to release bacteria. Similar infection/biphasic developmental cycles have been observed for spp. and spp. cultured in mammalian cell lines. (Electron micrograph in step 2 reprinted from with permission of the publisher.) doi:10.1128/9781555817336.ch6.f1

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

morulae. Scanning electron micrograph of a DH82 cell infected with from which the cell membrane and EVM have been removed. Bar, 1 µm. (Courtesy of Sunil Thomas, Vsevolod L. Popov, and David H. Walker, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch.) doi:10.1128/9781555817336.ch6.f2

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Host cell-free ApV binding to and facilitating its uptake by a host cell. Host cell-free organisms and host cell-free ApVs were liberated from infected HL-60 cells and added to murine bone marrow-derived mast cells. After 40 minutes, unbound bacteria were washed off and the host cells were fixed and examined by transmission electron microscopy. The arrow denotes a host cell-free vacuole filled with reticulate cell organisms that is bound to the surface of and is being internalized by a bone marrow-derived mast cell. Our laboratory has observed similar phenomena demonstrating that ApVs are also infectious for human promyelocytic HL-60 cells and monkey choroidal endothelial RF/6A cells. The arrowhead demarcates an dense-cored cell bound at the host cell surface. doi:10.1128/9781555817336.ch6.f3

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree showing the relationship, based on predicted amino acid sequences, between the eight paralogs in the HZ strain genome. Four paralogs (, , , and ) are only transcribed during infection of ISE6 tick embryonic cells, while two ( and ) are expressed only during infection of human HL-60 promyelocytic leukemia and HMEC-1 human microvascular endothelial cells. This figure was generated based on data published by . The numbering of paralogs is extrapolated from their relative positions to one another on the chromosome and uses the numerical designations assigned by Rikihisa and Lin, 2010. Full-length VirB2 sequences were bootstrapped ( = 1,000) and an unrooted neighbor-joining tree was created (Clustal-X 2.0.8 using the Gonnet scoring matrix) ( ). The tree was visualized using the TreeView program, and bootstrap support is shown at all nodes (Page, 2002). doi:10.1128/9781555817336.ch6.f4

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

bacteria induce the formation of and are transported through the filopodia in DH82 cells. Shown are scanning electron micrographs of -infected DH82 cells. Thin arrows indicate filopodia. Thick arrows denote flattened fan-shaped structures at the terminal ends of the filopodia. (A) infection promotes the formation of filopodia by DH82 cells. (B to D) Filopodia and the terminal flattened fan-shaped structures are filled with bacteria, as revealed when cell membranes are removed from filopodia. Similar results have been reported for ( ). (Courtesy of Sunil Thomas, Vsevolod L. Popov, and David H. Walker, Department of Pathology and Center for Biodefense and Emerging Infectious Diseases, University of Texas Medical Branch.) doi:10.1128/9781555817336.ch6.f 5

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

APH_1387 is expressed and localizes to the AVM throughout the course of infection. HL-60 cells were synchronously infected with . At 0.7 (A), 4 (B), 8 (C), 12 (D), 18 (E), 24 (F), and 48 h (G and H) post-bacterial addition, samples were fixed and screened with anti-APH_1387 followed by goat anti-rabbit immunoglobulin G conjugated to 6-nm gold particles and examined by electron microscopy. (A and B) Asterisks denote bound or newly internalized dense-cored organisms. (C to F) Arrowheads denote representative portions of the AVM that are labeled with gold particles. (H) Magnified view of the region in panel G that is demarcated by a hatched box. Bars, 0.5 µm. (Reprinted from with permission of the publisher.) doi:10.1128/9781555817336.ch6.f6

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

APH_0032 is expressed and localizes to the AVM late during infection. HL-60 cells were synchronously infected with . At 0.7 (A), 4 (B), 8 (C), 12 (D), 18 (E), 24 (F), and 48 h (G) post-bacterial addition, samples were fixed and screened with anti-APH_0032 followed by goat anti-rabbit immunoglobulin G conjugated to 6-nm gold particles and examined by transmission electron microscopy. (A and B) Asterisks denote bound or newly internalized dense-cored organisms. (F to H) Arrowheads denote representative portions of the AVM that are labeled with gold particles. (H) Magnified view of the region in panel G that is demarcated by a hatched box. (Reprinted from with permission of the publisher.) doi:10.1128/9781555817336.ch6.f7

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Hydropathy and antigenicity profiles of confirmed PVM proteins. Numerical scales correspond to the entire amino acid sequence of each protein. Hydropathy plots were generated using the Kyte-Doolittle algorithm to denote hydrophobic (black filled histogram above the axis) and hydrophilic (black filled histogram below the axis) regions ( ). Antigenicity plots were generated using the Jameson-Wolf algorithm to denote regions that are predicted to be antigenic (unfilled histogram above the axis) and/or nonantigenic (unfilled histogram below the axis) ( ). Analyses were performed using Protean, which is part of the Lasergene software package. doi:10.1128/9781555817336.ch6.f8

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

The ApV hijacks Rab GTPases. Rab GTPases that are selectively recruited to the ApV are in bold text. Recycling endosomes that are inferred as being intercepted by the ApV are shaded gray. ER, endoplasmic reticulum; cG, -Golgi; ERC, endocytic recycling center; IC, pre-Golgi intermediate compartment; LE, late endosome; LYS, lysosome; mG, -Golgi; NUC, nucleus; RE, recycling endosome; SG, secretory granule; SV, synaptic vesicle; tG, -Golgi. (Reprinted and modified from with permission of the publisher.) doi:10.1128/9781555817336.ch6.f 9

Citation: Carlyon J. 2012. Establishing Intracellular Infection: Modulation of Host Cell Functions (), p 175-220. In Palmer G, Azad A (ed), Intracellular Pathogens II: . ASM Press, Washington, DC. doi: 10.1128/9781555817336.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817336.chap6
