1887

Chapter 72 : Antimicrobial Susceptibility Testing Systems*

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Antimicrobial Susceptibility Testing Systems*, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch72-1.gif /docserver/preview/fulltext/10.1128/9781555817381/9781555817381.ch72-2.gif

Abstract:

This chapter focuses primarily on commercial susceptibility testing systems currently available in the United States. Semiautomated disk diffusion and manual and semiautomated broth microdilution systems are utilized for small volumes of susceptibility testing, while larger laboratories often choose an automated broth microdilution system. The broth microdilution antimicrobial susceptibility testing (AST) systems are manufactured by four companies: bioMérieux (Durham, NC), Siemens Healthcare Diagnostics (Deerfield, IL), Becton Dickinson Diagnostics (Sparks, MD), and Thermo Scientific (Cleveland, OH; formerly TREK Diagnostic Systems). The BIOMIC V3 system (Giles Scientific, Santa Barbara, CA) has FDA clearance to read disk diffusion zone sizes and broth microdilution panel wells. AST systems include data management software that may be interfaced with a laboratory information system and offer various levels of expert system and epidemiological analyses. Expert analysis may improve work flow as well as the quality of reported results. Advantages of automated AST systems include labor savings, reproducibility, data management with expert system analysis, and the opportunity to generate results more rapidly. Disadvantages of automated systems include higher cost for equipment and consumables than with manual methods, predetermined antimicrobial panels, an inability to test all clinically relevant bacteria and antimicrobial agents, and problems with detection of heteroresistant isolates and some resistance phenotypes. The chapter summarizes published literature on the abilities of automated systems to detect antimicrobial resistance in Gram-positive and Gram-negative pathogens (e.g., oxacillin resistance in staphylococci, extended-spectrum β-lactamase-producing ). The provision of more-rapid AST results with a short-incubation system may improve patient care and lower health care costs.

Citation: Karlowsky J, Richter S. 2015. Antimicrobial Susceptibility Testing Systems*, p 1274-1285. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch72
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817381.mcm11.ch72
1. Jorgensen JH,, Ferraro MJ. 2009. Antimicrobial susceptibility testing: a review of general principles and contemporary practices. Clin Infect Dis 49:17491755.
2. Winstanley T,, Courvalin P. 2011. Expert systems in clinical microbiology. Clin Microbiol Rev 24:515556.
3. Food and Drug Administration. 2012. Establishment Registration and Device Listing for Manufacturers and Initial Importers of Devices. 21 CFR 807. Food and Drug Administration, Rockville, MD.
4. Food and Drug Administration. 7 April 2011. Class II Special Controls Guidance Document: Antimicrobial Susceptibility Test (AST) Systems; Guidance for Industry and FDA. Food and Drug Administration, Rockville, MD.
5. Clinical and Laboratory Standards Institute. 2008. Development of In Vitro Susceptibility Testing Criteria and Quality Control Parameters. Approved Guideline, M23-A3, 3rd ed. Clinical and Laboratory Standards Institute, Wayne, PA.
6. Clinical and Laboratory Standards Institute. 2012. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically; Approved Standard, 9th ed. M07-A9. Clinical and Laboratory Standards Institute, Wayne, PA.
7. Food and Drug Administration. June 2009. Guidance for Industry: Updating Labeling for Susceptibility Test Information in Systemic Antibacterial Drug Products and Antimicrobial Susceptibility Testing Devices. Food and Drug Administration, Rockville, MD.
8. Clinical and Laboratory Standards Institute. 2013. Performance Standards for Antimicrobial Susceptibility Testing; 23rd Informational Supplement. CLSI Document M100-S23. Clinical and Laboratory Standards Institute, Wayne, PA.
9. Turnidge JD,, Bell JM,. 2005. Antimicrobial susceptibility on solid media, p 860. In Lorin V (ed), Antibiotics in Laboratory Medicine, 5th ed. The Williams & Wilkins Co., Baltimore, MD.
10. Geiss HK,, Klar UE. 2000. Evaluation of the BIOMIC video reader system for routine use in the clinical microbiology laboratory. Diagn Microbiol Infect Dis 37:151155.
11. Nijs A,, Cartuyvels R,, Mewis A,, Peeters V,, Rummens JL,, Magerman K. 2003. Comparison and evaluation of Osiris and Sirscan 2000 antimicrobial susceptibility systems in the clinical microbiology laboratory. J Clin Microbiol 41:36273630.
12. Lestari ES,, Severin JA,, Filius PMG,, Kuntaman K,, Duerink DO,, Hadi U,, Wahjono H,, Verbrugh HA. 2008. Comparison of the accuracy of disk diffusion zone diameters obtained by manual zone measurements to that by automated zone measurements to determine antimicrobial susceptibility. J Microbiol Methods 75:177181.
