1887

Chapter 3.17 : Biochemical Tests for the Identification of Aerobic Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biochemical Tests for the Identification of Aerobic Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_17-1.gif /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_17-2.gif

Abstract:

Acetamide agar is used to test an organism's ability to utilize acetamide by deamidation. The medium contains acetamide as the sole carbon source and inorganic ammonium salts as the sole source of nitrogen. Growth is indicative of a positive test for acetamide utilization. When the bacterium metabolizes acetamide by the enzymatic action of an acylamidase, the ammonium salts are broken down to ammonia, which increases alkalinity. The shift in pH turns the bromthymol blue indicator in the medium from green to blue, indicative of a positive test. Assimilation of acetamide will result in a yellow color and should not by mistaken for a positive result ( ). In general, deamidation is limited to only a few organisms. This medium is recommended for differentiating from other non-glucose-fermenting, gram-negative rods.

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.17.8-1
Figure 3.17.8-1

Demonstration of positive CAMP and reverse CAMP test, using streak and CAMP disk.

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817435.chap3.17
1. Blondel-Hill, E.,, D. H. Henry,, and D. P. Speert,. 2007. Pseudomonas, p. 734 748. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. L. Landry,, and M. A. Pfaller (ed.), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
2. MacFaddin, J. F. 1985. Biochemical Tests for Identification of Medical Bacteria, p. 15 17. Williams and Wilkins, Baltimore, MD.
3. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 5. Williams & Wilkins, Baltimore, MD.
1. Trabulsi, L. R.,, and W. H. Ewing. 1962. Sodium acetate medium for differentiation of Shigella and Escherichia cultures. Public Health Lab. 20: 137 140.
2. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 6 7. Williams & Wilkins, Baltimore, MD.
1. Kilian, M. 1974. A rapid method for the differentiation of Haemophilus strains—the porphyrin test. Acta Pathol. Microbiol. Scand. Sect. B 82: 835 842.
2. Lund, M. S.,, and D. J. Blazevic. 1977. Rapid speciation of Haemophilus with the porphyrin production test vs. the satellite test for X. J. Clin. Microbiol. 5: 142 144.
3. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 18. Williams & Wilkins, Baltimore, MD.
4. Wong, J. D. 1987. Porphyrin test as an alternative to benzidine test for detecting cytochromes in catalase-negative gram-positive cocci. J. Clin. Microbiol. 25: 2006 2007.
1. Almeida, R. J.,, and J. H. Jorgensen. 1982. Use of Mueller-Hinton agar to determine no-vobiocin susceptibility of coagulase-negative staphylococci. J. Clin. Microbiol. 16: 1155 1156.
2. Clinical and Laboratory Standards Institute. 2006. Performance Standards for Antimicrobial Disk Susceptibility Tests, 9th ed. Approved standard M2-A9. Clinical and Laboratory Standards Institute, Wayne, PA.
3. Collins, M. D.,, R. A. Hutson,, V. Båverud,, and E. Falsen. 2000. Characterization of a Rothia-like organism from a mouse: description of Rothia nasimurium sp. nov. and re-classification of Stomatococcus mucilaginosus as Rothia mucilaginosa comb. nov. Int. J. Syst. Evol. Microbiol. 50: 1247 1251.
4. Falk, D.,, and S. J. Guering. 1983. Differentiation of Staphylococcus and Micrococcus spp. with the Taxo A bacitracin disk. J. Clin. Microbiol. 18: 719 721.
5. Faller, A.,, and K. H. Schleifer. 1981. Modified oxidase and benzidine tests for separation of staphylococci from micrococci. J. Clin. Microbiol. 13: 1031 1035.
6. Gales, A. C.,, A. O. Reis,, and R. N. Jones. 2001. Contemporary assessment of antimicrobial susceptibility testing methods for polymyxin B and colistin: review of available interpretative criteria and quality control guidelines. J. Clin. Microbiol. 39: 183 190.
7. Goldstein, J.,, R. Schulman,, E. Kelley,, G. McKinley,, and J. Fung. 1983. Effect of different media on determination of novobiocin resistance for differentiation of coagulase-negative staphylococci. J. Clin. Microbiol. 18: 592 595.