1. Abdelrahman, Y. M.,, and R. J. Belland. 2005. The chlamydial developmental cycle. FEMS Microbiol. Rev. 29:949959.PubMed CrossRef
2. Akkoyunlu, M.,, and E. Fikrig. 2000. Gamma interferon dominates the murine cytokine response to the agent of human granulocytic ehrlichiosis and helps to control the degree of early rickettsemia. Infect. Immun. 68:18271833.PubMed CrossRef
3. Akkoyunlu, M.,, S. E. Malawista,, J. Anguita,, and E. Fikrig. 2001. Exploitation of interleukin-8-induced neutrophil chemotaxis by the agent of human granulocytic ehrlichiosis. Infect. Immun. 69: 55775588.PubMed CrossRef
4. Allsopp, M. T.,, M. Louw,, and E. C. Meyer. 2005. Ehrlichia ruminantium: an emerging human pathogen? Ann. N. Y. Acad. Sci. 1063:358360.PubMed CrossRef
5. Alvarez-Dominguez, C.,, R. Roberts,, and P. D. Stahl. 1997. Internalized Listeria monocytogenes modulates intracellular trafficking and delays maturation of the phagosome. J. Cell Sci. 110:731743.PubMed
6. Alvarez-Martinez, C. E.,, and P. J. Christie. 2009. Biological diversity of prokaryotic type IV secretion systems. Microbiol. Mol. Biol. Rev. 73:775808.PubMed CrossRef
7. Amer, A. O.,, and M. S. Swanson. 2005. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell. Microbiol. 7:765778.PubMed CrossRef
8. Anderson, R. G.,, J. R. Falck,, J. L. Goldstein,, and M. S. Brown. 1984. Visualization of acidic organelles in intact cells by electron microscopy. Proc. Natl. Acad. Sci. USA 81:48384842.PubMed CrossRef
9. Anonymous. 2001. Case records of the Massachusetts General Hospital. Weekly clinicopathological exercises. Case 37-2001. A 76-year-old man with fever, dyspnea, pulmonary infiltrates, pleural effusions, and confusion. N. Engl. J. Med. 345:16271634.PubMed CrossRef
10. Avakyan, A. A.,, and V. L. Popov. 1984. Rickettsiaceae and Chlamydiaceae: comparative electron microscopic studies. Acta Virol. 28:159173.PubMed
11. Backert, S.,, R. Fronzes,, and G. Waksman. 2008. VirB2 and VirB5 proteins: specialized adhesins in bacterial type-IV secretion systems? Trends Microbiol. 16:409413.PubMed CrossRef
12. Banerjee, R.,, J. Anguita,, and E. Fikrig. 2000a. Granulocytic ehrlichiosis in mice deficient in phagocyte oxidase or inducible nitric oxide synthase. Infect. Immun. 68:43614362.PubMed
13. Banerjee, R.,, J. Anguita,, D. Roos,, and E. Fikrig. 2000b. Infection by the agent of human granulocytic ehrlichiosis prevents the respiratory burst by down-regulating gp91phox. J. Immunol. 164:39463949.PubMed
14. Bao, W.,, Y. Kumagai,, H. Niu,, M. Yamaguchi,, K. Miura,, and Y. Rikihisa. 2009. Four VirB6 paralogs and VirB9 are expressed and interact in Ehrlichia chaffeensis-containing vacuoles. J. Bacteriol. 191:278286.PubMed CrossRef
15. Barbet, A. F.,, P. F. Meeus,, M. Belanger,, M. V. Bowie,, J. Yi,, A. M. Lundgren,, A. R. Alleman,, S. J. Wong,, F. K. Chu,, U. G. Munderloh,, and S. D. Jauron. 2003. Expression of multiple outer membrane protein sequence variants from a single genomic locus of Anaplasma phagocytophilum. Infect. Immun. 71:17061718.PubMed
16. Barnewall, R. E.,, N. Ohashi,, and Y. Rikihisa. 1999. Ehrlichia chaffeensis and E. sennetsu, but not the human granulocytic ehrlichiosis agent, colocalize with transferrin receptor and up-regulate transferrin receptor mRNA by activating iron-responsive protein 1. Infect. Immun. 67:22582265.PubMed
17. Barnewall, R. E.,, and Y. Rikihisa. 1994. Abrogation of gamma interferon-induced inhibition of Ehrlichia chaffeensis infection in human monocytes with iron transferrin. Infect. Immun. 62:48044810.PubMed
18. Barnewall, R. E.,, Y. Rikihisa,, and E. H. Lee. 1997. Ehrlichia chaffeensis inclusions are early endosomes which selectively accumulate transferrin receptor. Infect. Immun. 65:14551461.PubMed
19. Bitsaktsis, C.,, and G. Winslow. 2006. Fatal recall responses mediated by CD8 T cells during intracellular bacterial challenge infection. J. Immunol. 177:46444651.PubMed
20. Blouin, E. F.,, and K. M. Kocan. 1998. Morphology and development of Anaplasma marginale (Rickettsiales: Anaplasmataceae) in cultured Ixodes scapularis (Acari: Ixodidae) cells. J. Med. Entomol. 35:788797.PubMed
21. Borjesson, D. L.,, S. D. Kobayashi,, A. R. Whitney,, J. M. Voyich,, C. M. Argue,, and F. R. DeLeo. 2005. Insights into pathogen immune evasion mechanisms: Anaplasma phagocytophilum fails to induce an apoptosis differentiation program in human neutrophils. J. Immunol. 174:63646372.PubMed
22. Brayton, K. A.,, L. S. Kappmeyer,, D. R. Herndon,, M. J. Dark,, D. L. Tibbals,, G. H. Palmer,, T. C. McGuire,, and D. P. Knowles, Jr. 2005. Complete genome sequencing of Anaplasma marginale reveals that the surface is skewed to two superfamilies of outer membrane proteins. Proc. Natl. Acad. Sci. USA 102:844849.PubMed CrossRef
23. Brayton, K. A.,, D. P. Knowles,, T. C. McGuire,, and G. H. Palmer. 2001. Efficient use of a small genome to generate antigenic diversity in tick-borne ehrlichial pathogens. Proc. Natl. Acad. Sci. USA 98:41304135.PubMed CrossRef
24. Brumell, J. H.,, and M. A. Scidmore. 2007. Manipulation of Rab GTPase function by intracellular bacterial pathogens. Microbiol. Mol. Biol. Rev. 71:636652.PubMed CrossRef
25. Brumell, J. H.,, A. Volchuk,, H. Sengelov,, N. Borregaard,, A. M. Cieutat,, D. F. Bainton,, S. Grinstein,, and A. Klip. 1995. Subcellular distribution of docking/fusion proteins in neutrophils, secretory cells with multiple exocytic compartments. J. Immunol. 155:57505759.PubMed
26. Bussmeyer, U.,, A. Sarkar,, K. Broszat,, T. Lüdemann,, S. Moller,, G. van Zandbergen,, C. Bogdan,, M. Behnen,, J. S. Dumler,, F. D. von Loewenich,, W. Solbach,, and T. Laskay. 2010. Impairment of gamma interferon signaling in human neutrophils infected with Anaplasma phagocytophilum. Infect. Immun. 78:358363.PubMed CrossRef
27. Carlyon, J. A.,, D. Abdel-Latif,, M. Pypaert,, P. Lacy,, and E. Fikrig. 2004. Anaplasma phagocytophilum utilizes multiple host evasion mechanisms to thwart NADPH oxidase-mediated killing during neutrophil infection. Infect. Immun. 72: 47724783.PubMed CrossRef
28. Carlyon, J. A.,, M. Akkoyunlu,, L. Xia,, T. Yago,, T. Wang,, R. D. Cummings,, R. P. McEver,, and E. Fikrig. 2003. Murine neutrophils require α1,3-fucosylation but not PSGL-1 for productive infection with Anaplasma phagocytophilum. Blood 102:33873395.PubMed CrossRef
