MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.
Buy this
Price Non-Member $30.00

Preview this :
Zoom in

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch147-1.gif /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch147-2.gif
There is no abstract provided for this chapter. We are in the process of generating a full text preview. Please bookmark and return later.
Citation: Procop G, Neafie R. .
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

(top row, left) This species (arrows) has penetrated into the deep tissues of the abdomen. Multiple cross sections of the worm, which is 300 μm in diameter, are seen in the omentum. Movat’s stain; original magnification, ×2.5. doi:10.1128/9781555817381.ch147.f1

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

(top row, right) This coiled first-stage larva is in a “nurse cell.” Note the hyaline, amorphous appearance of the external aspect of the nurse cell and the surrounding chronic inflammatory infiltrate. The worm diameter is 35 μm. Hematoxylin and eosin stain; original magnification, ×30. doi:10.1128/9781555817381.ch147.f2

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

(middle row, left) The minute lateral alae are useful in the identification of species. The worm diameter is 18 μm. Hematoxylin and eosin stain; original magnification, ×500. doi:10.1128/9781555817381.ch147.f3

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

(middle row, right) The serpiginous tract of a female worm is demonstrated in the scrotum of this patient. doi:10.1128/9781555817381.ch147.f4

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

(bottom row, left) Rhabditiform larvae (short arrow) fill the body cavity of this gravid worm. Also note the presence of the two prominent bands of somatic muscle (long arrow). The worm diameter is 1.1 mm. Movat’s stain; original magnification, ×25. doi:10.1128/9781555817381.ch147.f5

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

(bottom row, right) The bipolar plugs (arrows), pitted eggshell, and rectangular shape are characteristic of species. This photomicrograph is from a human small intestine and demonstrates an egg that is 40 μm long. Hematoxylin and eosin stain; original magnification, ×490. doi:10.1128/9781555817381.ch147.f6

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7

(row 1, left) The immature worm (arrows) in the meninges of this patient is eliciting a marked eosinophilic response. The worm is 200 μm in diameter. Hematoxylin and eosin stain; original magnification, ×50 (AFIP negative no. 73-6862). doi:10.1128/9781555817381.ch147.f7

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8

(row 1, right) The coiled remnants of an immature male worm are present in this branch of the pulmonary artery. The maximum worm diameter is 250 μm. Movat’s stain; original magnification, ×15 (AFIP negative no. 71-11563). doi:10.1128/9781555817381.ch147.f8

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9

(row 2, left) The two uteri (arrows), muscle, and trilaminar (arrowhead), smooth cuticle are characteristic of an immature female worm. The worm diameter is 250 μm. Movat’s stain; original magnification, ×80 (AFIP negative no. 72-2732). doi:10.1128/9781555817381.ch147.f9

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 10

(row 2, right) The species other than have external longitudinal cuticular ridges, whereas the cuticle of is smooth. is pictured here, in cross section; it is 270 μm in diameter and has obvious cuticular ridges (arrows). species other than are often found in a subcutaneous location rather than in the pulmonary arterial vasculature. Movat’s stain; original magnification, ×80 (AFIP negative no. 94-5122). doi:10.1128/9781555817381.ch147.f10

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 11

(row 3, left) An egg packet of , obtained from a crushed gravid proglottid, is 150 μm in diameter. The eggs within the packet are 40 μm in diameter. Unstained (AFIP negative no. 86-7369). doi:10.1128/9781555817381.ch147.f11

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 12

(row 3, right) The thick inner membrane of the egg of is surrounded by a gelatinous matrix and then by an outer striated shell. The eggs of are spherical, whereas those of are ovoid. The egg pictured here is 80 μm in diameter. Unstained; original magnification, ×250 (AFIP negative no. 96-5119). See chapter 143 for more-detailed coverage of spp. doi:10.1128/9781555817381.ch147.f12

Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 13

(row 4, left) A sparganum superficially resembles an adult tapeworm. Close inspection, however, clarifies its immature form, with a head with only a ventral groove or bothrium (arrow) and a lack of proglottids. The maximum width is 6 mm. Unstained; original magnification, ×0.5 (AFIP negative no. 70-15303). doi:10.1128/9781555817381.ch147.f13