13. Chapin KC,, Musgnug MC. 2003. Validation of the automated reading and incubation system with Sensititre plates for antimicrobial susceptibility testing. J Clin Microbiol 41:19511956.
14. Chapin KC,, Musgnug MC. 2004. Evaluation of Sensititre automated system for automated reading of Sensititre broth microdilution susceptibility plates. J Clin Microbiol 42:909911.
15. Hall L,, Jude KP,, Clark SL,, Dionne K,, Merson R,, Boyer A,, Parrish NM,, Wengenack NL. 2012. Evaluation of the Sensititre MycoTB plate for susceptibility testing of the Mycobacterium tuberculosis complex against first- and second-line agents. J Clin Microbiol 50:37323734.
16. Eigner U,, Schmid A,, Wild U,, Bertsch D,, Fahr A-M. 2005. Analysis of the comparative workflow and performance characteristics of the VITEK 2 and Phoenix systems. J Clin Microbiol 43:38293834.
17. Junkins AD,, Arbefeville SS,, Howard WJ,, Richter SS. 2010. Comparison of BD Phoenix AP workflow with Vitek 2. J Clin Microbiol 48:19291931.
18. Ligozzi M,, Bernini C,, Bonora MG,, de Fatima M,, Zuliani J,, Fontana R. 2002. Evaluation of the VITEK 2 system for identification and antimicrobial susceptibility testing of medically relevant gram-positive cocci. J Clin Microbiol 40:16811686.
19. Doern GV,, Vautour R,, Gaudet M,, Levy B. 1994. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J Clin Microbiol 32:17571762.
20. Barenfanger J,, Drake C,, Kacich G. 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J Clin Microbiol 37:14151418.
21. Rolain JM,, Mallet MN,, Fournier PE,, Raoult D. 2004. Real-time PCR for universal antibiotic susceptibility testing. J Antimicrob Chemother 54:538541.
22. Lupetti A,, Barnini S,, Castagna B,, Nibbering PH,, Campa M. 2010. Rapid identification and antimicrobial susceptibility testing of Gram-positive cocci in blood cultures by direct inoculation into the BD Phoenix system. Clin Microbiol Infect 16:986991.
23. Wimmer JL,, Long SW,, Cernoch P,, Land GA,, Davis JR,, Musser JM,, Olsen RJ. 2012. Strategy for rapid identification and antibiotic susceptibility testing of gram-negative bacteria directly recovered from positive blood cultures using the Bruker MALDI Biotyper and BD Phoenix system. J Clin Microbiol 50:24522454.
24. Gordon NC,, Wareham DW. 2009. Failure of the MicroScan WalkAway system to detect heteroresistance to carbapenems in a patient with Enterobacter aerogenes bacteremia. J Clin Microbiol 47:30243025.
25. Jorgensen JH,, Ferraro MJ. 2000. Antimicrobial susceptibility testing: special needs for fastidious organisms and difficult-to-detect resistance mechanisms. Clin Infect Dis 30:799808.
26. Tenover FC,, Swensen JM,, O’Hara CM,, Stocker SA. 1995. Ability of commercial and reference antimicrobial susceptibility testing methods to detect vancomycin resistance in enterococci. J Clin Microbiol 33:15241527.
27. Van Den Braak N,, Goessens W,, van Belkum A,, Verbrugh HA,, Endtz HP. 2001. Accuracy of the VITEK 2 system to detect glycopeptide resistance in enterococci. J Clin Microbiol 39:351353.
28. Brigante GR,, Luzzaro FA,, Pini B,, Lombardi G,, Sokeng G,, Toniolo AQ. 2007. Drug susceptibility testing of clinical isolates of streptococci and enterococci by the Phoenix automated microbiology system. BMC Microbiol 7:4652.
29. Carroll KC,, Borek AP,, Burger C,, Glanz B,, Bhally H,, Henciak S,, Flayhart SC. 2006. Evaluation of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of staphylococci and enterococci. J Clin Microbiol 44:20722077.
30. Fahr AM,, Eigner U,, Armbrust M,, Caganic A,, Dettori G,, Chezzi C,, Bertoncini L,, Benecchi M,, Menozzi MG. 2003. Two-center collaborative evaluation of the performance of the BD Phoenix automated microbiology system for identification and antimicrobial susceptibility testing of Enterococcus spp. and Staphylococcus spp. J Clin Microbiol 41:11351142.
31. Garcia-Garrote F,, Cercenado E,, Bouza E. 2000. Evaluation of a new system, VITEK 2, for identification and antimicrobial susceptibility testing of enterococci. J Clin Microbiol 38:21082111.