29. Carlyon, J. A.,, W. T. Chan,, J. Galan,, D. Roos,, and E. Fikrig. 2002. Repression of rac2 mRNA expression by Anaplasma phagocytophila is essential to the inhibition of superoxide production and bacterial proliferation. J. Immunol. 169:70097018.PubMed
30. Carlyon, J. A.,, D. Ryan,, K. Archer,, and E. Fikrig. 2005. Effects of Anaplasma phagocytophilum on host cell ferritin mRNA and protein levels. Infect. Immun. 73:76297636.PubMed CrossRef
31. Caturegli, P.,, K. M. Asanovich,, J. J. Walls,, J. S. Bakken,, J. E. Madigan,, V. L. Popov,, and J. S. Dumler. 2000. ankA: an Ehrlichia phagocytophila group gene encoding a cytoplasmic protein antigen with ankyrin repeats. Infect. Immun. 68:52775283.PubMed CrossRef
32. Chen, C.,, S. Banga,, K. Mertens,, M. M. Weber,, I. Gorbaslieva,, Y. Tan,, Z. Q. Luo,, and J. E. Samuel. 2010. Large-scale identification and translocation of type IV secretion substrates by Coxiella burnetii. Proc. Natl. Acad. Sci. USA 107:2175521760.PubMed CrossRef
33. Chen, S. M.,, J. S. Dumler,, H. M. Feng,, and D. H. Walker. 1994. Identification of the antigenic constituents of Ehrlichia chaffeensis. Am. J. Trop. Med. Hyg. 50:5258.PubMed
34. Cheng, Z.,, Y. Kumagai,, M. Lin,, C. Zhang,, and Y. Rikihisa. 2006. Intra-leukocyte expression of two-component systems in Ehrlichia chaffeensis and Anaplasma phagocytophilum and effects of the histidine kinase inhibitor closantel. Cell. Microbiol. 8:12411252.PubMed CrossRef
35. Cheng, Z.,, X. Wang,, and Y. Rikihisa. 2008. Regulation of type IV secretion apparatus genes during Ehrlichia chaffeensis intracellular development by a previously unidentified protein. J. Bacteriol. 190:20962105.PubMed CrossRef
36. Cho, N. H.,, H. R. Kim,, J. H. Lee,, S. Y. Kim,, J. Kim,, S. Cha,, A. C. Darby,, H. H. Fuxelius,, J. Yin,, J. H. Kim,, S. J. Lee,, Y. S. Koh,, W. J. Jang,, K. H. Park,, S. G. Andersson,, M. S. Choi,, and I. S. Kim. 2007. The Orientia tsutsugamushi genome reveals massive proliferation of conjugative type IV secretion system and host-cell interaction genes. Proc. Natl. Acad. Sci. USA 104:79817986.PubMed CrossRef
37. Choi, K. S.,, and J. S. Dumler. 2003. Early induction and late abrogation of respiratory burst in A. phagocytophilum-infected neutrophils. Ann. N. Y. Acad. Sci. 990:488493.PubMed CrossRef
38. Choi, K. S.,, J. Garyu,, J. Park,, and J. S. Dumler. 2003. Diminished adhesion of Anaplasma phagocytophilum-infected neutrophils to endothelial cells is associated with reduced expression of leukocyte surface selectin. Infect. Immun. 71:45864594.PubMed
39. Choi, K. S.,, J. T. Park,, and J. S. Dumler. 2005. Anaplasma phagocytophilum delay of neutrophil apoptosis through the p38 mitogen-activated protein kinase signal pathway. Infect. Immun. 73: 82098218.PubMed CrossRef
40. Clifton, D. R.,, K. A. Fields,, S. S. Grieshaber,, C. A. Dooley,, E. R. Fischer,, D. J. Mead,, R. A. Carabeo,, and T. Hackstadt. 2004. A chlamydial type III translocated protein is tyrosine-phosphorylated at the site of entry and associated with recruitment of actin. Proc. Natl. Acad. Sci. USA 101:1016610171.PubMed CrossRef
41. Collins, N. E.,, J. Liebenberg,, E. P. de Villiers,, K. A. Brayton,, E. Louw,, A. Pretorius,, F. E. Faber,, H. van Heerden,, A. Josemans,, M. van Kleef,, H. C. Steyn,, M. F. van Strijp,, E. Zweygarth,, F. Jongejan,, J. C. Maillard,, D. Berthier,, M. Botha,, F. Joubert,, C. H. Corton,, N. R. Thomson,, M. T. Allsopp,, and B. A. Allsopp. 2005. The genome of the heartwater agent Ehrlichia ruminantium contains multiple tandem repeats of actively variable copy number. Proc. Natl. Acad. Sci. USA 102:838843.PubMed CrossRef
42. Cortes, C.,, K. A. Rzomp,, A. Tvinnereim,, M. A. Scidmore, and B. Wizel. 2007. Chlamydia pneumoniae inclusion membrane protein Cpn0585 interacts with multiple Rab GTPases. Infect. Immun. 75:55865596.PubMed CrossRef
43. Cossart, P.,, and C. R. Roy. 2010. Manipulation of host membrane machinery by bacterial pathogens. Curr. Opin. Cell Biol. 22:547554.PubMed CrossRef
44. Danial, N. N.,, and S. J. Korsmeyer. 2004. Cell death: critical control points. Cell 116:205219.PubMed CrossRef
45. Dehio, C. 2008. Infection-associated type IV secretion systems of Bartonella and their diverse roles in host cell interaction. Cell. Microbiol. 10:15911598.PubMed CrossRef
46. de la Fuente, J.,, P. Ayoubi,, E. F. Blouin,, C. Almazán,, V. Naranjo,, and K. M. Kocan. 2005. Gene expression profiling of human promyelocytic cells in response to infection with Anaplasma phagocytophilum. Cell. Microbiol. 7:549559.PubMed CrossRef
47. de la Fuente, J.,, J. C. Garcia-Garcia,, A. F. Barbet,, E. F. Blouin,, and K. M. Kocan. 2004. Adhesion of outer membrane proteins containing tandem repeats of Anaplasma and Ehrlichia species (Rickettsiales: Anaplasmataceae) to tick cells. Vet. Microbiol. 98:313322.PubMed CrossRef
48. de la Fuente, J.,, J. C. Garcia-Garcia,, E. F. Blouin,, and K. M. Kocan. 2001. Differential adhesion of major surface proteins 1a and 1b of the ehrlichial cattle pathogen Anaplasma marginale to bovine erythrocytes and tick cells. Int. J. Parasitol. 31:145153.PubMed CrossRef
49. de la Fuente, J.,, J. C. Garcia-Garcia,, E. F. Blouin,, and K. M. Kocan. 2003. Characterization of the functional domain of major surface protein 1a involved in adhesion of the rickettsia Anaplasma marginale to host cells. Vet. Microbiol. 91:265283.PubMed CrossRef
50. DeLeo, F. R. 2004. Modulation of phagocyte apoptosis by bacterial pathogens. Apoptosis 9:399413.PubMed CrossRef
51. Delepelaire, P. 2004. Type I secretion in gram-negative bacteria. Biochim. Biophys. Acta 1694: 149161.PubMed CrossRef
52. Deretic, V. 2010. Autophagy in infection. Curr. Opin. Cell Biol. 22:252262.PubMed CrossRef
53. Doyle, C. K.,, K. A. Nethery,, V. L. Popov,, and J. W. McBride. 2006. Differentially expressed and secreted major immunoreactive protein orthologs of Ehrlichia canis and E. chaffeensis elicit early antibody responses to epitopes on glycosylated tandem repeats. Infect. Immun. 74:711720.PubMed CrossRef
54. Dumler, J. S.,, S. M. Chen,, K. Asanovich,, E. Trigiani,, V. L. Popov,, and D. H. Walker. 1995. Isolation and characterization of a new strain of Ehrlichia chaffeensis from a patient with nearly fatal monocytic ehrlichiosis. J. Clin. Microbiol. 33:17041711.PubMed