Permissions and Reprints Request Permissions
Download as Powerpoint


1. Armed Forces Institute of Pathology. 2000. Pathology of Infectious Diseases, vol 1. Armed Forces Institute of Pathology, Washington, DC.
2. Jensen B,, Kepley W,, Guarner J,, Anderson K,, Anderson D,, Clairmont J,, De L’aune W,, Austin EH,, Austin GE. 2000. Comparison of polyvinyl alcohol fixative with three less hazardous fixatives for detection and identification of intestinal parasites. J Clin Microbiol 38:15921598.
3. Pravettoni V,, Primavesi L,, Piantanida M. 2012. Anisakis simplex: current knowledge. Eur Ann Allergy Clin Immunol 44:150156.
4. Bucci C,, Gallotta S,, Morra I,, Fortunato A,, Ciacci C,, Iovino P. 2013. Anisakis, just think about it in an emergency! Int J Infect Dis 17(11):e1071e1072.
5. Daschner A,, Pascual CY. 2005. Anisakis simplex: sensitization and clinical allergy. Curr Opin Allergy Clin Immunol 5:281285.
6. Madi LR,, Ali M,, Legace-Wiens P,, Duerksen DR. 2013. Gastrointestinal manifestations and management of anisakiasis. Can J Gastroenterol 27:126127.
7. Falcao H,, Lunet N,, Neves E,, Iglesias I,, Barros H. 2008. Anisakis simplex as a risk factor for relapsing acute urticaria: a case-control study. J Epidemiol Community Health 62:634637.
8. Chen Q,, Yu HQ,, Lun ZR,, Chen XG,, Song HQ,, Lin RQ,, Zhu XQ. 2008. Specific PCR assays for the identification of common anisakid nematodes with zoonotic potential. Parasitol Res 104:7984.
9. Yoon WJ,, Lee SM,, Lee SH,, Yoon YB. 2004. Gastric anisakiasis. Gastrointest Endosc 59:400.
10. Knoop S,, Steinmann P,, Keiser J,, Utzinger J. 2012. Nematode infections: soil transmitted helminthes and trichinella. Infect Dis Clin North Am 26:341358.
11. Murrell KD,, Pozio E. 2011 Worldwide occurrence and impact of human trichinellosis, 1986-2009. Emerg Infect Dis 17:21942202.
12. Cui J,, Jiang P,, Liu LN,, Wang ZQ. 2013. Survey of Trichinella infections in domestic pigs from northern and eastern Henan, China. Vet Parasitol 194:133135.
13. Cuttell L,, Corley SW,, Gray CP,, Verlinde PB,, Jackson LA,, Traub RJ. 2012. Real-time PCR as a surveillance tool for the detection of Trichinella infection in muscle samples from wildlife. Vet Parasitol 188:285293.
14. Rubinsky-Elefant G,, Hirata CE,, Yamamoto JH,, Ferreira MU. 2010. Human toxocariasis: diagnosis, worldwide seroprevalences and clinical expression of the systemic and ocular forms. Ann Trop Med Parasitol 104:323.
15. Won KY,, Kruszon-Moran D,, Schantz PM,, Jones JL. 2008. National seroprevalence and risk factors for zoonotic Toxocara spp. infection. Am J Trop Med Hyg 79:522527.
16. Taira K,, Saeed I,, Permin A,, Kapel CM. 2004. Zoonotic risk of Toxocara canis infection through consumption of pig or poultry viscera. Vet Parasitol 121:115124.
17. Shields JA. 1984. Ocular toxocariasis. A review. Surv Ophthalmol 28:361381.
18. Nicoletti A. 2013. Toxocariasis. Handb Clin Neurol 114: 217228.
19. Nichols RL. 1956. The etiology of visceral larva migrans. II. Comparative larval morphology of Ascaris lumbricoides, Necator americanus, Strongyloides stercoralis and Ancylostoma caninum. J Parasitol 42:363399.
20. Cojocariu IE,, Bahnea R,, Luca C,, Leca D,, Luca M. 2012. Clinical and biological features of toxocariasis. Rev Med Chir Soc Med Nat Iasi 116:11621165.
21. Good B,, Holl CV,, Taylor MR,, Larragy J,, Moriarty P,, O’Regan M. 2004. Ocular toxocariasis in schoolchildren. Clin Infect Dis 39:173178.
22. Cross JH. 1992. Intestinal capillariasis. Clin Microbiol Rev 5:120129.
23. Centers for Disease Control and Prevention. 2012. Progress toward global eradication of dracunculiasis—January 2011-June 2012. MMWR 61:854857.
24. el-Karaksy H,, el-Shabrawi M,, Mohsen N,, Kotb M,, el-Koofy N,, el-Deeb N. 2004. Capillaria philippinensis: a cause of fatal diarrhea in one of two infected Egyptian sisters. J Trop Pediatr 50:5760.
25. Wongsawasdi L,, Ukarapol N,, Lertprasertsuk N. 2002. The endoscopic diagnosis of intestinal capillariasis in a child: a case report. Southeast Asian J Trop Med Public Health 33:730732.
