1887

Chapter 14 : Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817404/9781555817398_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817404/9781555817398_Chap14-2.gif

Abstract:

Bacteria assemble a variety of adhesive proteins (adhesins) on their surface to mediate binding to receptors and colonization of surfaces. For pathogenic bacteria, adhesins are critical for early stages of infection, allowing the bacteria to initiate contact with host cells, colonize different tissues, and establish a foothold within the host. Adhesins recognize specific receptors expressed by specific subsets of host cells. Therefore, the repertoire of adhesins expressed by a pathogen play a major role in dictating the tropism of the pathogen toward specific host tissues and organs. Moreover, binding of bacterial adhesins to host cell receptors influences subsequent events by triggering signaling pathways in both the host and bacterial cells. These signaling pathways may determine whether the bacteria remain extracellular or become internalized, and influence the intracellular trafficking of invaded bacteria and their ability to survive and replicate ( ). The adhesins expressed by a pathogen are also critical for bacterial-bacterial interactions and the formation of bacterial communities, including biofilms. The ability to adhere to host tissues is particularly important for bacteria that colonize sites that include the urinary tract, where the flow of urine functions to maintain sterility by washing away non-adherent pathogens.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Representative CU gene clusters and pili. Gene clusters coding for P (), type 1 () and Dr/Afa pili are depicted, with the functions of the genes indicated. Electron micrographs are shown for (A) an bacterium expressing type 1 pili, (B) a P pilus fiber, and (C) a type 1 pilus fiber. Scale bars equal 700 nm (A), 100 nm (B), and 20 nm (C). The images in panels A-C are reprinted from references , and , respectively, with permission of the publishers.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Model for pilus biogenesis by the CU pathway. Pilus subunits enter the periplasm as unfolded polypeptides via the Sec system. Subunits fold upon forming binary complexes with the periplasmic chaperone (yellow). The crystal structure in the lower right depicts the chaperone-subunit donor strand exchange reaction (PapD-PapA; PDB ID: 2UY6), with the chaperone donor strand indicated in red. Pilus assembly takes place at the outer membrane usher, which catalyzes the exchange of chaperone-subunit for subunit-subunit interactions. Models for assembled P, type 1 and Afa/Dr pilus fibers are shown. The crystal structure in the upper left depicts the subunit-subunit donor strand exchange reaction that occurs in the pilus fiber (PapA-PapA; PDB ID: 2UY6), with the Nte donor strand indicated. Crystal structures of the PapG (P pili; PDB ID: 1J8R) and FimH (type 1 pili; PDB ID: 1KLF) adhesin domains with bound globoside and mannose, respectively. The sugars are depicted as dark gray spheres.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Crystal structure of the FimD-FimC-FimH type 1 pilus assembly intermediate (PDB ID: 3RFZ). The Usher NTD, plug, β-barrel channel, and CTD domains are indicated. The FimH adhesin domain (FimH) is inserted inside the usher channel, and the FimH pilin domain (FimH) and bound FimC chaperone are located at the usher CTDs.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Model for curli biogenesis by the extracellular nucleation/precipitation pathway. The gene cluster coding for curli biogenesis is shown at the bottom. The curli subunit proteins enter the periplasm via the Sec system and are secreted to the bacterial surface via the CsgG outer membrane channel. CsgE may act as a chaperone for the curli subunits in the periplasm, whereas CsgF assists assembly of CsgB on the cell surface. Polymerization of CsgA occurs on the cell surface and is nucleated by interaction with CsgB. Electron micrograph of expressing curli. Scale bar equals 1 µm; reprinted from reference ( ) with permission of the publisher. Structure of a CsgA subunit, with the R1-R5 repeats indicated.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Model for autotransporter secretion and assembly on the bacterial surface. The domain organization of an autotransporter protein is shown at the bottom. Autotransporter polypeptides have an N-terminal signal sequence for translocation to the periplasm via the Sec system. The protein is maintained in an extended, largely unfolded state during transit across the periplasm, assisted by periplasmic folding factors (SurA, Skp, DegP and FkpA). The C-terminal translocator domain inserts into the outer membrane as a β-barrel channel, with the assistance of the Bam complex. The Bam complex may also assist in secretion of the passenger domain to the cell surface. In the hairpin model of secretion, the C-terminal region of the passenger domain forms a hairpin structure in the translocator channel, exposing part of the passenger to the cell surface. Folding initiates at the autochaperone region, which then nucleates folding and secretion of the rest of the passenger domain. Following secretion, the linker region adopts an α-helical structure to plug the translocator domain channel. The passenger domain may remain linked to the translocator domain or may be proteolytically cleaved.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Crystal structures of representative autotransporter proteins. Translocator domains from the monomeric NalP and trimeric Hia autotransporters are shown (PDB IDs: 1UYN and 2GR7, respectively), with the β-barrel channels in blue and the α-helical linker regions in red. Passenger domains from the monomeric Pertactin and trimeric EibD autotransporters are shown (PDB IDs: 1DAB and 2XQH, respectively), with the approximate location of the Pertactin autochaperone region indicated in purple. The complete structure of the EstA autotransporter is shown (PDB ID: 3KVN), with the translocator domain in blue, the α-helical linker in red, and the globular passenger domain in gray.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Model for MSCRAMM secretion and incorporation into the cell wall. The domain organization of a typical MSCRAMM is shown at the bottom. MSCRAMMs have an N-terminal Sec signal sequence for translocation across the cytoplasmic membrane. The protein remains anchored in the cytoplasmic membrane by the CWSS. The positively charged C terminus remains in the cytoplasm, orienting the LPXTG motif to the extracellular side of the membrane. The SrtA sortase cleaves between the Thr and Gly of the MSCRAMM LPXTG motif, forming a covalent thioacyl intermediate. The MSCRAMM is then transferred to a lipid II peptidoglycan precursor and finally integrated into the cell wall at an amino acid cross-bridge. Crystal structures of the Ace and UafA MSCRAMMs (PDB IDs: 2Z1P and 3IRP, respectively). The upper structure shows the N and N subdomains of Ace in blue and green, respectively; the yellow circle represents bound collagen. Both domains have DEv-Ig folds. The C terminus of the N subdomain inserts into the N subdomain, forming a latch. The lower structure depicts the N, N, and B subdomains of UafA. The N and N subdomains adopt DEv-Ig folds and the B subdomain adopts a variant of the IgG-rev fold. The loop connecting the N and B domains (cyan) is thought to insert into the N subdomain upon ligand binding to form a latch.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Crystal structures of representative tip and major pilins. The RrgA tip pilin of (PDB ID: 2WW8) is shown on the left, with the fold adopted by each of the four subdomains indicated. The VWA domain is depicted in green, with the residues forming the MIDAS motif and bound magnesium ion shown in purple. The residues involved in intramolecular isopeptide bond formation are shown in red. The Spy0128 major pilin of (PDB ID: 3B2M) is depicted on the right in purple and the two subdomains are labeled as for RrgA. The lysine side chain of Syp0128 thought to be involved in intermolecular isopeptide bond formation is shown in cyan.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Model for Gram-positive pilus polymerization and incorporation into the cell wall. The domain organization of typical major and minor pilins is shown at the bottom, along with the gene cluster coding for Ebp pili of . The steps of secretion across the cytoplasmic membrane and covalent linkage to a sortase are the same as for MSCRAMMs, except the pilins are processed by the SrtC pilus-specific sortase. Pilus subunits are polymerized by formation of intermolecular isopeptide bonds between the Lys of a pilin motif of one subunit and the Thr of the LPXTG motif of a preceding subunit in the fiber. Linkage to the cell wall occurs when a growing pilus fiber is transferred to a base pilin bound to the SrtA housekeeping sortase. Integration of the pilus into the cell wall follows the mechanism as described for MSCRAMMs.