32. d’Azevedo PA,, Dias CAG,, Goncalves ALS,, Rowe F,, Teixeira LM. 2001. Evaluation of an automated system for the identification and antimicrobial susceptibility testing of enterococci. Diagn Microbiol Infect Dis 40:157161.
33. Woods GL,, DiGiovanni B,, Levison M,, Pitsakis P,, LaTemple D. 1993. Evaluation of MicroScan rapid panels for detection of high-level aminoglycoside resistance in enterococci. J Clin Microbiol 31:27862787.
34. Murdoch DR,, Mirrett S,, Harrell LJ,, Donabedian SM,, Zervos MJ,, Reller LB. 2003. Comparison of MicroScan broth microdilution, synergy quad plate agar dilution, and disk diffusion screening methods for detection of high-level aminoglycoside resistance in Enterococcus species. J Clin Microbiol 41:27032705.
35. Tenover FC,, Williams PP,, Stocker S,, Thompson A,, Clark LA,, Limbago B,, Carey RB,, Poppe SM,, Shinabarger D,, McGowan JE. 2007. Accuracy of six antimicrobial susceptibility methods for testing linezolid against staphylococci and enterococci. J Clin Microbiol 45:29172922.
36. Kaase M,, Lena S,, Friedrich S,, Szabados F,, Sakinc T,, Kleine B,, Gatermann SG. 2008. Comparison of phenotypic methods for penicillinase detection in Staphylococcus aureus. Clin Microbiol Infect 14:614616.
37. Mencacci A,, Montecarlo I,, Gonfia F,, Moretti A,, Cardaccia A,, Farinelli S,, Pagliochini MR,, Giuliani A,, Basileo M,, Pasticci MB,, Bistoni F. 2009. Comparison of the BD Phoenix system with the cefoxitin disk diffusion test for detection of methicillin resistance in Staphylococcus aureus and coagulase-negative staphylococci. J Clin Microbiol 47:22882291.
38. Sakoulas G,, Gold HS,, Venkataraman L,, Degirolami PC,, Eliopoulos GM,, Qian Q. 2001. Methicillin-resistant Staphylococcus aureus: comparison of susceptibility testing methods and analysis of mecA-positive susceptible strains. J Clin Microbiol 39:39463951.
39. Felten A,, Grandry B,, Lagrange PH,, Casin I. 2002. Evaluation of three techniques for detection of low-level methicillin-resistant Staphylococcus aureus (MRSA): a disk diffusion method with cefoxitin and moxalactam, the VITEK 2 system, and the MRSA-screen latex agglutination test. J Clin Microbiol 40:27662771.
40. Swenson JM,, Lonsway D,, McAllister S,, Thompson A,, Jevitt L,, Zhu W,, Patel JB. 2007. Detection of mecA-mediated resistance using reference and commercial testing methods in a collection of Staphylococcus aureus expressing borderline oxacillin MICs. Diagn Microbiol Infect Dis 58:3339.
41. Gallon O,, Pina P,, Gravet A,, Laurent F,, Lamy B,, Delarbre J-M,, Doucet-Populaire F, Decousser JW; College de Bacteriologie Virologie Hygiene Study Group. 2011. Performance of a new MicroScan WalkAway PC30 panel and disk diffusion method for detection of oxacillin resistance in Staphylococcus spp. J Clin Microbiol 49:22692271.
42. Junkins AD,, Lockhart SR,, Heilmann KP,, Dohrn CL,, Von Stein DL,, Winokur PL,, Doern GV,, Richter SS. 2009. BD Phoenix and Vitek 2 detection of mecA-mediated resistance in Staphylococcus aureus with cefoxitin. J Clin Microbiol 47:28792882.
43. Kaase M,, Baars B,, Friedrich S,, Szabados F,, Gatermann SG. 2009. Performance of MicroScan WalkAway and VITEK 2 for detection of oxacillin resistance in a set of methicillin-resistant Staphylococcus aureus isolates with diverse genetic backgrounds. J Clin Microbiol 47:26232625.
44. Roisin S,, Nonhoff C,, Denis O,, Struelens MJ. 2008. Evaluation of new VITEK 2 card and disk diffusion method for determining susceptibility of Staphylococcus aureus to oxacillin. J Clin Microbiol 46:25252528.
45. Horstkotte MA,, Knobloch JK-M,, Rohde H,, Dobinsky S,, Mack D. 2002. Rapid detection of methicillin resistance in coagulase-negative staphylococci with the VITEK 2 system. J Clin Microbiol 40:32913295.