55. Dunning Hotopp, J. C.,, M. Lin,, R. Madupu,, J. Crabtree,, S. V. Angiuoli,, J. Eisen,, R. Seshadri,, Q. Ren,, M. Wu,, T. R. Utterback,, S. Smith,, M. Lewis,, H. Khouri,, C. Zhang,, H. Niu,, Q. Lin,, N. Ohashi,, N. Zhi,, W. Nelson,, L. M. Brinkac,, R. J. Dodson,, M. J. Rosovitz,, J. Sundaram,, S. C. Daugherty,, T. Davidsen,, A. S. Durkin,, M. Gwinn,, D. H. Haft,, J. D. Selengut,, S. A. Sullivan,, N. Zafar,, L. Zhou,, F. Benahmed,, H. Forberger,, R. Halpin,, S. Mulligan,, J. Robinson,, O. White,, Y. Rikihisa,, and H. Tettelin. 2006. Comparative genomics of emerging human ehrlichiosis agents. PLoS Genet. 2:e21.PubMed CrossRef
56. Eyster, C. A.,, J. D. Higginson,, R. Huebner,, N. Porat-Shliom,, R. Weigert,, W. W. Wu,, R. F. Shen,, and J. G. Donaldson. 2009. Discovery of new cargo proteins that enter cells through clathrin-independent endocytosis. Traffic 10:590599.PubMed CrossRef
57. Felek, S.,, H. Huang,, and Y. Rikihisa. 2003. Sequence and expression analysis of virB9 of the type IV secretion system of Ehrlichia canis strains in ticks, dogs, and cultured cells. Infect. Immun. 71: 60636067.PubMed
58. Feng, H. M.,, and D. H. Walker. 2004. Mechanisms of immunity to Ehrlichia muris: a model of monocytotropic ehrlichiosis. Infect. Immun. 72:966971.PubMed CrossRef
59. Foley, J. E.,, N. W. Lerche,, J. S. Dumler,, and J. E. Madigan. 1999. A simian model of human granulocytic ehrlichiosis. Am. J. Trop. Med. Hyg. 60:987993.PubMed
60. Foster, J.,, M. Ganatra,, I. Kamal,, J. Ware,, K. Makarova,, N. Ivanova,, A. Bhattacharyya,, V. Kapatral,, S. Kumar,, J. Posfai,, T. Vincze,, J. Ingram,, L. Moran,, A. Lapidus,, M. Omelchenko,, N. Kyrpides,, E. Ghedin,, S. Wang,, E. Goltsman,, V. Joukov,, O. Ostrovskaya,, K. Tsukerman,, M. Mazur,, D. Comb,, E. Koonin,, and B. Slatko. 2005. The Wolbachia genome of Brugia malayi: endosymbiont evolution within a human pathogenic nematode. PLoS Biol. 3:e121.PubMed CrossRef
61. Fronzes, R.,, P. J. Christie,, and G. Waksman. 2009. The structural biology of type IV secretion systems. Nat. Rev. Microbiol. 7:703714.PubMed CrossRef
62. Futse, J. E.,, K. A. Brayton,, S. D. Nydam,, and G. H. Palmer. 2009. Generation of antigenic variants via gene conversion: evidence for recombination fitness selection at the locus level in Anaplasma marginale. Infect. Immun. 77:31813187.PubMed CrossRef
63. Galindo, R. C.,, N. Ayllon,, T. Carta,, J. Vicente,, K. M. Kocan,, C. Gortazar,, and J. de la Fuente. 2010. Characterization of pathogen-specific expression of host immune response genes in Anaplasma and Mycobacterium species infected ruminants. Comp. Immunol. Microbiol. Infect. Dis. 33:e133e142. PubMed CrossRef
64. Galindo, R. C.,, P. Ayoubi,, A. L. García-Pérez,, V. Naranjo,, K. M. Kocan,, C. Gortazar,, and J. de la Fuente. 2008. Differential expression of inflammatory and immune response genes in sheep infected with Anaplasma phagocytophilum. Vet. Immunol. Immunopathol. 126:2734. PubMed CrossRef
65. Garcia-Garcia, J. C.,, N. C. Barat,, S. J. Trembley,, and J. S. Dumler. 2009a. Epigenetic silencing of host cell defense genes enhances intracellular survival of the rickettsial pathogen Anaplasma phagocytophilum. PLoS Pathog. 5:e1000488.PubMed CrossRef
66. Garcia-Garcia, J. C.,, K. E. Rennoll-Bankert,, S. Pelly,, A. M. Milstone,, and J. S. Dumler. 2009b. Silencing of host cell CYBB gene expression by the nuclear effector AnkA of the intracellular pathogen Anaplasma phagocytophilum. Infect. Immun. 77:23852391.PubMed CrossRef
67. Ge, Y.,, and Y. Rikihisa. 2006. Anaplasma phagocytophilum delays spontaneous human neutrophil apoptosis by modulation of multiple apoptotic pathways. Cell. Microbiol. 8:14061416.PubMed CrossRef
68. Ge, Y.,, and Y. Rikihisa. 2007. Surface-exposed proteins of Ehrlichia chaffeensis. Infect. Immun. 75: 38333841.PubMed CrossRef
69. Ge, Y.,, K. Yoshiie,, F. Kuribayashi,, M. Lin,, and Y. Rikihisa. 2005. Anaplasma phagocytophilum inhibits human neutrophil apoptosis via upregulation of bfl-1, maintenance of mitochondrial membrane potential and prevention of caspase 3 activation. Cell. Microbiol. 7:2938.PubMed CrossRef
70. Gibson, K.,, Y. Kumagai,, and Y. Rikihisa. 2010. Proteomic analysis of Neorickettsia sennetsu surface-exposed proteins and porin activity of the major surface protein P51. J. Bacteriol. 192:58985905.PubMed CrossRef
71. Gillespie, J. J.,, K. A. Brayton,, K. P. Williams,, M. A. Diaz,, W. C. Brown,, A. F. Azad,, and B. W. Sobral. 2010. Phylogenomics reveals a diverse Rickettsiales type IV secretion system. Infect. Immun. 78:18091823.PubMed CrossRef
72. Gokce, H. I.,, G. Ross,, and Z. Woldehiwet. 1999. Inhibition of phagosome-lysosome fusion in ovine polymorphonuclear leucocytes by Ehrlichia (Cytoecetes) phagocytophila. J. Comp. Pathol. 120:369381.PubMed CrossRef
73. Goodman, J. L.,, C. M. Nelson,, M. B. Klein,, S. F. Hayes,, and B. W. Weston. 1999. Leukocyte infection by the granulocytic ehrlichiosis agent is linked to expression of a selectin ligand. J. Clin. Invest. 103:407412.PubMed CrossRef
74. Granick, J. L.,, D. V. Reneer,, J. A. Carlyon,, and D. L. Borjesson. 2008. Anaplasma phagocytophilum infects cells of the megakaryocytic lineage through sialylated ligands but fails to alter platelet production. J. Med. Microbiol. 57:416423.PubMed CrossRef
75. Grant, B. D.,, and J. G. Donaldson. 2009. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10:597608.PubMed CrossRef
76. Heinzen, R. A.,, T. Hackstadt,, and J. E. Samuel. 1999. Developmental biology of Coxiella burnettii. Trends Microbiol. 7:149154.PubMed CrossRef
77. Herndon, D. R.,, G. H. Palmer,, V. Shkap,, D. P. Knowles, Jr.,, and K. A. Brayton. 2010. Complete genome sequence of Anaplasma marginale subsp. centrale. J. Bacteriol. 192:379380.PubMed CrossRef
78. Herron, M. J.,, M. E. Ericson,, T. J. Kurtti,, and U. G. Munderloh. 2005. The interactions of Anaplasma phagocytophilum, endothelial cells, and human neutrophils. Ann. N. Y. Acad. Sci. 1063:374382.PubMed CrossRef
79. Herron, M. J.,, and J. L. Goodman. 2001. Evidence that the human granulocytic ehrlichiosis agent utilizes a novel oxygen radical detoxification system: cytochrome C re-oxidation, abstr. 50. Proc. Am. Soc. Rickettsiol. Bartonella Emerg. Pathog. Group 2001 Joint Conf., Big Sky, MT, 17 to 22 August 2001.