Citation: Chahales P, Thanassi D. 2017. Structure, Function, and Assembly of Adhesive Organelles by Uropathogenic Bacteria, p 277-329. In Mulvey M, Klumpp D, Stapleton A (ed), Urinary Tract Infections: Molecular Pathogenesis and Clinical Management, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.UTI-0018-2013
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817404.chap14
1. Pizarro-Cerda J,, Cossart P . 2006. Bacterial adhesion and entry into host cells. Cell 124 : 715727.[PubMed] [CrossRef]
2. Kline KA,, Falker S,, Dahlberg S,, Normark S,, Henriques-Normark B . 2009. Bacterial adhesins in host-microbe interactions. Cell Host Microbe 5 : 580592.[PubMed] [CrossRef]
3. Johnson JR . 1991. Virulence factors in Escherichia coli urinary tract infection. Clin Microbiol Rev 4 : 80128.[PubMed]
4. Ottow JCG . 1975. Ecology, physiology and genetics of fimbriae and pili. Annu Rev Microbiol 29 : 79108.[PubMed] [CrossRef]
5. Duguid JP,, Smith IW,, Dempster G,, Edmunds PN . 1955. Non-flagellar filamentous appendages (“fimbriae”) and hemagglutinating activity in bacterium coli . J Pathol Bacteriol 70 : 335348.[PubMed] [CrossRef]
6. Brinton CC . 1959. Non-flagellar appendages of bacteria. Nature 183 : 782786.[PubMed] [CrossRef]
7. Duguid JP,, Anderson ES,, Campbell I . 1966. Fimbriae and adhesive properties in Salmonellae . J Pathol Bacteriol 92 : 107138.[PubMed] [CrossRef]
8. Orskov I,, Orskov F . 1990. Serologic classification of fimbriae. Curr Top Microbiol Immunol 151 : 7190.[PubMed] [CrossRef]
9. Low D,, Braaten B,, van der Woude M, . 1996. Fimbriae, p 146157. In Neidhardt FC (ed), Escherichia Coli and Salmonella; Cellular and Molecular Biology, 2nd ed. ASM Press, Washington DC. [PubMed]
10. Thanassi DG,, Nuccio S-P,, Shu Kin So S,, Bäumler AJ, . 2007. Fimbriae: Classification and Biochemistry. In Bôck A,, Curtiss R III,, Kaper JB,, Neidhardt FC,, Nyström T,, Rudd KE,, Squires CL (ed), EcoSal–Escherichia coli and Salmonella: cellular and molecular biology, vol. [Online] http://www.ecosal.org. ASM Press, Washington, DC.
11. Duguid JP,, Clegg S,, Wilson MI . 1979. The fimbrial and non-fimbrial haemagglutinins of Escherichia coli . J Med Microbiol 12 : 213227.[PubMed] [CrossRef]
12. Old DC . 1972. Inhibition of the interaction between fimbrial hemagglutinatinins and erythrocytes by D-mannose and other carbohydrates. J Gen Microbiol 71 : 149157.[PubMed] [CrossRef]
13. Hull RA,, Gill RE,, Hsu P,, Minshaw BH,, Falkow S . 1981. Construction and expression of recombinant plasmids encoding type 1 and D-mannose-resistant pili from a urinary tract infection Escherichia coli isolate. Infect Immun 33 : 933938.[PubMed]
14. Hacker J,, Schmidt G,, Hughes C,, Knapp S,, Marget M,, Goebel W . 1985. Cloning and characterization of genes involved in production of mannose-resistant neuraminidase-susceptible (X) fimbriae from a uropathogenic 06:K15:H31 Escherichia coli strain. Infect Immun 47 : 434440.[PubMed]
15. Fronzes R,, Remaut H,, Waksman G . 2008. Architectures and biogenesis of non-flagellar protein appendages in Gram-negative bacteria. EMBO J 27 : 22712280.[PubMed] [CrossRef]
16. Barnhart M,, Chapman M . 2006. Curli biogenesis and function. Annu Rev Microbiol 60 : 131147.[PubMed] [CrossRef]
17. Yanagawa R,, Otsuki K . 1970. Some properties of the pili of Corynebacterium renale . J Bacteriol 101 : 10631069.[PubMed]
18. Yanagawa R,, Otsuki K,, Tokui T . 1968. Electron microscopy of fine structure of Corynebacterium renale with special reference to pili. Jpn J Vet Res 16 : 3137.[PubMed]
19. Ton-That H,, Marraffini LA,, Schneewind O . 2004. Sortases and pilin elements involved in pilus assembly of Corynebacterium diphtheriae . Mol Microbiol 53 : 251261.[PubMed] [CrossRef]
20. Ton-That H,, Schneewind O . 2003. Assembly of pili on the surface of Corynebacterium diphtheriae . Mol Microbiol 50 : 14291438.[PubMed] [CrossRef]
21. Danne C,, Dramsi S . 2012. Pili of gram-positive bacteria: roles in host colonization. Res Microbiol 163 : 645658.[PubMed] [CrossRef]
22. Vengadesan K,, Narayana SV . 2011. Structural biology of Gram-positive bacterial adhesins. Protein Sci 20 : 759772.[PubMed] [CrossRef]
23. Hendrickx AP,, Willems RJ,, Bonten MJ,, van Schaik W . 2009. LPxTG surface proteins of enterococci. Trends Microbiol 17 : 423430.[PubMed] [CrossRef]
24. Nuccio SP,, Baumler AJ . 2007. Evolution of the chaperone/usher assembly pathway: fimbrial classification goes Greek. Microbiol Mol Biol Rev 71 : 551575.[PubMed] [CrossRef]
25. Zav’yalov V,, Zavialov A,, Zav’yalova G,, Korpela T . 2010. Adhesive organelles of Gram-negative pathogens assembled with the classical chaperone/usher machinery: structure and function from a clinical standpoint. FEMS Microbiol Rev 34 : 317378.[PubMed] [CrossRef]