46. Horstkotte MA,, Knobloch JK-M,, Rohde H,, Dobinsky S,, Mack D. 2004. Evaluation of the BD PHOENIX automated system for detection of methicillin resistance in coagulase-negative staphylococci. J Clin Microbiol 42:50415046.
47. Hussain Z,, Stoakes L,, John MA,, Garrow S,, Fitzgerald V. 2002. Detection of methicillin resistance in primary blood culture isolates of coagulase-negative staphylococci by PCR, slide agglutination, disk diffusion, and a commercial method. J Clin Microbiol 40:22512253.
48. Patteet L,, Goossens H,, Ieven M. 2012. Validation of the MicroScan-96 for the species identification and methicillin susceptibility testing of clinical significant coagulase-negative staphylococci. Eur J Clin Microbiol Infect Dis 31:747751.
49. Spanu T,, Sanguinetti M,, D’Inzeo T,, Ciccaglione D,, Romano L,, Leone F,, Mazzella P,, Fadda G. 2004. Identification of methicillin-resistant isolates of Staphylococcus aureus and coagulase-negative staphylococci responsible for bloodstream infections with the Phoenix™ system. Diagn Microbiol Infect Dis 48:221227.
50. Hussain Z,, Stoakes L,, Massey V,, Diagre D,, Fitzgerald V,, El Sayed S,, Lannigan R. 2000. Correlation of oxacillin MIC with mecA gene carriage in coagulase-negative staphylococci. J Clin Microbiol 38:752754.
51. John MA,, Burden J,, Stuart JI,, Reyes RC,, Lannigan R,, Milburn S,, Diagre D,, Wilson B,, Hussain Z. 2009. Comparison of three phenotypic techniques for detection of methicillin resistance in Staphylococcus spp. reveals a species-dependent performance. J Antimicrob Chemother 63:493496.
52. Centers for Disease Control and Prevention. 2004. Vancomycin-resistant Staphylococcus aureus—New York, 2004. MMWR Morb Mortal Wkly Rep 53:322323.
53. Tenover FC,, Weigel LM,, Appelbaum PC,, McDougal LK,, Chaitram J,, McAllister S,, Clark N,, Killgore G,, O’Hara CM,, Jevitt L,, Patel JB,, Bozdogan B. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob Agents Chemother 48:275280.
54. Swenson JM,, Anderson KF,, Lonsway DR,, Thompson A,, McAllister SK,, Limbago BM,, Carey RB,, Tenover FC,, Patel JB. 2009. Accuracy of commercial and reference susceptibility testing methods for detecting vancomycin-intermediate Staphylococcus aureus. J Clin Microbiol 47: 20132017.
55. Edwards B,, Milne K,, Lawes T,, Cook I,, Robb A,, Gould IM. 2012. Is vancomycin MIC “creep” method dependent? Analysis of methicillin-resistant Staphylococcus aureus susceptibility trends in blood isolates from north east Scotland from 2006 to 2010. J Clin Microbiol 50:318325.
56. Del’Alamo L,, Cereda RF,, Tosin I,, Miranda EA,, Sader HS. 1999. Antimicrobial susceptibility of coagulasenegative staphylococci and characterization of isolates with reduced susceptibility to glycopeptides. Diagn Microbiol Infect Dis 34:185191.
57. Jorgensen JH,, Crawford SA,, McElmeel ML,, Fiebelkorn KR. 2004. Detection of inducible clindamycin resistance in conjunction with performance of automated broth susceptibility testing. J Clin Microbiol 42:18001802.
58. Gosnell C,, Yu C,, Turner D,, Reuben J. 2008. 18th Eur Congr Clin Microbiol Infect Dis, abstr P854.
59. LeClercq R,, Boulanger A,, Doucet-Populaire F,, Galopin S,, Ploy M,, Poyart C. 2009. Abstr 49th Intersci Conf Antimicrob Agents Chemother, abstr D-797.
60. Buchan BW,, Anderson NW,, Ledeboer NA. 2012. Comparison of BD Phoenix and bioMérieux Vitek 2 automated systems for the detection of macrolide-lincosamide-streptogramin B resistance among clinical isolates of Staphylococcus. Diagn Microbiol Infect Dis 72:291294.
61. Gardiner BJ,, Grayson ML,, Wood GM. 2013. Inducible resistance to clindamycin in Staphylococcus aureus: validation of Vitek-2 against CLSI D-test. Pathology 45:181184.
62. Jorgensen JH,, Crawford SA,, McElmeel LM,, Whitney CG. 2004. Detection of resistance to gatifloxacin and moxifloxacin in Streptococcus pneumoniae with the VITEK 2 instrument. J Clin Microbiol 42:59285930.