80. Herron, M. J.,, C. M. Nelson,, J. Larson,, K. R. Snapp,, G. S. Kansas,, and J. L. Goodman. 2000. Intracellular parasitism by the human granulocytic ehrlichiosis bacterium through the P-selectin ligand, PSGL-1. Science 288:16531656.PubMed CrossRef
81. Hidalgo, R. J.,, E. W. Jones,, J. E. Brown,, and A. J. Ainsworth. 1989. Anaplasma marginale in tick cell culture. Am. J. Vet. Res. 50:20282032.PubMed
82. Hodzic, E.,, S. Feng,, D. Fish,, C. M. Leutenegger,, K. J. Freet,, and S. W. Barthold. 2001. Infection of mice with the agent of human granulocytic ehrlichiosis after different routes of inoculation. J. Infect. Dis. 183:17811786.PubMed CrossRef
83. Howell, M. L.,, E. Alsabbagh,, J. F. Ma,, U. A. Ochsner,, M. G. Klotz,, T. J. Beveridge,, K. M. Blumenthal,, E. C. Niederhoffer,, R. E. Morris,, D. Needham,, G. E. Dean,, M. A. Wani,, and D. J. Hassett. 2000. AnkB, a periplasmic ankyrin-like protein in Pseudomonas aeruginosa, is required for optimal catalase B (KatB) activity and resistance to hydrogen peroxide. J. Bacteriol. 182:45454556.PubMed CrossRef
84. Huang, B.,, A. Hubber,, J. A. McDonough,, C. R. Roy,, M. A. Scidmore,, and J. A. Carlyon. 2010a. The Anaplasma phagocytophilum-occupied vacuole selectively recruits Rab-GTPases that are predominantly associated with recycling endosomes. Cell. Microbiol. 12:12921307.PubMed CrossRef
85. Huang, B.,, M. J. Troese,, D. Howe,, S. Ye,, J. T. Sims,, R. A. Heinzen,, D. L. Borjesson,, and J. A. Carlyon. 2010b. Anaplasma phagocytophilum APH_0032 is expressed late during infection and localizes to the pathogen-occupied vacuolar membrane. Microb. Pathog. 49:273284.PubMed CrossRef
86. Huang, B.,, M. J. Troese,, S. Ye,, J. T. Sims,, N. L. Galloway,, D. L. Borjesson,, and J. A. Carlyon. 2010c. Anaplasma phagocytophilum APH_1387 is expressed throughout bacterial intracellular development and localizes to the pathogen-occupied vacuolar membrane. Infect. Immun. 78:18641873.PubMed CrossRef
87. Huang, H.,, X. Wang,, T. Kikuchi,, Y. Kumagai,, and Y. Rikihisa. 2007. Porin activity of Anaplasma phagocytophilum outer membrane fraction and purified P44. J. Bacteriol. 189:19982006.PubMed CrossRef
88. Hussain, M.,, A. Haggar,, G. Peters,, G. S. Chhatwal,, M. Herrmann,, J. I. Flock,, and B. Sinha. 2008. More than one tandem repeat domain of the extracellular adherence protein of Staphylococcus aureus is required for aggregation, adherence, and host cell invasion but not for leukocyte activation. Infect. Immun. 76:56155623.PubMed CrossRef
89. IJdo, J.,, A. C. Carlson,, and E. L. Kennedy. 2007. Anaplasma phagocytophilum AnkA is tyrosine-phosphorylated at EPIYA motifs and recruits SHP-1 during early infection. Cell. Microbiol. 9:12841296.PubMed CrossRef
90. IJdo, J. W.,, and A. C. Mueller. 2004. Neutrophil NADPH oxidase is reduced at the Anaplasma phagocytophilum phagosome. Infect. Immun. 72: 53925401.PubMed CrossRef
91. IJdo, J. W.,, C. Wu,, S. R. Telford III,, and E. Fikrig. 2002. Differential expression of the p44 gene family in the agent of human granulocytic ehrlichiosis. Infect. Immun. 70:52955298.PubMed CrossRef
92. Ingmundson, A.,, A. Delprato,, D. G. Lambright,, and C. R. Roy. 2007. Legionella pneumophila proteins that regulate Rab1 membrane cycling. Nature 450:365369.PubMed CrossRef
93. Ismail, N.,, L. Soong,, J. W. McBride,, G. Valbuena,, J. P. Olano,, H. M. Feng,, and D. H. Walker. 2004. Overproduction of TNF-α by CD8+ type 1 cells and down-regulation of IFN-γ production by CD4+ Th1 cells contribute to toxic shock-like syndrome in an animal model of fatal monocytotropic ehrlichiosis. J. Immunol. 172:17861800.
94. Jameson, B. A.,, and H. Wolf. 1988. The antigenic index: a novel algorithm for predicting antigenic determinants. Comput. Appl. Biosci. 4:181186.PubMed CrossRef
95. Jauron, S. D.,, C. M. Nelson,, V. Fingerle,, M. D. Ravyn,, J. L. Goodman,, R. C. Johnson,, R. Lobentanzer,, B. Wilske,, and U. G. Munderloh. 2001. Host cell-specific expression of a p44 epitope by the human granulocytic ehrlichiosis agent. J. Infect. Dis. 184:14451450.PubMed CrossRef
96. Johnson, L. S.,, K. W. Dunn,, B. Pytowski,, and T. E. McGraw. 1993. Endosome acidification and receptor trafficking: bafilomycin A1 slows receptor externalization by a mechanism involving the receptor’s internalization motif. Mol. Biol. Cell 4:12511266.PubMed
97. Khan, I. A.,, J. A. MacLean,, F. S. Lee,, L. Casciotti,, E. DeHaan,, J. D. Schwartzman,, and A. D. Luster. 2000. IP-10 is critical for effector T cell trafficking and host survival in Toxoplasma gondii infection. Immunity 12:483494.PubMed CrossRef
98. Kim, H. Y.,, and Y. Rikihisa. 2002. Roles of p38 mitogen-activated protein kinase, NF-κB, and protein kinase C in proinflammatory cytokine mRNA expression by human peripheral blood leukocytes, monocytes, and neutrophils in response to Anaplasma phagocytophila. Infect. Immun. 70:41324141.PubMed
99. Klein, M. B.,, J. S. Miller,, C. M. Nelson,, and J. L. Goodman. 1997. Primary bone marrow progenitors of both granulocytic and monocytic lineages are susceptible to infection with the agent of human granulocytic ehrlichiosis. J. Infect. Dis. 176:14051409.PubMed CrossRef
100. Klotz, M. G.,, and A. J. Anderson. 1995. Sequence of a gene encoding periplasmic Pseudomonas syringae ankyrin. Gene 164:187188.PubMed CrossRef
101. Kobayashi, S. D.,, K. R. Braughton,, A. R. Whitney,, J. M. Voyich,, T. G. Schwan,, J. M. Musser,, and F. R. DeLeo. 2003. Bacterial pathogens modulate an apoptosis differentiation program in human neutrophils. Proc. Natl. Acad. Sci. USA 100:1094810953.PubMed CrossRef
102. Kobayashi, S. D.,, and F. R. DeLeo. 2004. An apoptosis differentiation programme in human polymorphonuclear leucocytes. Biochem. Soc. Trans. 32:474476.PubMed CrossRef
103. Kocan, K. M.,, J. de la Fuente,, E. F. Blouin,, J. F. Coetzee,, and S. A. Ewing. 2010. The natural history of Anaplasma marginale. Vet. Parasitol. 167:95107. PubMed CrossRef
104. Kumagai, Y.,, Z. Cheng,, M. Lin,, and Y. Rikihisa. 2006. Biochemical activities of three pairs of Ehrlichia chaffeensis two-component regulatory system proteins involved in inhibition of lysosomal fusion. Infect. Immun. 74:50145022.PubMed CrossRef