26. Waksman G,, Hultgren SJ . 2009. Structural biology of the chaperone-usher pathway of pilus biogenesis. Nat Rev Microbiol 7 : 765774.[PubMed] [CrossRef]
27. Thanassi DG,, Bliska JB,, Christie PJ . 2012. Surface organelles assembled by secretion systems of Gram-negative bacteria: diversity in structure and function. FEMS Microbiol Rev 36 : 10461082.[PubMed] [CrossRef]
28. Miller E,, Garcia T,, Hultgren S,, Oberhauser AF . 2006. The mechanical properties of E. coli type 1 pili measured by atomic force microscopy techniques. Biophys J 91 : 38483856.[PubMed] [CrossRef]
29. Fallman E,, Schedin S,, Jass J,, Uhlin BE,, Axner O . 2005. The unfolding of the P pili quaternary structure by stretching is reversible, not plastic. EMBO Rep 6 : 5256.[PubMed] [CrossRef]
30. Thomas WE,, Trintchina E,, Forero M,, Vogel V,, Sokurenko EV . 2002. Bacterial adhesion to target cells enhanced by shear force. Cell 109 : 913923.[PubMed] [CrossRef]
31. Castelain M,, Ehlers S,, Klinth J,, Lindberg S,, Andersson M,, Uhlin BE,, Axner O . 2011. Fast uncoiling kinetics of F1C pili expressed by uropathogenic Escherichia coli are revealed on a single pilus level using force-measuring optical tweezers. Eur Biophys J 40 : 305316.[PubMed] [CrossRef]
32. Martinez JJ,, Mulvey MA,, Schilling JD,, Pinkner JS,, Hultgren SJ . 2000. Type 1 pilus-mediated bacterial invasion of bladder epithelial cells. EMBO J 19 : 28032812.[PubMed] [CrossRef]
33. Mulvey MA,, Lopez-Boado YS,, Wilson CL,, Roth R,, Parks WC,, Heuser J,, Hultgren SJ . 1998. Induction and evasion of host defenses by type 1-piliated uropathogenic Escherichia coli . Science 282 : 14941497.[PubMed] [CrossRef]
34. Eto DS,, Jones TA,, Sundsbak JL,, Mulvey MA . 2007. Integrin-mediated host cell invasion by type 1-piliated uropathogenic Escherichia coli . PLoS Pathog 3 : e100. [PubMed] [CrossRef]
35. Wright KJ,, Seed PC,, Hultgren SJ . 2007. Development of intracellular bacterial communities of uropathogenic Escherichia coli depends on type 1 pili. Cell Microbiol 9 : 22302241.[PubMed] [CrossRef]
36. Mossman KL,, Mian MF,, Lauzon NM,, Gyles CL,, Lichty B,, Mackenzie R,, Gill N,, Ashkar AA . 2008. Cutting edge: FimH adhesin of type 1 fimbriae is a novel TLR4 ligand. J Immunol 181 : 67026706.[PubMed] [CrossRef]
37. Bergsten G,, Samuelsson M,, Wullt B,, Leijonhufvud I,, Fischer H,, Svanborg C . 2004. PapG-dependent adherence breaks mucosal inertia and triggers the innate host response. J Infect Dis 189 : 17341742.[PubMed] [CrossRef]
38. Plancon L,, Du Merle L,, Le Friec S,, Gounon P,, Jouve M,, Guignot J,, Servin A,, Le Bouguenec C . 2003. Recognition of the cellular beta1-chain integrin by the bacterial AfaD invasin is implicated in the internalization of afa-expressing pathogenic Escherichia coli strains. Cell Microbiol 5 : 681693.[PubMed] [CrossRef]
39. Oelschlaeger TA,, Dobrindt U,, Hacker J . 2002. Pathogenicity islands of uropathogenic E. coli and the evolution of virulence. Int J Antimicrob Agents 19 : 517521.[PubMed] [CrossRef]
40. van der Velden AW,, Baumler AJ,, Tsolis RM,, Heffron F . 1998. Multiple fimbrial adhesins are required for full virulence of Salmonella typhimurium in mice. Infect Immun 66 : 28032808.[PubMed]
41. Korea CG,, Badouraly R,, Prevost MC,, Ghigo JM,, Beloin C . 2010. Escherichia coli K-12 possesses multiple cryptic but functional chaperone-usher fimbriae with distinct surface specificities. Environ Microbiol 12 : 19571977.[PubMed] [CrossRef]
42. Hatkoff M,, Runco LM,, Pujol C,, Jayatilaka I,, Furie MB,, Bliska JB,, Thanassi DG . 2012. Roles of chaperone/usher pathways of Yersinia pestis in a murine model of plague and adhesion to host cells. Infect Immun 80 : 34903500.[PubMed] [CrossRef]
43. Wurpel DJ,, Beatson SA,, Totsika M,, Petty NK,, Schembri MA . 2013. Chaperone-Usher Fimbriae of Escherichia coli . PLoS ONE 8 : e52835. [PubMed] [CrossRef]
44. Blomfield IC . 2001. The regulation of pap and type 1 fimbriation in Escherichia coli . Adv Microb Physiol 45 : 149.[PubMed] [CrossRef]
45. van der Woude M,, Braaten B,, Low D . 1996. Epigenetic phase variation of the pap operon in Escherichia coli . Trends Microbiol 4 : 59.[PubMed] [CrossRef]
46. Xia Y,, Gally D,, Forsman-Semb K,, Uhlin BE . 2000. Regulatory cross-talk between adhesin operons in Escherichia coli: inhibition of type 1 fimbriae expression by the PapB operon. EMBO J 19 : 14501457.[PubMed] [CrossRef]
47. Totsika M,, Beatson SA,, Holden N,, Gally DL . 2008. Regulatory interplay between pap operons in uropathogenic Escherichia coli . Mol Microbiol 67 : 9961011.[PubMed] [CrossRef]
48. Snyder JA,, Haugen BJ,, Lockatell CV,, Maroncle N,, Hagan EC,, Johnson DE,, Welch RA,, Mobley HL . 2005. Coordinate expression of fimbriae in uropathogenic Escherichia coli . Infect Immun 73 : 75887596.[PubMed] [CrossRef]