63. Mittman SA,, Huard RC,, Della-Latta P,, Whittier S. 2009. Comparison of BD Phoenix to Vitek 2, MicroScan MICroSTREP, and Etest for antimicrobial susceptibility testing of Streptococcus pneumoniae. J Clin Microbiol 47:35573561.
64. Richter SS,, Howard WJ,, Weinstein MP,, Bruckner DA,, Hindler JF,, Saubolle M,, Doern GV. 2007. Multicenter evaluation of the BD Phoenix automated microbiology system for antimicrobial susceptibility testing of Streptococcus species. J Clin Microbiol 45:28632871.
65. Zhang SX,, Rawte P,, Brown S,, Lo S,, Siebert H,, Pong-Porter S,, Low DE,, Jamieson FB. 2011. Evaluation of CLSI agar dilution method and Trek Sensititre broth microdilution panel for determining antimicrobial susceptibility of Streptococcus pneumoniae. J Clin Microbiol 49:704706.
66. Kimura K,, Nagano N,, Nagano Y,, Wachino J,, Shibayama K,, Arakawa Y. 2013. Ability of the VITEK® 2 system to detect group B streptococci with reduced penicillin susceptibility (PRGBS). J Antimicrob Chemother 68:14421444.
67. Palavecino EL,, Burnell JM. 2013. False daptomycin-nonsusceptible MIC results by Microscan panel PC 29 relative to Etest results for Staphylococcus aureus and enterococci. J Clin Microbiol 51:281283.
68. Leverstein-van Hall M,, Fluit AC,, Paauw A,, Box ATA,, Brisse S,, Verhoef J. 2002. Evaluation of the Etest ESBL and the BD Phoenix, VITEK 1, and VITEK 2 automated instruments for detection of extended-spectrum beta-lactamases in multiresistant Escherichia coli and Klebsiella spp. J Clin Microbiol 40:37033711.
69. Thomson KS,, Cornish NE,, Hong SG,, Hemrick K,, Herdt C,, Moland ES. 2007. Comparison of Phoenix and VITEK 2 extended-spectrum-β-lactamase detection tests for analysis of Escherichia coli and Klebsiella isolates with well-characterized β-lactamases. J Clin Microbiol 45:23802384.
70. Chen HM,, Wu JJ,, Tsai PF,, Wann JY,, Yan JJ. 2009. Evaluation of the capability of the VITEK 2 system to detect extended-spectrum β-lactamase-producing Escherichia coli and Klebsiella pneumoniae isolates, in particular with the coproduction of AmpC enzymes. Eur J Clin Microbiol Infect Dis 28:871874.
71. Fisher MA,, Stamper PD,, Hujer KM,, Love Z,, Croft A,, Cohen S,, Bonomo RA,, Carroll KC,, Petti CA. 2009. Performance of the Phoenix bacterial identification system compared with disc diffusion methods for identifying extended-spectrum β-lactamase, AmpC and KPC producers. J Med Microbiol 58:774778.
72. Sanguinetti M,, Posteraro B,, Spanu T,, Ciccaglione D,, Romano L,, Fiori B,, Nicoletti G,, Zanetti S,, Fadda G. 2003. Characterization of clinical isolates of Enterobacteriaceae from Italy by the Phoenix extended-spectrum β-lactamase detection method. J Clin Microbiol 41:14631468.
73. Sorlozano A,, Gutierrez J,, Piedrola G,, Soto MJ. 2005. Acceptable performance of VITEK 2 system to detect extended-spectrum β-lactamases in clinical isolates of Escherichia coli: a comparative study of phenotypic commercial methods and NCCLS guidelines. Diagn Microbiol Infect Dis 51:191193.
74. Spanu T,, Sanguinetti M,, Tumbarello M,, D’Inzeo T,, Fiori B,, Posteraro B,, Santangelo R,, Cauda R,, Fadda G. 2006. Evaluation of the new VITEK 2 extended-spectrum beta-lactamase (ESBL) test for rapid detection of ESBL production in Enterobacteriaceae isolates. J Clin Microbiol 44:32573262.
75. Stefaniuk E,, Baraniak A,, Gniadkowski M,, Hryniewicz W. 2003. Evaluation of the BD Phoenix automated identification and susceptibility testing system in clinical microbiology laboratory practice. Eur J Clin Microbiol Infect Dis 22:479485.
76. Jorgensen JH,, McElmeel ML,, Fulcher LC,, Zimmer BL. 2010. Detection of CTX-M-type extended-spectrum beta-lactamase (ESBLs) by testing MicroScan overnight and ESBL confirmatory panels. J Clin Microbiol 48:120123.