26. Chippaux JP. 1991. Mebendazole treatment of dracunculiasis. Trans R Soc Trop Med Hyg 85:280.
27. Hesse AA,, Nouri A,, Hassan HS,, Hashish AA. 2012. Parasitic infestations requiring surgical interventions. Semin Pediatr Surg 21:142150.
28. Moravec F. 2001. Redescription and systematic status of Capillaria philippinensis, an intestinal parasite of human beings. J Parasitol 87:161164.
29. Saichua P,, Nithikathkul C,, Kaewpitoon N. 2008. Human intestinal capillariasis in Thailand. World J Gastroenterol 28:506510.
30. Canlas B,, Cabrera B,, Davis U. 1967. Human intestinal capillariasis. 2. Pathological features. Acta Med Philipp 4:8491.
31. Intapan PM,, Maleewong W,, Sukeepaisarnjaroen W,, Morakote N. 2010. An enzyme-linked immunosorbent assay as screening tool for human intestinal capillariasis. Southeast Asian J Trop Med Public Health 41:298305.
32. Miyazaki I. 1960. On the genus Gnathostoma and human gnathostomiasis, with special reference to Japan. Exp Parasitol 9:338370.
33. Herman JS,, Chiodini PL. 2009. Gnathostomiasis, another emerging imported disease. Clin Microbiol Rev 22:484492.
34. High WA,, Bravo FG. 2007. Emerging diseases in tropical dermatology. Adv Dermatol 23:335350.
35. Pillai GS,, Kumar A,, Radhakrishnan N,, Maniyelil J,, Shafti T,, Denesh KR,, Karim S. 2012. Intraocular gnathostomiasis: report of a case and review of literature. Am J Trop Med Hyg 86:620623.
36. Sawanyawisuth K,, Chotmongkoi V. 2013. Eosinophilic meningitis. Handb Clin Neurol 114:207215.
37. Bhende M,, Biswas J,, Gopal L. 2005. Ultrasound biomicroscopy in the diagnosis and management of intraocular gnathostomiasis. Am J Ophthalmol 140:140142.
38. Ramirez-Avila L,, Slome S,, Schuster FL,, Gavali S,, Schantz PM,, Sejvar J,, Glaser CA. 2009. Eosinophilic meningitis due to Angiostrongylus and Gnathostoma species. Clin Infect Dis 48:322327.
39. Eamsobhana P,, Yong HS. 2009. Immunological diagnosis of human angiostrongyliasis due to Angiostrongylus cantonensis. Int J Infect Dis 13:425431.
40. Hidelaratchi MD,, Riffsy MT,, Wijesekera JC. 2005. A case of eosinophilic meningitis following monitor lizard meat consumption, exacerbated by anthelminthics. Ceylon Med J 50:8486.
41. Simon F,, Siles-Lucas M,, Morchon R,, Gonzalez-Miguel J,, Mellado I,, Carreton E,, Montoya-Alonso JA. 2012. Human and animal dirofilariasis: the emergence of a zoonotic mosaic. Clin Microbiol Rev 25:507544.
42. Canestri Trotti G,, Pampiglione S,, Rivasi F. 1997. The species of the genus Dirofilaria, Railliet Henry, 1911. Parassitologia 39:369374.
43. Shah M. 1999. Human pulmonary dirofilariasis: review of the literature. South Med J 92:276279.
44. Chitkara RK,, Sarinas PS. 1997. Dirofilaria, visceral larva migrans, and tropical pulmonary eosinophilia. Semin Respir Infect 12:138148.
45. Pampiglione S,, Rivasi F,, Gustinelli A. 2009. Dirofilarial human cases in the Old World, attributed to Dirofilaria immitis: a critical analysis. Histopathology 54:192204.
46. Chappell C,, Enos JP,, Penn HM. 1990. Dipylidium caninum, an under-recognized infection in infants and children. Pediatr Infect Dis J 9:745747.
47. Turner J. 1962. Human dipylidiasis (dog tapeworm infection) in the United States. J Pediatr 61:763768.
48. Nakamura T,, Hara M,, Matsuoka M,, Kawabata M,, Tsuji M. 1990. Human proliferative sparganosis. A new Japanese case. Am J Clin Pathol 94:224228.
49. Dorny P,, Praet N,, Deckers N,, Gabriel S. 2009. Emerging food-borne parasites. Vet Parasitol 163:196206.
50. Noya O,, Alarcon de Noya B,, Arrechedera H,, Torres J,, Arguello C. 1992. Sparganum proliferum: an overview of its structure and ultrastructure. Int J Parasitol 22:631640.
51. Rahman M,, Lee EG,, Bae YA. 2011. Two-dimensional immunoblot analysis of antigenic proteins of Spirometra plerocercoid recognized by human patient sera. Parasitol Int 60:139143.


Generic image for table

Other less common nematodes

Generic image for table

Other less common cestodes


This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error