49. Lane MC,, Simms AN,, Mobley HL . 2007. complex interplay between type 1 fimbrial expression and flagellum-mediated motility of uropathogenic Escherichia coli . J Bacteriol 189 : 55235533.[PubMed] [CrossRef]
50. Armbruster CE,, Mobley HL . 2012. Merging mythology and morphology: the multifaceted lifestyle of Proteus mirabilis . Nat Rev Microbiol 10 : 743754.[PubMed] [CrossRef]
51. Servin AL . 2005. Pathogenesis of Afa/Dr diffusely adhering Escherichia coli . Clin Microbiol Rev 18 : 264292.[PubMed] [CrossRef]
52. Choudhury D,, Thompson A,, Stojanoff V,, Langermann S,, Pinkner J,, Hultgren SJ,, Knight SD . 1999. X-ray structure of the FimC-FimH chaperone-adhesin complex from uropathogenic Escherichia coli . Science 285 : 10611066.[PubMed] [CrossRef]
53. Sauer FG,, Fütterer K,, Pinkner JS,, Dodson KW,, Hultgren SJ,, Waksman G . 1999. Structural basis of chaperone function and pilus biogenesis. Science 285 : 10581061.[PubMed] [CrossRef]
54. Sauer FG,, Pinkner JS,, Waksman G,, Hultgren SJ . 2002. Chaperone priming of pilus subunits facilitates a topological transition that drives fiber formation. Cell 111 : 543551.[PubMed] [CrossRef]
55. Zavialov AV,, Berglund J,, Pudney AF,, Fooks LJ,, Ibrahim TM,, MacIntyre S,, Knight SD . 2003. Structure and biogenesis of the capsular F1 antigen from Yersinia pestis: preserved folding energy drives fiber formation. Cell 113 : 587596.[PubMed] [CrossRef]
56. Phan G,, Remaut H,, Wang T,, Allan WJ,, Pirker KF,, Lebedev A,, Henderson NS,, Geibel S,, Volkan E,, Yan J,, Kunze MBA,, Pinkner JS,, Ford B,, Kay CWM,, Li H,, Hultgren S,, Thanassi DG,, Waksman G . 2011. Crystal structure of the FimD usher bound to its cognate FimC-FimH substrate. Nature 474 : 4953.[PubMed] [CrossRef]
57. Anderson KL,, Billington J,, Pettigrew D,, Cota E,, Simpson P,, Roversi P,, Chen HA,, Urvil P,, du Merle L,, Barlow PN,, Medof ME,, Smith RA,, Nowicki B,, Le Bouguenec C,, Lea SM,, Matthews S . 2004. An atomic resolution model for assembly, architecture, and function of the Dr adhesins. Mol Cell 15 : 647657.[PubMed] [CrossRef]
58. Bork P,, Holm L,, Sander C . 1994. The immunoglobulin fold. Structural classification, sequence patterns and common core. J Mol Biol 242 : 309320.[PubMed] [CrossRef]
59. Henderson NS,, Ng TW,, Talukder I,, Thanassi DG . 2011. Function of the usher N-terminus in catalysing pilus assembly. Mol Microbiol 79 : 954967.[PubMed] [CrossRef]
60. Puorger C,, Eidam O,, Capitani G,, Erilov D,, Grutter MG,, Glockshuber R . 2008. Infinite kinetic stability against dissociation of supramolecular protein complexes through donor strand complementation. Structure 16 : 631642.[PubMed] [CrossRef]
61. Bullitt E,, Makowski L . 1995. Structural polymorphism of bacterial adhesion pili. Nature 373 : 164167.[PubMed] [CrossRef]
62. Pettigrew D,, Anderson KL,, Billington J,, Cota E,, Simpson P,, Urvil P,, Rabuzin F,, Roversi P,, Nowicki B,, du Merle L,, Le Bouguenec C,, Matthews S,, Lea SM . 2004. High resolution studies of the Afa/Dr adhesin DraE and its interaction with chloramphenicol. J Biol Chem 279 : 4685146857.[PubMed] [CrossRef]
63. Korotkova N,, Le Trong I,, Samudrala R,, Korotkov K,, Van Loy CP,, Bui AL,, Moseley SL,, Stenkamp RE . 2006. Crystal structure and mutational analysis of the DaaE adhesin of Escherichia coli . J Biol Chem 281 : 2236722377.[PubMed] [CrossRef]
64. Zavialov A,, Zav’yalova G,, Korpela T,, Zav’yalov V . 2007. FGL chaperone-assembled fimbrial polyadhesins: anti-immune armament of Gram-negative bacterial pathogens. FEMS Microbiol Rev 31 : 478514.[PubMed] [CrossRef]
65. Cota E,, Jones C,, Simpson P,, Altroff H,, Anderson KL,, du Merle L,, Guignot J,, Servin A,, Le Bouguenec C,, Mardon H,, Matthews S . 2006. The solution structure of the invasive tip complex from Afa/Dr fibrils. Mol Microbiol 62 : 356366.[PubMed] [CrossRef]
66. Dodson KW,, Pinkner JS,, Rose T,, Magnusson G,, Hultgren SJ,, Waksman G . 2001. Structural basis of the interaction of the pyelonephritic E. coli adhesin to its human kidney receptor. Cell 105 : 733743.[PubMed] [CrossRef]
67. Hung CS,, Bouckaert J,, Hung D,, Pinkner J,, Widberg C,, DeFusco A,, Auguste CG,, Strouse R,, Langermann S,, Waksman G,, Hultgren SJ . 2002. Structural basis of tropism of Escherichia coli to the bladder during urinary tract infection. Mol Microbiol 44 : 903915.[PubMed] [CrossRef]
68. Sung MA,, Fleming K,, Chen HA,, Matthews S . 2001. The solution structure of PapGII from uropathogenic Escherichia coli and its recognition of glycolipid receptors. EMBO Rep 2 : 621627.[PubMed] [CrossRef]
69. Buts L,, Bouckaert J,, De Genst E,, Loris R,, Oscarson S,, Lahmann M,, Messens J,, Brosens E,, Wyns L,, De Greve H . 2003. The fimbrial adhesin F17-G of enterotoxigenic Escherichia coli has an immunoglobulin-like lectin domain that binds N-acetylglucosamine. Mol Microbiol 49 : 705715.[PubMed] [CrossRef]