77. Komatsu M,, Aihara M,, Shimakawa K,, Iwasaki M,, Nagasaka Y,, Fukuda S,, Matsuo S,, Iwatani Y. 2003. Evaluation of MicroScan ESBL confirmation panel for Enterobacteriaceae-producing, extended-spectrum β-lactamases isolated in Japan. Diagn Microbiol Infect Dis 46:125130.
78. Linscott AJ,, Brown WJ. 2005. Evaluation of four commercially available extended-spectrum beta-lactamase phenotypic confirmation tests. J Clin Microbiol 43:10811085.
79. Sturenburg E,, Lang M,, Horstkotte MA,, Laufs R,, Mack D. 2004. Evaluation of the MicroScan ESBL plus confirmation panel for detection of extended-spectrum β-lactamases in clinical isolates of oxyimino-cephalosporin-resistant gram-negative bacteria. J Antimicrob Chemother 54:870875.
80. Sturenburg E,, Sobottka I,, Feucht H-H,, Mack D,, Laufs R. 2003. Comparison of BD Phoenix and VITEK 2 automated antimicrobial susceptibility test systems for extended-spectrum beta-lactamase detection in Escherichia coli and Klebsiella species clinical isolates. Diagn Microbiol Infect Dis 45:2934.
81. Donaldson H,, McCalmont M,, Livermore DM,, Rooney PJ,, Ong G,, McHenry E,, Campbell R,, McMullan R. 2008. Evaluation for the VITEK 2 AST N-054 test card for the detection of extended-spectrum β-lactamase production in Escherichia coli with CTX-M phenotypes. J Antimicrob Chemother 62:10151017.
82. Bratu S,, Landman D,, Haag R,, Recco R,, Eramo A,, Alam M,, Quale J. 2005. Rapid spread of carbapenem-resistant Klebsiella pneumoniae in New York City. Arch Intern Med 165:14301435.
83. Doern CD,, Dunne WM,, Burnham C-AD. 2011. Detection of Klebsiella pneumoniae carbapenemase (KPC) production in non-Klebsiella pneumoniae Enterobacteriaceae isolates by use of the Phoenix, Vitek 2, and disk diffusion methods. J Clin Microbiol 49:11431147.
84. Kulah C,, Aktas E,, Comert F,, Ozlu N,, Akyar I,, Ankarali H. 2009. Detecting imipenem resistance in Acinetobacter baumannii by automated systems (BD Phoenix, MicroScan WalkAway, Vitek 2); high error rates with MicroScan WalkAway. BMC Infect Dis 9:3037.
85. Tenover FC,, Kalsi RK,, Williams PP,, Carey RC,, Stocker S,, Lonsway D,, Rasheed JK,, Biddle JW,, McGowan JE,, Hanna B. 2006. Carbapenem resistance in Klebsiella pneumoniae not detected by automated susceptibility testing. Emerg Infect Dis 12:12091213.
86. Bulik CC,, Fauntleroy KA,, Jenkins SG,, Abuali M,, LaBombardi VJ,, Nicolau DP,, Kuti JL. 2010. Comparison of meropenem MICs and susceptibilities for carbapenemase-producing Klebsiella pneumoniae isolates by various testing methods. J Clin Microbiol 48:24022406.
87. Thomson KS,, Robledo IE,, Vázquez GJ,, Moland ES. 2011. KPC screening by updated BD Phoenix and Vitek 2 automated systems. J Clin Microbiol 49:33863387.
88. Lat A,, Clock SA,, Wu F,, Whittier S,, Della-Latta P,, Fauntleroy K,, Jenkins SG,, Siaman L,, Kubin CJ. 2011. Comparison of polymyxin B, tigecycline, cefepime, and meropenem MICs for KPC-producing Klebsiella pneumoniae by broth microdilution, Vitek 2, and Etest. J Clin Microbiol 49:17951798.
89. Markelz AE,, Mende K,, Murray CK,, Yu X,, Zera WC,, Hospenthal DR,, Beckius ML,, Calvano T,, Akers KS. 2011. Carbapenem susceptibility testing errors using three automated systems, disk diffusion, Etest, and broth microdilution and carbapenem resistance genes in isolates of Acinetobacter baumannii-calcoaceticus complex. J Clin Microbiol 55:47074711.
90. Jekarl DW,, Han SB,, Kim YJ,, Shin SH,, Park KG,, Park JJ,, Han K,, Park Y-J. 2010. Evaluation of Vitek2 and BD Phoenix in antimicrobial susceptibility testing of Acinetobacter baumannii and Pseudomonas aeruginosa. Diagn Microbiol Infect Dis 67:384386.
91. Steward CD,, Mohammed JM,, Swenson JM,, Stocker SA,, Williams PP,, Gaynes RP,, McGowan JE,, Tenover FC. 2003. Antimicrobial susceptibility testing of carbapenems: multicenter validity and accuracy levels of five antimicrobial test methods for detecting resistance in Enterobacteriaceae and Pseudomonas aeruginosa isolates. J Clin Microbiol 41:351358.