105. Kumagai, Y.,, H. Huang,, and Y. Rikihisa. 2008. Expression and porin activity of P28 and OMP-1F during intracellular Ehrlichia chaffeensis development. J. Bacteriol. 190:35973605.PubMed CrossRef
106. Kumar, Y.,, and R. H. Valdivia. 2008. Actin and intermediate filaments stabilize the Chlamydia trachomatis vacuole by forming dynamic structural scaffolds. Cell Host Microbe 4:159169.PubMed CrossRef
107. Kyte, J.,, and R. F. Doolittle. 1982. A simple method for displaying the hydropathic character of a protein. J. Mol. Biol. 4:105132.PubMed CrossRef
108. Lai, T. H.,, Y. Kumagai,, M. Hyodo,, Y. Hayakawa,, and Y. Rikihisa. 2009. The Anaplasma phagocytophilum PleC histidine kinase and PleD diguanylate cyclase two-component system and role of cyclic Di-GMP in host cell infection. J. Bacteriol. 191:693700.PubMed CrossRef
109. Larkin, M. A.,, G. Blackshields,, N. P. Brown,, R. Chenna,, P. A. McGettigan,, H. McWilliam,, F. Valentin,, I. M. Wallace,, A. Wilm,, R. Lopez,, J. D. Thompson,, T. J. Gibson,, and D. G. Higgins. 2007. Clustal W and Clustal X version 2.0. Bioinformatics 23:29472948.PubMed CrossRef
110. Larson, J. A.,, H. L. Howie,, and M. So. 2004. Neisseria meningitidis accelerates ferritin degradation in host epithelial cells to yield an essential iron source. Mol. Microbiol. 53:807820.CrossRef
111. Lee, E. H.,, and Y. Rikihisa. 1998. Protein kinase A-mediated inhibition of gamma interferon-induced tyrosine phosphorylation of Janus kinases and latent cytoplasmic transcription factors in human monocytes by Ehrlichia chaffeensis. Infect. Immun. 66:25142520.PubMed
112. Lee, H. C.,, and J. L. Goodman. 2006. Anaplasma phagocytophilum causes global induction of antiapoptosis in human neutrophils. Genomics 88:496503.PubMed CrossRef
113. Lee, H. C.,, M. Kioi,, J. Han,, R. K. Puri,, and J. L. Goodman. 2008. Anaplasma phagocytophilum-induced gene expression in both human neutrophils and HL-60 cells. Genomics 92:144151.PubMed CrossRef
114. Lee, M. J.,, L. Chien-Liang,, J. Y. Tsai,, W. T. Sue,, W. S. Hsia,, and H. Huang. 2010. Identification and biochemical characterization of a unique Mn2+-dependent UMP kinase from Helicobacter pylori. Arch. Microbiol. 192:739746.PubMed CrossRef
115. Lin, M.,, A. den Dulk-Ras,, P. J. Hooykaas,, and Y. Rikihisa. 2007. Anaplasma phagocytophilum AnkA secreted by type IV secretion system is tyrosine phosphorylated by Abl-1 to facilitate infection. Cell. Microbiol. 9:26442657.PubMed CrossRef
116. Lin, M.,, and Y. Rikihisa. 2003a. Ehrlichia chaffeensis and Anaplasma phagocytophilum lack genes for lipid A biosynthesis and incorporate cholesterol for their survival. Infect. Immun. 71:53245331.PubMed CrossRef
117. Lin, M.,, and Y. Rikihisa. 2003b. Obligatory intracellular parasitism by Ehrlichia chaffeensis and Anaplasma phagocytophilum involves caveolae and glycosylphosphatidylinositol-anchored proteins. Cell. Microbiol. 5:809820.PubMed CrossRef
118. Lin, M.,, and Y. Rikihisa. 2004. Ehrlichia chaffeensis downregulates surface Toll-like receptors 2/4, CD14 and transcription factors PU.1 and inhibits lipopolysaccharide activation of NF-κB, ERK 1/2 and p38 MAPK in host monocytes. Cell. Microbiol. 6:175186.PubMed CrossRef
119. Lin, M.,, and Y. Rikihisa. 2007. Degradation of p22phox and inhibition of superoxide generation by Ehrlichia chaffeensis in human monocytes. Cell. Microbiol. 9:861874.PubMed CrossRef
120. Lin, M.,, C. Zhang,, K. Gibson,, and Y. Rikihisa. 2009. Analysis of complete genome sequence of Neorickettsia risticii: causative agent of Potomac horse fever. Nucleic Acids Res. 37:60766091.CrossRef
121. Lin, M.,, M. X. Zhu,, and Y. Rikihisa. 2002a. Rapid activation of protein tyrosine kinase and phospholipase C-γ2 and increase in cytosolic free calcium are required by Ehrlichia chaffeensis for internalization and growth in THP-1 cells. Infect. Immun. 70:889898.PubMed CrossRef
122. Lin, Q.,, and Y. Rikihisa. 2005. Establishment of cloned Anaplasma phagocytophilum and analysis of p44 gene conversion within an infected horse and infected SCID mice. Infect. Immun. 73:51065114.PubMed CrossRef
123. Lin, Q.,, N. Zhi,, N. Ohashi,, H. W. Horowitz,, M. E. Aguero-Rosenfeld,, J. Raffalli,, G. P. Wormser,, and Y. Rikihisa. 2002b. Analysis of sequences and loci of p44 homologs expressed by Anaplasma phagocytophila in acutely infected patients. J. Clin. Microbiol. 40:29812988.PubMed CrossRef
124. Lindsay, J.,, M. D. Esposti,, and A. P. Gilmore. 2011. Bcl-2 proteins and mitochondria—specificity in membrane targeting for death. Biochim. Biophys. Acta 1813:532539.PubMed CrossRef
125. Liu, Y.,, Z. Zhang,, Y. Jiang,, L. Zhang,, V. L. Popov,, J. Zhang,, D. H. Walker,, and X. J. Yu. 2011. Obligate intracellular bacterium Ehrlichia inhibiting mitochondrial activity. Microbes Infect. 13:232238.PubMed CrossRef
126. Lopez, J. E.,, G. H. Palmer,, K. A. Brayton,, M. J. Dark,, S. E. Leach,, and W. C. Brown. 2007. Immunogenicity of Anaplasma marginale type IV secretion system proteins in a protective outer membrane vaccine. Infect. Immun. 75:23332342.PubMed CrossRef
127. Lopez, J. E.,, W. F. Siems,, G. H. Palmer,, K. A. Brayton,, T. C. McGuire,, J. Norimine,, and W. C. Brown. 2005. Identification of novel antigenic proteins in a complex Anaplasma marginale outer membrane immunogen by mass spectrometry and genomic mapping. Infect. Immun. 73:81098118.PubMed CrossRef
128. Luo, T.,, X. Zhang,, and J. W. McBride. 2009. Major species-specific antibody epitopes of the Ehrlichia chaffeensis p120 and E. canis p140 orthologs in surface-exposed tandem repeat regions. Clin. Vaccine Immunol. 16:982990.PubMed CrossRef
129. Luo, T.,, X. Zhang,, A. Wakeel,, V. L. Popov,, and J. W. McBride. 2008. A variable-length PCR target protein of Ehrlichia chaffeensis contains major species-specific antibody epitopes in acidic serine-rich tandem repeats. Infect. Immun. 76:15721580.PubMed CrossRef
130. Machner, M. P.,, and R. R. Isberg. 2006. Targeting of host Rab GTPase function by the intravacuolar pathogen Legionella pneumophila. Dev. Cell 11:4756.PubMed CrossRef
131. Mavromatis, K.,, C. K. Doyle,, A. Lykidis,, N. Ivanova,, M. P. Francino,, P. Chain,, M. Shin,, S. Malfatti,, F. Larimer,, A. Copeland,, J. C. Detter,, M. Land,, P. M. Richardson,, X. J. Yu,, D. H. Walker,, J. W. McBride,, and N. C. Kyrpides. 2006. The genome of the obligately intracellular bacterium Ehrlichia canis reveals themes of complex membrane structure and immune evasion strategies. J. Bacteriol. 188:40154023.PubMed CrossRef