8. Harrington, B. J.,, and J. M. Gaydos. 1984. Five-hour novobiocin test for differentiation of coagulase-negative staphylococci. J. Clin. Microbiol. 19: 279 280.
9. Hébert, G. A. 1990. Hemolysins and other characteristics that help differentiate and bio-type Staphylococcus lugdunensis and Staphylococcus schleiferi. J. Clin. Microbiol. 28: 2425 2431.
10. Hébert, G. A.,, C. G. Crowder,, G. A. Hancock,, W. R. Jarvis,, and C. Thornsberry. 1988. Characteristics of coagulase-negative staphylococci that help differentiate these species and other members of the family Micrococcaceae. J. Clin. Microbiol. 26: 1939 1949.
11. Meers, P. D.,, W. Whyte,, and G. Sandys. 1975. Coagulase-negative staphylococci and micrococci in urinary tract infections. J. Clin. Pathol. 28: 270 273.
12. Mitchell, P. S.,, B. J. Huston,, R. N. Jones,, L. Holcomb,, and F. P. Koontz. 1990. Stomatococcus mucilaginosus bacteremias. Typical case presentations, simplified diagnostic criteria, and a literature review. Diagn. Microbiol. Infect. Dis. 13: 521 525.
13. von Eiff, C.,, M. Herrmann,, and G. Peters. 1995. Antimicrobial susceptibilities of Stomatococcus mucilaginosus and of Micrococcus spp. Antimicrob. Agents Chemother. 39: 268 270.
14. Weinstein, M. P.,, S. Mirrett,, L. Van Pelt,, M. McKinnon,, B. L. Zimmer,, W. Kloos,, and L. B. Reller. 1998. Clinical importance of identifying coagulase-negative staphylococci isolated from blood cultures: evaluation of MicroScan Rapid and Dried Overnight gram-positive panels versus a conventional reference method. J. Clin. Microbiol. 36: 2089 2092.
1. Chuard, C.,, and L. B. Reller. 1998. Bile-esculin test for presumptive identification of enterococci and streptococci: effects of bile concentration, inoculation technique, and incubation time. J. Clin. Microbiol. 36: 1135 1136.
2. Facklam, R. R. 1973. Comparison of several laboratory media for presumptive identifica-tion of enterococci and group D streptococci. Appl. Microbiol. 26: 138 145.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 8 26. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
4. Sneath, P. H. A. 1956. Cultural and biochemical characteristics of the genus Chromobacterium. J. Gen. Microbiol. 15: 70 98.
1. Clinical and Laboratory Standards Institute. 2008. Abbreviated Identification of Bacteria and Yeast, 2nd ed. Approved guideline M35-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
2. Kellogg, J. A.,, D. A. Bankert,, C. J. Elder,, J. L. Gibbs,, and M. C. Smith. 2001. Identification of Streptococcus pneumoniae revisited. J. Clin. Microbiol. 39: 3373 3375.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 27 34. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
4. Mundy, L. S.,, E. N. Janoff,, K. E. Schwebke,, C. J. Shanholtzer,, and K. E. Willard. 1998. Ambiguity in the identification of Streptococcus pneumoniae. Optochin, bile solubility, quellung, and the AccuProbe DNA probe tests. Am. J. Clin. Pathol. 109: 55 61.
5. Murray, P. R. 1979. Modification of the bile solubility test for rapid identification of Streptococcus pneumoniae. J. Clin. Microbiol. 9: 290 291.
33. 6. Neufeld, F. 1900. Über eine spezifische bakteriolytische Wirkung der Galle. Z. Hyg. Infektionskr. 34: 454464.
1. Berger, U. V. 1962. Ueber die Spaltung von Tributyrin durch Neisseria. Arch. Hyg. Bakteriol. 146: 388 391.
2. Dealler, S. F.,, M. Abbott,, M. J. Croughan,, and P. M. Hawkey. 1989. Identification of Branhamella catarrhalis in 2.5 min with an indoxyl butyrate strip test. J. Clin. Microbiol. 27: 1390 1391.
3. Janda, W. M.,, and P. Ruther. 1989. B.CAT Confirm, a rapid test for confirmation of Branhamella catarrhalis. J. Clin. Microbiol. 27: 1130 1131.