92. Tsakris A,, Pantazi A,, Pournaras S,, Maniatis A,, Polyzou A,, Sofianou D. 2000. Pseudo-outbreak of imipenemresistant Acinetobacter baumannii resulting from false susceptibility testing by a rapid automated system. J Clin Microbiol 38:35053507.
93. Juretschko S,, LaBombardi VJ,, Lerner SA, Schreckenberger PC; Pseudomonas AST Study Group. 2007. Accuracies of β-lactam susceptibility test results for Pseudomonas aeruginosa with four automated systems (BD Phoenix, MicroScan WalkAway, Vitek, and Vitek 2). J Clin Microbiol 45:13391342.
94. Sader HS,, Fritsche TR,, Jones RN. 2006. Accuracy of three automated systems (MicroScan WalkAway, VITEK, and VITEK 2) for susceptibility testing of Pseudomonas aeruginosa against five broad-spectrum beta-lactam agents. J Clin Microbiol 44:11011104.
95. Joyanes P,, Conejo MDC,, Martinez-Martinez L,, Perea EJ. 2001. Evaluation of the VITEK 2 system for the identification and susceptibility testing of three species of nonfermenting gram-negative rods frequently isolated from clinical samples. J Clin Microbiol 39:32473253.
96. Mazzariol A,, Aldegheri M,, Ligozzi M,, Cascio GL,, Koncan R,, Fontana R. 2008. Performance of Vitek 2 in antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates with different mechanisms of β-lactam resistance. J Clin Microbiol 46:20952098.
97. Burns JL,, Saiman L,, Whittier S,, Krzewinski J,, Liu Z,, Larone D,, Marshall SA,, Jones RN. 2001. Comparison of two commercial systems (VITEK and MicroScan-Walk-Away) for antimicrobial susceptibility testing of Pseudomonas aeruginosa isolates from cystic fibrosis patients. Diagn Microbiol Infect Dis 39:257260.
98. Donay J-L,, Mathieu D,, Fernandes P,, Pregermain C,, Bruel P,, Wargnier A,, Casin I,, Weill FX,, Lagrange PH,, Herrmann JL. 2004. Evaluation of the automated Phoenix system for potential routine use in the clinical microbiology laboratory. J Clin Microbiol 42:15421546.
99. Endimiani A,, Luzzaro F,, Tamborini A,, Lombardi G,, Elia V,, Belloni R,, Toniolo A. 2002. Identification and antimicrobial susceptibility testing of clinical isolates of nonfermenting gram-negative bacteria by the Phoenix automated microbiology system. Microbiologica 25:323329.
100. Lee SY,, Shin JH,, Lee K,, Joo MY,, Park KH,, Shin MG,, Suh SP,, Ryang DW,, Kim SH. 2013. Comparison of the Vitek 2, MicroScan, and Etest methods with the agar dilution method in assessing colistin susceptibility of bloodstream isolates of Acinetobacter species from a Korean university hospital. J Clin Microbiol 51:19241926.
101. Huang T-D,, Berhin C,, Bogaerts P,, Glupczynski Y. 2012. In vitro susceptibility of multidrug-resistant Enterobacteriaceae clinical isolates to tigecycline. J Antimicrob Chemother 67:26962699.
102. Sanders CC,, Peyret M,, Moland ES,, Cavalieri SJ,, Shubert C,, Thomson KS,, Boeufgras J-M,, Sanders WE. 2001. Potential impact of the VITEK 2 System and the Advanced Expert System on the clinical laboratory of a university-based hospital. J Clin Microbiol 39:23792385.
103. Livermore DM,, Struelens M,, Amorin J,, Baquero F,, Bille J,, Canton R,, Henning S,, Gatermann S,, Marchese A,, Mittermayer H,, Nonhoff C,, Oakton KJ,, Praplan F,, Ramos H,, Schito GC,, Van Eldere J,, Verhaegen J,, Verhoef J,, Visser MR. 2002. Multicentre evaluation of the VITEK 2 Advanced Expert System for interpretive reading of antimicrobial resistance tests. J Antimicrob Chemother 49:289300.
104. Sanders CC,, Peyret M,, Moland ES,, Shubert C,, Thomson KS,, Boeufgras J-M,, Sanders WE. 2000. Ability of the VITEK 2 Advanced Expert System to identify β-lactam phenotypes in isolates of Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol 38:570574.
105. Livermore DM,, Winstanley TG,, Shannon KP. 2001. Interpretative reading: recognizing the unusual and inferring resistance mechanisms from resistance phenotypes. J Antimicrob Chemother 47(Suppl. 1):87102.