70. Merckel MC,, Tanskanen J,, Edelman S,, Westerlund-Wikstrom B,, Korhonen TK,, Goldman A . 2003. The structural basis of receptor-binding by Escherichia coli associated with diarrhea and septicemia. J Mol Biol 331 : 897905.[PubMed] [CrossRef]
71. Li YF,, Poole S,, Rasulova F,, McVeigh AL,, Savarino SJ,, Xia D . 2007. A Receptor-binding Site as Revealed by the Crystal Structure of CfaE, the Colonization Factor Antigen I Fimbrial Adhesin of Enterotoxigenic Escherichia coli . J Biol Chem 282 : 2397023980.[PubMed] [CrossRef]
72. Westerlund-Wikstrom B,, Korhonen TK . 2005. Molecular structure of adhesin domains in Escherichia coli fimbriae. Int J Med Microbiol 295 : 479486.[PubMed] [CrossRef]
73. Jedrzejczak R,, Dauter Z,, Dauter M,, Piatek R,, Zalewska B,, Mroz M,, Bury K,, Nowicki B,, Kur J . 2006. Structure of DraD invasin from uropathogenic Escherichia coli: a dimer with swapped beta-tails. Acta Crystallogr D Biol Crystallogr 62 : 157164.[PubMed] [CrossRef]
74. Yakovenko O,, Sharma S,, Forero M,, Tchesnokova V,, Aprikian P,, Kidd B,, Mach A,, Vogel V,, Sokurenko E,, Thomas WE . 2008. FimH forms catch bonds that are enhanced by mechanical force due to allosteric regulation. J Biol Chem 283 : 1159611605.[PubMed] [CrossRef]
75. Le Trong I,, Aprikian P,, Kidd BA,, Forero-Shelton M,, Tchesnokova V,, Rajagopal P,, Rodriguez V,, Interlandi G,, Klevit R,, Vogel V,, Stenkamp RE,, Sokurenko EV,, Thomas WE . 2010. Structural basis for mechanical force regulation of the adhesin FimH via finger trap-like beta sheet twisting. Cell 141 : 645655.[PubMed] [CrossRef]
76. Forero M,, Yakovenko O,, Sokurenko EV,, Thomas WE,, Vogel V . 2006. Uncoiling mechanics of Escherichia coli type I fimbriae are optimized for catch bonds. PLoS Biol 4 : e298. [PubMed] [CrossRef]
77. Aprikian P,, Interlandi G,, Kidd BA,, Le Trong I,, Tchesnokova V,, Yakovenko O,, Whitfield MJ,, Bullitt E,, Stenkamp RE,, Thomas WE,, Sokurenko EV . 2011. The bacterial fimbrial tip acts as a mechanical force sensor. PLoS Biol 9 : e1000617. [PubMed] [CrossRef]
78. Lycklama ANJA,, Driessen AJ . 2012. The bacterial Sec-translocase: structure and mechanism. Philos Trans R Soc Lond B Biol Sci 367 : 10161028.[PubMed] [CrossRef]
79. Jones CH,, Dexter P,, Evans AK,, Liu C,, Hultgren SJ,, Hruby DE . 2002. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J Bacteriol 184 : 57625771.[PubMed] [CrossRef]
80. Slonim LN,, Pinkner JS,, Branden CI,, Hultgren SJ . 1992. Interactive surface in the PapD chaperone cleft is conserved in pilus chaperone superfamily and essential in subunit recognition and assembly. EMBO J 11 : 47474756.[PubMed]
81. Holmgren A,, Brändén C . 1989. Crystal structure of chaperone protein PapD reveals an immunoglobulin fold. Nature 342 : 248251.[PubMed] [CrossRef]
82. Kuehn MJ,, Ogg DJ,, Kihlberg J,, Slonim LN,, Flemmer K,, Bergfors T,, Hultgren SJ . 1993. Structural basis of pilus subunit recognition by the PapD chaperone. Science 262 : 12341241.[PubMed] [CrossRef]
83. Zavialov AV,, Kersley J,, Korpela T,, Zav’yalov VP,, MacIntyre S,, Knight SD . 2002. Donor strand complementation mechanism in the biogenesis of non-pilus systems. Mol Microbiol 45 : 983995.[PubMed] [CrossRef]
84. Barnhart MM,, Pinkner JS,, Soto GE,, Sauer FG,, Langermann S,, Waksman G,, Frieden C,, Hultgren SJ . 2000. PapD-like chaperones provide the missing information for folding of pilin proteins. Proc Natl Acad Sci USA 97 : 77097714.[PubMed] [CrossRef]
85. Hung DL,, Knight SD,, Woods RM,, Pinkner JS,, Hultgren SJ . 1996. Molecular basis of two subfamilies of immunoglobulin-like chaperones. EMBO J 15 : 37923805.[PubMed]
86. Remaut H,, Rose RJ,, Hannan TJ,, Hultgren SJ,, Radford SE,, Ashcroft AE,, Waksman G . 2006. Donor-strand exchange in chaperone-assisted pilus assembly proceeds through a concerted beta strand displacement mechanism. Mol Cell 22 : 831842.[PubMed] [CrossRef]
87. Yu XD,, Fooks LJ,, Moslehi-Mohebi E,, Tischenko VM,, Askarieh G,, Knight SD,, Macintyre S,, Zavialov AV . 2012. Large is fast, small is tight: determinants of speed and affinity in subunit capture by a periplasmic chaperone. J Mol Biol 417 : 294308.[PubMed] [CrossRef]
88. Crespo MD,, Puorger C,, Scharer MA,, Eidam O,, Grutter MG,, Capitani G,, Glockshuber R . 2012. Quality control of disulfide bond formation in pilus subunits by the chaperone FimC. Nat Chem Biol 8 : 707713.[PubMed] [CrossRef]
89. Di Yu X,, Dubnovitsky A,, Pudney AF,, Macintyre S,, Knight SD,, Zavialov AV . 2012. Allosteric mechanism controls traffic in the chaperone/usher pathway. Structure 20 : 18611871.[PubMed] [CrossRef]
90. Remaut H,, Tang C,, Henderson NS,, Pinkner JS,, Wang T,, Hultgren SJ,, Thanassi DG,, Waksman G,, Li H . 2008. Fiber Formation across the Bacterial Outer Membrane by the Chaperone/Usher Pathway. Cell 133 : 640652.[PubMed] [CrossRef]