4. Louie, M.,, E. G. Ongsansoy,, and K. R. Forward. 1990. Rapid identification of Branhamella catarrhalis. A comparison of five rapid methods. Diagn. Microbiol. Infect. Dis. 13: 205 208.
5. Perez, J. L.,, A. Pulido,, F. Pantozzi,, and R. Martin. 1990. Butyrate esterase (4-methylum-belliferyl butyrate) spot test, asimple method for immediate identification of Moraxella (Branhamella) catarrhalis [corrected]. J. Clin. Microbiol. 28: 2347 2348.
6. Speeleveld, E.,, J. M. Fossépré,, B. Gordts,, and H. W. Van Landuyt. 1994. Comparison of three rapid methods, tributyrine, 4-methy-lumbelliferyl butyrate, and indoxyl acetate, for rapid identification of Moraxella catarrhalis. J. Clin. Microbiol. 32: 1362 1363.
7. Vaneechoutte, M.,, G. Verschraegen,, G. Claeys,, and P. Flamen. 1988. Rapid identification of Branhamella catarrhalis with 4-methylumbelliferyl butyrate. J. Clin. Microbiol. 26: 1227 1228.
1. Bernheimer, A. W.,, R. Linder,, and L. S. Avigad. 1979. Nature and mechanism of action of the CAMP protein of group B streptococci. Infect. Immun. 23: 838 844.
2. Buchanan, A. 1982. Clinical laboratory evaluation of a reverse CAMP test for presumptive identification of Clostridium perfringens. J. Clin. Microbiol. 16: 761 762.
3. Christie, R.,, N. E. Atkins,, and E. Munch-Petersen. 1944. A note on lytic phenomenon shown by group B streptococci. Aust. J. Exp. Biol. Med. Sci. 22: 197 200.
4. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
5. Clinical and Laboratory Standards Institute. 2008. Abbreviated Identification of Bacteria and Yeast, 2nd ed. Approved guideline M35-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
6. Darling, C. L. 1975. Standardization and evaluation of the CAMP reaction for the prompt, presumptive identification of Streptococcus agalactiae. J. Clin. Microbiol. 1: 171.
7. DiPersio, J. R.,, J. E. Barrett,, and R. L. Kaplan. 1985. Evaluation of the spot-CAMP test for the rapid presumptive identification of group B streptococci. Am. J. Clin. Pathol. 84: 216 219.
8. Hansen, M. V.,, and L. P. Elliott. 1980. New presumptive identification test for Clostridium perfringens: reverse CAMP test. J. Clin. Microbiol. 12: 617 619.
9. Hébert, G. A.,, C. G. Crowder,, G. A. Hancock,, W. R. Jarvis,, and C. Thornsberry. 1988. Characteristics of coagulase-negative staphylococci that help differentiate these species and other members of the family Micrococcaceae. J. Clin. Microbiol. 26: 1939 1949.
10. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 35 56. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
11. Ratner, H. B.,, L. S. Weeks,, and C. W. Stratton. 1986. Evaluation of spot CAMP test for identification of group B streptococci. J. Clin. Microbiol. 24: 296 297.
1. Andrade, E. 1906. Influence of glycerine in differentiating certain bacteria. J. Med. Res. 14: 551 556.
2. Evangelista, A. T.,, A. L. Truant,, and P. Bourbeau,. 2001. Rapid systems and instruments for the identification of bacteria, p. 22 49. In A. L. Truant (ed.), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
3. Ewing, W. B.,, and B. R. Davis. 1970. Media and Tests for Differentiation of Enterobacteriaceae. Center for Disease Control, Atlanta, GA.
4. Facklam, R. R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
5. Hugh, R.,, and E. Leifson. 1953. The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram-negative bacteria. J. Bacteriol. 66: 24 26.
6. Kellogg, D. S., Jr.,, and E. M. Turner. 1973. Rapid fermentation confirmation of Neisseria gonorrhoeae. Appl. Microbiol. 25: 550 552.
7. King, E. O.,, and H. W. Tatum. 1962. Actinobacillus actinomycetemcomitans and Haemophilus aphrophilus. J. Infect. Dis. 111: 85 94.
8. King, E. O. 1967. Identification of Unusual Pathogenic Gram-Negative Bacteria. Center for Disease Control, Atlanta, GA.