132. Mayor, S.,, and R. E. Pagano. 2007. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8:603612.PubMed CrossRef
133. McBride, J. W.,, C. K. Doyle,, X. Zhang,, A. M. Cardenas,, V. L. Popov,, K. A. Nethery,, and M. E. Woods. 2007. Identification of a glycosylated Ehrlichia canis 19-kilodalton major immunoreactive protein with a species-specific serine-rich glycopeptide epitope. Infect. Immun. 75:7482.PubMed CrossRef
134. McGarey, D. J.,, and D. R. Allred. 1994. Characterization of hemagglutinating components on the Anaplasma marginale initial body surface and identification of possible adhesins. Infect. Immun. 62:45874593.PubMed
135. McGarey, D. J.,, A. F. Barbet,, G. H. Palmer,, T. C. McGuire,, and D. R. Allred. 1994. Putative adhesins of Anaplasma marginale: major surface polypeptides 1a and 1b. Infect. Immun. 62:45944601.PubMed
136. Messick, J. B.,, and Y. Rikihisa. 1993. Characterization of Ehrlichia risticii binding, internalization, and proliferation in host cells by flow cytometry. Infect. Immun. 61:38033810.PubMed
137. Mobius, W.,, E. van Donselaar,, Y. Ohno-Iwashita,, Y. Shimada,, H. F. Heijnen,, J. W. Slot,, and H. J. Geuze. 2003. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222231.PubMed CrossRef
138. Moorhead, A. M.,, J. Y. Jung,, A. Smirnov,, S. Kaufer,, and M. A. Scidmore. 2010. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun. 78:19902007.PubMed CrossRef
139. Moorhead, A. R.,, K. A. Rzomp,, and M. A. Scidmore. 2007. The Rab6 effector Bicaudal D1 associates with Chlamydia trachomatis inclusions in a biovar-specific manner. Infect. Immun. 75: 781791.PubMed CrossRef
140. Mott, J.,, R. E. Barnewall,, and Y. Rikihisa. 1999. Human granulocytic ehrlichiosis agent and Ehrlichia chaffeensis reside in different cytoplasmic compartments in HL-60 cells. Infect. Immun. 67:13681378.PubMed
141. Mott, J.,, and Y. Rikihisa. 2000. Human granulocytic ehrlichiosis agent inhibits superoxide anion generation by human neutrophils. Infect. Immun. 68:66976703.PubMed CrossRef
142. Mott, J.,, Y. Rikihisa,, and S. Tsunawaki. 2002. Effects of Anaplasma phagocytophila on NADPH oxidase components in human neutrophils and HL-60 cells. Infect. Immun. 70:13591366.PubMed CrossRef
143. Müller, M. P.,, H. Peters,, J. Blümer,, W. Blankenfeldt,, R. S. Goody,, and A. Itzen. 2010. The Legionella effector protein DrrA AMPylates the membrane traffic regulator Rab1b. Science 329:946949.PubMed CrossRef
144. Munderloh, U. G.,, E. F. Blouin,, K. M. Kocan,, N. L. Ge,, W. L. Edwards,, and T. J. Kurtti. 1996. Establishment of the tick (Acari:Ixodidae)-borne cattle pathogen Anaplasma marginale (Rickettsiales:Anaplasmataceae) in tick cell culture. J. Med. Entomol. 33:656664.PubMed
145. Munderloh, U. G.,, S. D. Jauron,, V. Fingerle,, L. Leitritz,, S. F. Hayes,, J. M. Hautman,, C. M. Nelson,, B. W. Huberty,, T. J. Kurtti,, G. G. Ahlstrand,, B. Greig,, M. A. Mellencamp,, and J. L. Goodman. 1999. Invasion and intracellular development of the human granulocytic ehrlichiosis agent in tick cell culture. J. Clin. Microbiol. 37:25182524.PubMed
146. Munderloh, U. G.,, M. J. Lynch,, M. J. Herron,, A. T. Palmer,, T. J. Kurtti,, R. D. Nelson,, and J. L. Goodman. 2004. Infection of endothelial cells with Anaplasma marginale and A. phagocytophilum. Vet. Microbiol. 101:5364.PubMed CrossRef
147. Murata, T.,, A. Delprato,, A. Ingmundson,, D. K. Toomre,, D. G. Lambright,, and C. R. Roy. 2006. The Legionella pneumophila effector protein DrrA is a Rab1 guanine nucleotide-exchange factor. Nat. Cell Biol. 8:971977.PubMed CrossRef
148. Nandi, B.,, M. Chatterjee,, K. Hogle,, M. McLaughlin,, K. MacNamara,, R. Racine,, and G. M. Winslow. 2009. Antigen display, T-cell activation, and immune evasion during acute and chronic ehrlichiosis. Infect. Immun. 77:46434653.PubMed CrossRef
149. Nauseef, W. M. 2007. How human neutrophils kill and degrade microbes: an integrated view. Immunol. Rev. 219:88102.PubMed CrossRef
150. Neelakanta, G.,, H. Sultana,, D. Fish,, J. F. Anderson,, and E. Fikrig. 2010. Anaplasma phagocytophilum induces Ixodes scapularis ticks to express an antifreeze glycoprotein gene that enhances their survival in the cold. J. Clin. Invest. 120:31793190.PubMed CrossRef
151. Nelson, C. M.,, M. J. Herron,, R. F. Felsheim,, B. R. Schloeder,, S. M. Grindle,, A. O. Chavez,, T. J. Kurtti,, and U. G. Munderloh. 2008. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis. BMC Genomics 9:364.PubMed CrossRef
152. Niu, H.,, V. Kozjak-Pavlovic,, T. Rudel,, and Y. Rikihisa. 2010. Anaplasma phagocytophilum Ats-1 is imported into host cell mitochondria and interferes with apoptosis induction. PLoS Pathog. 6:e1000774.PubMed CrossRef
153. Niu, H.,, Y. Rikihisa,, M. Yamaguchi,, and N. Ohashi. 2006. Differential expression of VirB9 and VirB6 during the life cycle of Anaplasma phagocytophilum in human leucocytes is associated with differential binding and avoidance of lysosome pathway. Cell. Microbiol. 8:523534.CrossRef
154. Niu, H.,, M. Yamaguchi,, and Y. Rikihisa. 2008. Subversion of cellular autophagy by Anaplasma phagocytophilum. Cell. Microbiol. 10:593605.PubMed CrossRef
155. Ohashi, N.,, N. Zhi,, Q. Lin,, and Y. Rikihisa. 2002. Characterization and transcriptional analysis of gene clusters for a type IV secretion machinery in human granulocytic and monocytic ehrlichiosis agents. Infect. Immun. 70:21282138.PubMed CrossRef
156. Ojogun, N.,, B. Barnstein,, B. Huang,, C. A. Oskeritzian,, J. W. Homeister,, D. Miller,, J. J. Ryan,, and J. A. Carlyon. 2011. Anaplasma phagocytophilum infects mast cells via α1,3-fucosylated but not sialylated glycans and inhibits IgE-mediated cytokine production and histamine release. Infect. Immun. 79:27172726.PubMed CrossRef
157. Page, R. D. 2002. Visualizing phylogenetic trees using TreeView. Curr. Protocols Bioinformatics. 6:6.2. http://cda.currentprotocols.com/WileyCDA/CurPro3Title/isbn-0471250953,descCd-tableOfContents.html.PubMed CrossRef
158. Palmer, G. H.,, and K. A. Brayton. 2007. Gene conversion is a convergent strategy for pathogen antigenic variation. Trends Parasitol. 23:408413.PubMed CrossRef