91. Nishiyama M,, Ishikawa T,, Rechsteiner H,, Glockshuber R . 2008. Reconstitution of Pilus Assembly Reveals a Bacterial Outer Membrane Catalyst. Science 320 : 376379.[PubMed] [CrossRef]
92. Soto GE,, Dodson KW,, Ogg D,, Liu C,, Heuser J,, Knight S,, Kihlberg J,, Jones CH,, Hultgren SJ . 1998. Periplasmic chaperone recognition motif of subunits mediates quaternary interactions in the pilus. EMBO J 17 : 61556167.[PubMed] [CrossRef]
93. Sauer FG,, Remaut H,, Hultgren SJ,, Waksman G . 2004. Fiber assembly by the chaperone-usher pathway. Biochim Biophys Acta 1694 : 259267. [PubMed] [CrossRef]
94. Vetsch M,, Erilov D,, Moliere N,, Nishiyama M,, Ignatov O,, Glockshuber R . 2006. Mechanism of fibre assembly through the chaperone-usher pathway. EMBO Rep 7 : 734738.[PubMed] [CrossRef]
95. Yu J,, Kape JB . 1992. Cloning and characterization of the eae gene of enterohaemorrhaic Escherichia coli O157:H7. Mol Microbiol 6 : 411417.[PubMed] [CrossRef]
96. Jacob-Dubuisson F,, Striker R,, Hultgren SJ . 1994. Chaperone-assisted self-assembly of pili independent of cellular energy. J Biol Chem 269 : 1244712455.[PubMed]
97. Thanassi DG,, Stathopoulos C,, Karkal A,, Li H . 2005. Protein secretion in the absence of ATP: the autotransporter, two-partner secretion, and chaperone/usher pathways of Gram-negative bacteria. Mol Membr Biol 22 : 6372.[PubMed] [CrossRef]
98. Zavialov AV,, Tischenko VM,, Fooks LJ,, Brandsdal BO,, Aqvist J,, Zav’yalov VP,, Macintyre S,, Knight SD . 2005. Resolving the energy paradox of chaperone/usher-mediated fibre assembly. Biochem J 389 : 685694.[PubMed] [CrossRef]
99. Lee YM,, Dodson KW,, Hultgren SJ . 2007. Adaptor function of PapF depends on donor strand exchange in P-pilus biogenesis of Escherichia coli . J Bacteriol 189 : 52765283.[PubMed] [CrossRef]
100. Rose RJ,, Verger D,, Daviter T,, Remaut H,, Paci E,, Waksman G,, Ashcroft AE,, Radford SE . 2008. Unraveling the molecular basis of subunit specificity in P pilus assembly by mass spectrometry. Proc Natl Acad Sci USA 105 : 1287312878.[PubMed] [CrossRef]
101. Nishiyama M,, Glockshuber R . 2010. The outer membrane usher guarantees the formation of functional pili by selectively catalyzing donor-strand exchange between subunits that are adjacent in the mature pilus. J Mol Biol 396 : 18.[PubMed] [CrossRef]
102. Dodson KW,, Jacob-Dubuisson F,, Striker RT,, Hultgren SJ . 1993. Outer membrane PapC usher discriminately recognizes periplasmic chaperone-pilus subunit complexes. Proc Natl Acad Sci USA 90 : 36703674.[PubMed] [CrossRef]
103. Saulino ET,, Thanassi DG,, Pinkner JS,, Hultgren SJ . 1998. Ramifications of kinetic partitioning on usher-mediated pilus biogenesis. EMBO J 17 : 21772185.[PubMed] [CrossRef]
104. Li Q,, Ng TW,, Dodson KW,, So SS,, Bayle KM,, Pinkner JS,, Scarlata S,, Hultgren SJ,, Thanassi DG . 2010. The differential affinity of the usher for chaperone-subunit complexes is required for assembly of complete pili. Mol Microbiol 76 : 159172.[PubMed] [CrossRef]
105. Nishiyama M,, Horst R,, Eidam O,, Herrmann T,, Ignatov O,, Vetsch M,, Bettendorff P,, Jelesarov I,, Grutter MG,, Wuthrich K,, Glockshuber R,, Capitani G . 2005. Structural basis of chaperone-subunit complex recognition by the type 1 pilus assembly platform FimD. EMBO J 24 : 20752086.[PubMed] [CrossRef]
106. Shu Kin So S,, Thanassi DG . 2006. Analysis of the requirements for pilus biogenesis at the outer membrane usher and the function of the usher C-terminus. Mol Microbiol 60 : 364375.[PubMed] [CrossRef]
107. Mapingire OS,, Henderson NS,, Duret G,, Thanassi DG,, Delcour AH . 2009. Modulating effects of the plug, helix and N- and C-terminal domains on channel properties of the PapC usher. J Biol Chem 284 : 3632436333.[PubMed] [CrossRef]
108. Ford B,, Rego AT,, Ragan TJ,, Pinkner J,, Dodson K,, Driscoll PC,, Hultgren S,, Waksman G . 2010. Structural homology between the C-terminal domain of the PapC usher and its plug. J Bacteriol 192 : 18241831.[PubMed] [CrossRef]
109. Huang Y,, Smith BS,, Chen LX,, Baxter RH,, Deisenhofer J . 2009. Insights into pilus assembly and secretion from the structure and functional characterization of usher PapC. Proc Natl Acad Sci USA 106 : 74037407.[PubMed] [CrossRef]
110. Ng TW,, Akman L,, Osisami M,, Thanassi DG . 2004. The usher N terminus is the initial targeting site for chaperone-subunit complexes and participates in subsequent pilus biogenesis events. J Bacteriol 186 : 53215331.[PubMed] [CrossRef]
111. Li H,, Qian L,, Chen Z,, Thahbot D,, Liu G,, Liu T,, Thanassi DG . 2004. The outer membrane usher forms a twin-pore secretion complex. J Mol Biol 344 : 13971407.[PubMed] [CrossRef]
112. Allen WJ,, Phan G,, Hultgren SJ,, Waksman G . 2013. Dissection of Pilus Tip Assembly by the FimD Usher Monomer. J Mol Biol 425 : 958967.[PubMed] [CrossRef]