9. Murray, P. R.,, E. J. Baron,, J. H. Jorgensen,, M. L. Landry,, and M. A. Pfaller (ed.). 2007. Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
10. Vera, H. D. 1948. A simple medium for identification and maintenance of the gonococcus and other bacteria. J. Bacteriol. 55: 531 536.
11. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 2, 7 19. Williams & Wilkins, Baltimore, MD.
1. Levin, M.,, and D. Q. Anderson. 1932. Two new species of bacteria causing mustiness in eggs. J. Bacteriol. 23: 337 347.
2. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 78 97. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
3. Reimer, L. G.,, and L. B. Reller. 1985. Use of a sodium polyanetholesulfate disk for the identification of Gardnerella vaginalis. J. Clin. Microbiol. 21: 146 149.
4. Saginur, R.,, B. Clecner,, J. Portnoy,, and J. Mendelson. 1982. Superoxol (catalase) test for identification of Neisseria gonorrhoeae. J. Clin. Microbiol. 15: 475 477.
1. Lowburg, E. J. L., 1955. Lowburg, E. J. L. 1955. The use of cetrimide product in a selective medium for Pseudomonas pyocyanea. J. Clin. Pathol. 8: 47 48.
2. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 6. Williams & Wilkins, Baltimore, MD.
1. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
2. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 98 104. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
3. Simmons, J. S. 1926. A culture medium for differentiating organisms of typhoid-colon-aerogenes groups and for isolation of certain fungi. J. Infect. Dis. 39: 209 214.
1. Baker, J. S.,, M. A. Bormann,, and D. H. Boudreau. 1985. Evaluation of various rapid agglutination methods for the identification of Staphylococcus aureus. J. Clin. Microbiol. 21: 726 729.
2. Berke, A.,, and R. C. Tilton. 1986. Evaluation of rapid coagulase methods for the identification of Staphylococcus aureus. J. Clin. Microbiol. 23: 916 919.
3. Dickson, J. I.,, and R. R. Marples. 1986. Co-agulase production by strains of Staphylococ-cus aureus of differing resistance characters: a comparison of two traditional methods with a latex agglutination system detecting both clumping factor and protein A. J. Clin. Pathol. 39: 371 375.
4. Essers, L.,, and K. Radebold. 1980. Rapid and reliable identification of Staphylococcus aureus by a latex agglutination test. J. Clin. Microbiol. 12: 641 643.
5. Lairscey, R.,, and G. E. Buck. 1987. Perfor-mance of four slide agglutination methods for identification of Staphylococcus aureus when testing methicillin-resistant staphylococci. J. Clin. Microbiol. 25: 181 182.
6. Lally, R.,, and B. Woolfrey. 1984. Clumping factor defective MRSA. Eur. J. Clin. Micro-biol. 3: 151 152.
7. Langone, J. J. 1982. Protein A of Staphylococcus aureus and related immunoglobulin receptors produced by streptococci and pneumonococci. Adv. Immunol. 32: 157 252.
8. Mahoudeau, I.,, X. Delabranche,, G. Prevost,, H. Monteil,, and Y. Piemont. 1997. Frequency of isolation of Staphylococcus intermedius from humans. J. Clin. Microbiol. 35: 2153 2154.
9. Personne, P.,, M. Bes,, G. Lina,, F. Vandenesch,, Y. Brun,, and J. Etienne. 1997. Comparative performances of six agglutination kits assessed by using typical and atypical strains of Staphylococcus aureus. J. Clin. Microbiol. 35: 1138 1140.
10. Ruane, P. J.,, M. A. Morgan,, D. M. Citron,, and M. E. Mulligan. 1986. Failure of rapid agglutination methods to detect oxacillin-resistant Staphylococcus aureus. J. Clin. Microbiol. 24: 490 492.
11. Smith, S. M.,, and C. Berezny. 1986. Comparative evaluation of identification systems for testing methicillin-resistant strains of Staphylococcus aureus. J. Clin. Microbiol. 24: 173 176.
12. Smole, S. C.,, E. Aronson,, A. Durbin,, S. M. Brecher,, and R. D. Arbeit. 1998. Sensitivity and specificity of an improved rapid latex agglutination test for identification of methicillin-sensitive and -resistant Staphylococcus aureus isolates. J. Clin. Microbiol. 36: 1109 1112.