159. Pan, X.,, A. Luhrmann,, A. Satoh,, M. A. Laskowski-Arce,, and C. R. Roy. 2008. Ankyrin repeat proteins comprise a diverse family of bacterial type IV effectors. Science 320:16511654.PubMed CrossRef
160. Park, J.,, K. J. Kim,, K. S. Choi,, D. J. Grab,, and J. S. Dumler. 2004. Anaplasma phagocytophilum AnkA binds to granulocyte DNA and nuclear proteins. Cell. Microbiol. 6:743751.PubMed CrossRef
161. Pedra, J. H.,, S. Narasimhan,, D. Rendic,, K. DePonte,, L. Bell-Sakyi,, I. B. Wilson,, and E. Fikrig. 2010. Fucosylation enhances colonization of ticks by Anaplasma phagocytophilum. Cell. Microbiol. 12:12221234.PubMed CrossRef
162. Pedra, J. H.,, B. Sukumaran,, J. A. Carlyon,, N. Berliner,, and E. Fikrig. 2005. Modulation of NB4 promyelocytic leukemic cell machinery by Anaplasma phagocytophilum. Genomics 86:365377.PubMed CrossRef
163. Poole, A. W.,, and M. L. Jones. 2005. A SHPing tale: perspectives on the regulation of SHP-1 and SHP-2 tyrosine phosphatases by the C-terminal tail. Cell. Signal. 17:13231332.PubMed CrossRef
164. Popov, V. L.,, V. C. Han,, S. M. Chen,, J. S. Dumler,, H. M. Feng,, T. G. Andreadis,, R. B. Tesh,, and D. H. Walker. 1998. Ultrastructural differentiation of the genogroups in the genus Ehrlichia. J. Med. Microbiol. 47:235251.PubMed CrossRef
165. Popov, V. L.,, X. Yu,, and D. H. Walker. 2000. The 120 kDa outer membrane protein of Ehrlichia chaffeensis: preferential expression on dense-core cells and gene expression in Escherichia coli associated with attachment and entry. Microb. Pathog. 28:7180.PubMed CrossRef
166. Punnonen, E. L.,, K. Ryhanen,, and V. S. Marjomaki. 1998. At reduced temperature, endocytic membrane traffic is blocked in multivesicular carrier endosomes in rat cardiac myocytes. Eur. J. Cell Biol. 75:344352.PubMed CrossRef
167. Radhakrishna, H.,, and J. G. Donaldson. 1997. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139: 4961.PubMed CrossRef
168. Raghavan, V.,, and E. A. Groisman. 2010. Orphan and hybrid two-component system proteins in health and disease. Curr. Opin. Microbiol. 13:226231.PubMed CrossRef
169. Reneer, D. V.,, S. A. Kearns,, T. Yago,, J. Sims,, R. D. Cummings,, R. P. McEver,, and J. A. Carlyon. 2006. Characterization of a sialic acid- and P-selectin glycoprotein ligand-1-independent adhesin activity in the granulocytotropic bacterium Anaplasma phagocytophilum. Cell. Microbiol. 8:19721984.PubMed CrossRef
170. Reneer, D. V.,, M. J. Troese,, B. Huang,, S. A. Kearns,, and J. A. Carlyon. 2008. Anaplasma phagocytophilum PSGL-1-independent infection does not require Syk and leads to less efficient AnkA delivery. Cell Microbiol 10:18271838.PubMed CrossRef
171. Rikihisa, Y. 2010a. Anaplasma phagocytophilum and Ehrlichia chaffeensis: subversive manipulators of host cells. Nat. Rev. Microbiol. 8:328339.PubMed CrossRef
172. Rikihisa, Y. 2010b. Molecular events involved in cellular invasion by Ehrlichia chaffeensis and Anaplasma phagocytophilum. Vet. Parasitol. 167:155166.PubMed CrossRef
173. Rikihisa, Y.,, and M. Lin. 2010. Anaplasma phagocytophilum and Ehrlichia chaffeensis type IV secretion and Ank proteins. Curr. Opin. Microbiol. 13:5966.PubMed CrossRef
174. Rikihisa, Y.,, M. Lin,, and H. Niu. 2010. Type IV secretion in the obligatory intracellular bacterium Anaplasma phagocytophilum. Cell. Microbiol. 12:12131221.PubMed CrossRef
175. Romano, P. S.,, M. G. Gutierrez,, W. Beron,, M. Rabinovitch,, and M. I. Colombo. 2007. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell. Microbiol. 9:891909.PubMed CrossRef
176. Römling, U. 2009. Cyclic Di-GMP (c-Di-GMP) goes into host cells—c-Di-GMP signaling in the obligate intracellular pathogen Anaplasma phagocytophilum. J. Bacteriol. 191:683686.PubMed CrossRef
177. Rowold, D. J.,, and R. J. Herrera. 2000. Alu elements and the human genome. Genetica 108: 5772.PubMed
178. Rzomp, K. A.,, A. R. Moorhead,, and M. A. Scidmore. 2006. The GTPase Rab4 interacts with Chlamydia trachomatis inclusion membrane protein CT229. Infect. Immun. 74:53625373.PubMed CrossRef
179. Rzomp, K. A.,, L. D. Scholtes,, B. J. Briggs,, G. R. Whittaker,, and M. A. Scidmore. 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect. Immun. 71:58555870.PubMed CrossRef
180. Sandvig, K.,, M. L. Torgersen,, H. A. Raa,, and B. van Deurs. 2008. Clathrin-independent endocytosis: from nonexisting to an extreme degree of complexity. Histochem. Cell Biol. 129:267276.PubMed CrossRef
181. Sarkar, M.,, D. V. Reneer,, and J. A. Carlyon. 2007. Sialyl-Lewis x-independent infection of human myeloid cells by Anaplasma phagocytophilum strains HZ and HGE1. Infect. Immun. 75: 57205725.PubMed CrossRef
182. Schaff, U. Y.,, K. A. Trott,, S. Chase,, K. Tam,, J. L. Johns,, J. A. Carlyon,, D. C. Genetos,, N. J. Walker,, S. I. Simon,, and D. L. Borjesson. 2010. Neutrophils exposed to A. phagocytophilum under shear stress fail to fully activate, polarize, and transmigrate across inflamed endothelium. Am. J. Physiol. Cell Physiol. 299:C87C96.PubMed CrossRef
183. Scharf, W.,, S. Schauer,, F. Freyburger,, M. Petrovec,, D. Schaarschmidt-Kiener,, G. Liebisch,, M. Runge,, M. Ganter,, A. Kehl,, J. S. Dumler,, A. L. Garcia-Perez,, J. Jensen,, V. Fingerle,, M. L. Meli,, A. Ensser,, S. Stuen,, and F. D. von Loewenich. 2011. Distinct host species correlate with Anaplasma phagocytophilum ankA gene clusters. J. Clin. Microbiol. 49:790796.PubMed CrossRef
184. Schlumberger, M. C.,, and W. D. Hardt. 2005. Triggered phagocytosis by Salmonella: bacterial molecular mimicry of RhoGTPase activation/deactivation. Curr. Top. Microbiol. Immunol. 291: 2942.PubMed CrossRef
185. Seshadri, R.,, I. T. Paulsen,, J. A. Eisen,, T. D. Read,, K. E. Nelson,, W. C. Nelson,, N. L. Ward,, H. Tettelin,, T. M. Davidsen,, M. J. Beanan,, R. T. Deboy,, S. C. Daugherty,, L. M. Brinkac,, R. Madupu,, R. J. Dodson,, H. M. Khouri,, K. H. Lee,, H. A. Carty,, D. Scanlan,, R. A. Heinzen,, H. A. Thompson,, J. E. Samuel,, C. M. Fraser,, and J. F. Heidelberg. 2003. Complete genome sequence of the Q-fever pathogen Coxiella burnetii. Proc. Natl. Acad. Sci. USA 100:54555460.PubMed
186. Shin, J. S.,, and S. N. Abraham. 2001a. Caveolae as portals of entry for microbes. Microbes Infect. 3:755761.PubMed CrossRef