113. Munera D,, Hultgren S,, Fernandez LA . 2007. Recognition of the N-terminal lectin domain of FimH adhesin by the usher FimD is required for type 1 pilus biogenesis. Mol Microbiol 64 : 333346.[PubMed] [CrossRef]
114. Nowicki B,, Selvarangan R,, Nowicki S . 2001. Family of Escherichia coli Dr adhesins: decay-accelerating factor receptor recognition and invasiveness. J Infect Dis 183(Suppl 1): S2427.[PubMed] [CrossRef]
115. Marre R,, Kreft B,, Hacker J . 1990. Genetically engineered S and F1C fimbriae differ in their contribution to adherence of Escherichia coli to cultured renal tubular cells. Infect Immun 58 : 34343437.[PubMed]
116. Schmoll T,, Morschhauser J,, Ott M,, Ludwig B,, van Die I,, Hacker J . 1990. Complete genetic organization and functional aspects of the Escherichia coli S fimbrial adhesion determinant: nucleotide sequence of the genes sfa B, C, D, E, F. Microb Pathog 9 : 331343.[CrossRef]
117. Riegman N,, Kusters R,, H VV,, Bergmans H,, Van Bergen En Henegouwen P,, Hacker J,, Van Die I . 1990. F1C fimbriae of a uropathogenic Escherichia coli strain: genetic and functional organization of the foc gene cluster andidentification of minor subunits. J Bacteriol 172 : 11141120.[PubMed]
118. Spurbeck RR,, Stapleton AE,, Johnson JR,, Walk ST,, Hooton TM,, Mobley HL . 2011. Fimbrial profiles predict virulence of uropathogenic Escherichia coli strains: contribution of Ygi and Yad fimbriae. Infect Immun 79 : 47534763.[PubMed] [CrossRef]
119. Buckles EL,, Bahrani-Mougeot FK,, Molina A,, Lockatell CV,, Johnson DE,, Drachenberg CB,, Burland V,, Blattner FR,, Donnenberg MS . 2004. Identification and characterization of a novel uropathogenic Escherichia coli-associated fimbrial gene cluster. Infect Immun 72 : 38903901.[PubMed] [CrossRef]
120. Ulett GC,, Mabbett AN,, Fung KC,, Webb RI,, Schembri MA . 2007. The role of F9 fimbriae of uropathogenic Escherichia coli in biofilm formation. Microbiology 153 : 23212331.[PubMed] [CrossRef]
121. Labigne-Roussel A,, Falkow S . 1988. Distribution and degree of heterogeneity of the afimbrial-adhesin-encoding operon (afa) among uropathogenic Escherichia coli isolates. Infect Immun 56 : 640648.[PubMed]
122. Van Loy CP,, Sokurenko EV,, Moseley SL . 2002. The major structural subunits of Dr and F1845 fimbriae are adhesins. Infect Immun 70 : 16941702.[PubMed] [CrossRef]
123. Berger CN,, Billker O,, Meyer TF,, Servin AL,, Kansau I . 2004. Differential recognition of members of the carcinoembryonic antigen family by Afa/Dr adhesins of diffusely adhering Escherichia coli (Afa/Dr DAEC). Mol Microbiol 52 : 963983. [PubMed] [CrossRef]
124. Carnoy C,, Moseley SL . 1997. Mutational analysis of receptor binding mediated by the Dr family of Escherichia coli adhesins. Mol Microbiol 23 : 365379.[PubMed] [CrossRef]
125. Schmoll T,, Hoschutzky H,, Morschhauser J,, Lottspeich F,, Jann K,, Hacker J . 1989. Analysis of genes coding for the sialic acid-binding adhesin and two other minor fimbrial subunits of the S-fimbrial adhesin determinant of Escherichia coli . Mol Microbiol 3 : 17351744.[PubMed] [CrossRef]
126. Virkola R,, Parkkinen J,, Hacker J,, Korhonen TK . 1993. Sialyloligosaccharide chains of laminin as an extracellular matrix target for S fimbriae of Escherichia coli . Infect Immun 61 : 44804484.[PubMed]
127. Korhonen TK,, Parkkinen J,, Hacker J,, Finne J,, Pere A,, Rhen M,, Holthofer H . 1986. Binding of Escherichia coli S fimbriae to human kidney epithelium. Infect Immun 54 : 322327.[PubMed]
128. Backhed F,, Alsen B,, Roche N,, Angstrom J,, von Euler A,, Breimer ME,, Westerlund-Wikstrom B,, Teneberg S,, Richter-Dahlfors A . 2002. Identification of target tissue glycosphingolipid receptors for uropathogenic, F1C-fimbriated Escherichia coli and its role in mucosal inflammation. J Biol Chem 277 : 1819818205.[PubMed] [CrossRef]
129. Langermann S,, Mollby R,, Burlein JE,, Palaszynski SR,, Auguste CG,, DeFusco A,, Strouse R,, Schenerman MA,, Hultgren SJ,, Pinkner JS,, Winberg J,, Guldevall L,, Soderhall M,, Ishikawa K,, Normark S,, Koenig S . 2000. Vaccination with FimH adhesin protects cynomolgus monkeys from colonization and infection by uropathogenic Escherichia coli . J Infect Dis 181 : 774778.[PubMed] [CrossRef]
130. Langermann S,, Palaszynski S,, Barnhart M,, Auguste G,, Pinkner JS,, Burlein J,, Barren P,, Koenig S,, Leath S,, Jones CH,, Hultgren SJ . 1997. Prevention of mucosal Escherichia coli infection by FimH-adhesin-based systemic vaccination. Science 276 : 607611.[PubMed] [CrossRef]
131. Hannan TJ,, Totsika M,, Mansfield KJ,, Moore KH,, Schembri MA,, Hultgren SJ . 2012. Host-pathogen checkpoints and population bottlenecks in persistent and intracellular uropathogenic Escherichia coli bladder infection. FEMS Microbiol Rev 36 : 616648.[PubMed] [CrossRef]