13. Wilkerson, M.,, S. McAllister,, J. M. Miller,, B. J. Heiter,, and P. P. Bourbeau. 1997. Comparison of five agglutination tests for identification of Staphylococcus aureus. J. Clin. Microbiol. 35: 148 151.
1. Baker, J. S.,, M. A. Bormann,, and D. H. Boudreau. 1985. Evaluation of various rapid agglutination methods for the identification of Staphylococcus aureus. J. Clin. Microbiol. 21: 726 729.
2. Cowan, S. T. 1938. The classification of staphylococci by precipitation and biological reactions. J. Pathol. Bacteriol. 46: 31 45.
3. Lally, R.,, and B. Woolfrey. 1984. Clumping factor defective MRSA. Eur. J. Clin. Microbiol. 3: 151 152.
4. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 105 119. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
5. Mahoudeau, I.,, X. Delabranche,, G. Prevost,, H. Monteil,, and Y. Piemont. 1997. Frequency of isolation of Staphylococcus intermedius from humans. J. Clin. Microbiol. 35: 2153 2154.
6. Orth, D. S.,, L. R. Chung,, and A. W. Anderson. 1971. Comparison of animal sera for suit-ability in coagulase testing. Appl. Microbiol. 21: 420 425.
7. Patel, R.,, K. E. Piper,, M. S. Rouse,, J. R. Uhl,, F. R. Cockerill III,, and J. M. Steckelberg. 2000. Frequency of isolation of Staphylococcus lugdunensis among staphylococcal isolates causing endocarditis: a 20-year experience. J. Clin. Microbiol. 38: 4262 4263.
8. Yrios, J. W. 1977. Comparison of rabbit and pig plasma in the tube coagulase test. J. Clin. Microbiol. 5: 221 224.
1. Coykendall, A. 1989. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 2: 315 328.
2. Facklam, R. R.,, and M. D. Collins. 1989. Identification of Enterococcus species by a conventional test scheme. J. Clin. Microbiol. 27: 731 734.
3. Farmer, J. J., III,, B. R. Davis,, F. W. Hickman-Brenner,, A. McWhorter,, G. P. Huntley-Carter,, M. A. Asbury,, C. Riddle,, H. G. Wathen-Grady,, C. Elias,, G. R. Fanning,, A. G. Steigerwalt,, C. M. O'Hara,, G. K. Morris,, P. B. Smith,, and D. J. Brenner. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21: 46 76.
4. Farmer, J. J., III,, K. D. Boatwright,, and J. M. Janda,. 2007. Enterobacteriaceae: introduction and identification, p. 649 669. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. L. Landry,, and M. A. Pfaller (ed.), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
5. Hébert, G. A. 1990. Hemolysins and other characteristics that help differentiate and biotype Staphylococcus lugdunensis and Staphylococcus schleiferi. J. Clin. Microbiol. 28: 2425 2431.
6. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 120 135. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
7. Møller, V. 1955. Simplified tests for some amino acid decarboxylases and for the arginine dihydrolase system. Acta Pathol. Microbiol. Scand. 36: 158 172.
8. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 7 8. Williams & Wilkins, Baltimore, MD.
1. Ewing, W. H. 1986. Edwards and Ewing's Identification of Enterobacteriaceae, 4th ed. Elsevier Scientific Publishing Co., New York, NY.
2. Jeffries, C. D.,, F. Holtman,, and G. D. Guse. 1957. Rapid method for determining the activity of microorganisms on nucleic acids. J. Bacteriol. 73: 590 591.
3. Krieg, N. R.,, and J. G. Holt (ed.). 1984. Bergey's Manual of Systematic Bacteriology, vol. 1, p. 484, 550. Williams & Wilkins, Baltimore, MD.
4. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 136 159. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
5. Schreier, J. B. 1969. Modification of deoxyribonuclease test medium for rapid identification of Serratia marcescens. Am. J. Clin. Pathol. 51: 711 716.
6. Smith, P. B.,, G. A. Hancock,, and D. L. Rhoden. 1969. Improved medium for detecting deoxyribonuclease-producing bacteria. Appl. Microbiol. 18: 991 993.