106. Barry J,, Brown A,, Ensor V,, Lakhani U,, Petts D,, Warren C,, Winstanley T. 2003. Comparative evaluation of the VITEK 2 Advanced Expert System (AES) in five UK hospitals. J Antimicrob Chemother 51:11911202.
107. Blondel-Hill E,, Hetchler C,, Andrews D,, Lapointe L. 2003. Evaluation of VITEK 2 for analysis of Enterobacteriaceae using the Advanced Expert System (AES) versus interpretive susceptibility guidelines used at Dynacare Kasper Medical Laboratories, Edmonton, Alberta. Clin Microbiol Infect 9:10911103.
108. Nakasone I,, Kinjo T,, Yamane N,, Kisanuki K,, Shiohira CM. 2007. Laboratory-based evaluation of the colorimetric VITEK-2 Compact system for species identification and of the Advanced Expert System for detection of antimicrobial resistances: VITEK-2 Compact system identification and antimicrobial susceptibility testing. Diagn Microbiol Infect Dis 58:191198.
109. Karlowsky JA,, Weaver MK,, Thornsberry C,, Dowzicky MJ,, Jones ME,, Sahm DF. 2003. Comparison of four antimicrobial susceptibility testing methods to determine the in vitro activities of piperacillin and piperacillin-tazobactam against clinical isolates of Enterobacteriaceae and Pseudomonas aeruginosa. J Clin Microbiol 41:33393343.
110. Munro S,, Mulder RM,, Farnham SM,, Grinius B,. 2004. Evaluating antimicrobial susceptibility test systems, p 5.17.15.17.9. In Isenberg HD (ed), Clinical Microbiology Procedures Handbook, 2nd ed. ASM Press, Washington, DC.
111. Pfaller MA,, Jones RN. 2006. Performance accuracy of antibacterial and antifungal susceptibility test methods: report from the College of American Pathologists Microbiology Surveys Program (2001–2003). Arch Pathol Lab Med 130:767778.
112. Federal Register. 1992. Clinical Laboratory Improvement Amendments of 1988; final rule. Fed Regist 57:7164.
113. Clark RB,, Lewinski MA,, Loeffelholz MJ,, Tibbetts RJ. 2009. Cumitech 31A, Verification and validation of procedures in the clinical microbiology laboratory. Coordinating ed, Sharp SE. ASM Press, Washington, DC.
114. Korgenski EK,, Daly JA. 1998. Evaluation of the BIOMIC video reader system for determining interpretive categories of isolates on the basis of disk diffusion susceptibility results. J Clin Microbiol 36:302304.
115. Andrew JM,, Boswell FJ,, Wise R. 2000. Evaluation of the Oxoid Aura image system for measuring zones of inhibition with the disc diffusion technique. J Antimicrob Chemother 46:535540.
116. Winstanley TG,, Parsons HK,, Horstkotte MA,, Sobottka I,, Sturenburg E. 2005. Phenotypic detection of β-lactamase-mediated resistance to oxyimino-cephalosporins in Enterobacteriaceae: evaluation of the Mastacan Elite Expert System. J Antimicrob Chemother 56:292296.
117. Kolbert M,, Chegrani F,, Shah PM. 2004. Evaluation of the OSIRIS video reader as an automated measurement system for the agar disk diffusion technique. Clin Microbiol Infect 10:416420.
118. Fader RC,, Weaver E,, Fossett R,, Toyras M,, Vanderlaan J,, Gibbs D,, Wang A,, Thierjung N. 2013. Multilaboratory study of the Biomic automated well-reading instrument versus Microscan Walkaway for reading Microscan antimicrobial susceptibility and identification panels. J Clin Microbiol 51:15481554.

Tables

Generic image for table
TABLE 1

Overview of manual and semiautomated susceptibility testing instrumentation

Citation: Karlowsky J, Richter S. 2015. Antimicrobial Susceptibility Testing Systems*, p 1274-1285. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch72
Generic image for table
TABLE 2

Overview of automated broth microdilution susceptibility testing instrumentation

Citation: Karlowsky J, Richter S. 2015. Antimicrobial Susceptibility Testing Systems*, p 1274-1285. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch72
Generic image for table
TABLE 3

Antimicrobial agents that may appear active but lack clinical efficacy

Citation: Karlowsky J, Richter S. 2015. Antimicrobial Susceptibility Testing Systems*, p 1274-1285. In Jorgensen J, Pfaller M, Carroll K, Funke G, Landry M, Richter S, Warnock D (ed), Manual of Clinical Microbiology, Eleventh Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817381.ch72

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error