132. Abraham SN,, Sun D,, Dale JB,, Beachey EH . 1988. Conservation of the D-mannose-adhesion protein among type 1 fimbriated members of the family Enterobacteriaceae . Nature 336 : 682684.[PubMed] [CrossRef]
133. Pak J,, Pu Y,, Zhang ZT,, Hasty DL,, Wu XR . 2001. Tamm-Horsfall protein binds to type 1 fimbriated Escherichia coli and prevents E. coli from binding to uroplakin Ia and Ib receptors. J Biol Chem 276 : 99249930.[PubMed] [CrossRef]
134. Baorto DM,, Gao Z,, Malaviya R,, Dustin ML,, van der Merwe A,, Lublin DM,, Abraham SN . 1997. Survival of FimH-expressing enterobacteria in macrophages relies on glycolipid traffic. Nature 389 : 636639.[PubMed] [CrossRef]
135. Kukkonen M,, Raunio T,, Virkola R,, Lahteenmaki K,, Makela PH,, Klemm P,, Clegg S,, Korhonen TK . 1993. Basement membrane carbohydrate as a target for bacterial adhesion: binding of type 1 fimbriae of Salmonella enterica and Escherichia coli to laminin. Mol Microbiol 7 : 229227.[PubMed] [CrossRef]
136. Pratt LA,, Kolter R . 1998. Genetic analysis of Escherichia coli biofilm formation: roles of flagella, motility, chemotaxis and type I pili. Mol Microbiol 30 : 285293.[PubMed] [CrossRef]
137. Jones CH,, Pinkner JS,, Roth R,, Heuser J,, Nicholoes AV,, Abraham SN,, Hultgren SJ . 1995. FimH adhesin of type 1 pili is assembled into a fibrillar tip structure in the Enterobacteriaceae . Proc Natl Acad Sci USA 92 : 20812085.[PubMed] [CrossRef]
138. Hahn E,, Wild P,, Hermanns U,, Sebbel P,, Glockshuber R,, Haner M,, Taschner N,, Burkhard P,, Aebi U,, Muller SA . 2002. Exploring the 3D molecular architecture of Escherichia coli type 1 pili. J Mol Biol 323 : 845857.[PubMed] [CrossRef]
139. Zhou G,, Mo WJ,, Sebbel P,, Min G,, Neubert TA,, Glockshuber R,, Wu XR,, Sun TT,, Kong XP . 2001. Uroplakin Ia is the urothelial receptor for uropathogenic Escherichia coli: evidence from in vitro FimH binding. J Cell Sci 114 : 40954103.[PubMed]
140. Thumbikat P,, Berry RE,, Zhou G,, Billips BK,, Yaggie RE,, Zaichuk T,, Sun TT,, Schaeffer AJ,, Klumpp DJ . 2009. Bacteria-induced uroplakin signaling mediates bladder response to infection. PLoS Pathog 5 : e1000415. [PubMed] [CrossRef]
141. Connell H,, Agace W,, Klemm P,, Schembri M,, Marild S,, Svanborg C . 1996. Type 1 fimbrial expression enhances Escherichia coli virulence for the urinary tract. Proc Natl Acad Sci U S A 93 : 98279832.[PubMed] [CrossRef]
142. Song J,, Bishop BL,, Li G,, Grady R,, Stapleton A,, Abraham SN . 2009. TLR4-mediated expulsion of bacteria from infected bladder epithelial cells. Proc Natl Acad Sci USA 106 : 1496614971.[PubMed] [CrossRef]
143. Anderson GG,, Palermo JJ,, Schilling JD,, Roth R,, Heuser J,, Hultgren SJ . 2003. Intracellular bacterial biofilm-like pods in urinary tract infections. Science 301 : 105107.[PubMed] [CrossRef]
144. Justice SS,, Hung C,, Theriot JA,, Fletcher DA,, Anderson GG,, Footer MJ,, Hultgren SJ . 2004. Differentiation and developmental pathways of uropathogenic Escherichia coli in urinary tract pathogenesis. Proc Natl Acad Sci USA 101 : 13331338.[PubMed] [CrossRef]
145. Blango MG,, Mulvey MA . 2010. Persistence of uropathogenic Escherichia coli in the face of multiple antibiotics. Antimicrob Agents Chemother 54 : 18551863.[PubMed] [CrossRef]
146. Chen SL,, Hung CS,, Pinkner JS,, Walker JN,, Cusumano CK,, Li Z,, Bouckaert J,, Gordon JI,, Hultgren SJ . 2009. Positive selection identifies an in vivo role for FimH during urinary tract infection in addition to mannose binding. Proc Natl Acad Sci USA 106 : 2243922444.[PubMed] [CrossRef]
147. Mulvey MA,, Schilling JD,, Hultgren SJ . 2001. Establishment of a persistent Escherichia coli reservoir during the acute phase of a bladder infection. Infect Immun 69 : 45724579.[PubMed] [CrossRef]
148. Mysorekar IU,, Hultgren SJ . 2006. Mechanisms of uropathogenic Escherichia coli persistence and eradication from the urinary tract. Proc Natl Acad Sci USA 103 : 1417014175.[PubMed] [CrossRef]
149. Bock K,, Breimer ME,, Brignole A,, Hansson GC,, Karlsson K-A,, Larson G,, Leffler H,, Samuelsson BE,, Strömberg N,, Svanborg-Edén C,, Thurin J . 1985. Specificity of binding of a strain of uropathogenic Escherichia coli to Gala(1-4)Gal-containing glycosphingolipids. J Biol Chem 260 : 85458551.[PubMed]
150. Roberts JA,, Marklund B-I,, Ilver D,, Haslam D,, Kaack MB,, Baskin G,, Louis M,, Mollby R,, Winberg J,, Normark S . 1994. The Gal(alpha1-4)Gal-specific tip adhesin of Escherichia coli P-fimbriae is needed for pyelonephritis to occur in the normal urinary tract. Proc Natl Acad Sci USA 91 : 1188911893.[PubMed] [CrossRef]
151. Kallenius G,, Mollby R,, Svenson SB,, Windberg J,, Lundblud A,, Svenson S,, Cedergen B . 1980. The Pk antigen as receptor for the haemagglutinin of pyelonephritogenic Escherichia coli . FEMS Microbiol Lett 7 : 297302.[CrossRef]