7. Waller, J. R.,, S. L. Hodel,, and R. N. Nuti. 1985. Improvement of two toluidine blue O-mediated techniques for DNase detection. J. Clin. Microbiol. 21: 195 199.
1.Clinical and Laboratory Standards Institute. 2008. Abbreviated Identification of Bacteria and Yeast, 2nd ed Approved guideline M35-A2. , Wayne, PA.
2. King, E. O.,, M. K. Ward,, and D. E. Raney. 1954. Two simple media for the demonstration of pyocyanin and fluorescein. J. Lab. Clin. Med. 44: 301 307
3. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, M. I. Daneshvar. 1995 Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 17 18. Williams & Wilkins, Baltimore, MD.
1. Ewing, W. H. 1986. Edwards and Ewing's Identification of Enterobacteriaceae, 4th ed. Elsevier Scientific Publishing Co., New York, NY..
2. Kohn, J. 1953. A preliminary report of a new gelatin liquefaction method. J. Clin. Pathol. 6: 249.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 170 182. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
1. Coykendall, A. 1989. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 2: 315 328.
2. Facklam, R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
3. Ruoff, K.,, S. I. Miller,, C. V. Garner,, M. J. Ferraro,, and S. B. Calderwood. 1989. Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates. J. Clin. Microbiol. 27: 305 308.
4. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 5. Williams & Wilkins, Baltimore, MD.
1. Carlone, G. M.,, M. J. Valadez,, and M. J. Pickett. 1982. Methods for distinguishing gram-positive from gram-negative bacteria. J. Clin. Microbiol. 16: 1157 1159.
2. Cerny, G. 1976. Method for the distinction of gram-negative from gram-positive bacteria. Eur. J. Appl. Microbiol. 33: 223 225.
3. Manafi, M.,, and W. Kneifel. 1990. Rapid methods for differentiating gram-positive from gram-negative aerobic and facultative anaerobic bacteria. J. Appl. Bacteriol. 69: 822 827.
1. Aroutcheva, A. A.,, J. A. Simoes,, K. Behbakht,, and S. Faro. 2001. Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin. Infect. Dis. 33: 1022 1027.
2. Harvy, S. M. 1980. Hippurate hydrolysis by Campylobacter fetus. J. Clin. Microbiol. 11: 435 437.
3. Hwang, M. N.,, and G. M. Ederer. 1975. Rapid hippurate hydrolysis method for presumptive identification of group B streptococci. J. Clin. Microbiol. 1: 114 115.
4. Morris, G. K.,, M. R. el Sherbeeny,, C. M. Patton,, H. Kodaka,, G. L. Lombard,, P. Edmonds,, D. G. Hollis,, and D. J. Brenner. 1985. Comparison of four hippurate hydrolysis methods for identification of thermophilic Campylobacter species. J. Clin. Microbiol. 22: 714 718.
5. Nicholson, M. A.,, and C. M. Patton. 1995. Evaluation of disk method for hippurate hydrolysis by Campylobacter species. J. Clin. Microbiol. 33: 1341 1343.
6. Piot, P.,, E. Van Dyck,, P. A. Totten,, and K. K. Holmes. 1982. Identification of Gardnerella (Haemophilus) vaginalis. J. Clin. Microbiol. 15: 19 24.
1. Bulmash, J. M.,, and M. Fulton. 1964. Discrepant tests for hydrogen sulfide. J. Bacteriol. 88: 1813.
2. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 205 220. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
4. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Williams & Wilkins, Baltimore, MD.
5. ZoBell, C. E.,, and C. B. Reltham. 1934. A comparison of lead, bismuth, and iron as detectors of hydrogen sulphide produced by bacteria. J. Bacteriol. 28: 169 176.
1. Bale, M. J.,, S. M. McLaws,, and J. Matsen. 1984. The spot indole test for identification of swarming Proteus. Am. J. Clin. Pathol. 83: 87 90.
2. Böhme, A. 1905. Die Anwendung der Ehrlichschen Indolreaktion für bakteriologische Zwecke. Zentralbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. I Abt. Orig. 40: 129 133.
3. Kovács, N. 1928. Eine vereinfachte Methode zum Nachweis der Indolbildung durch Bakterien. S. Immunitaetsforsch. 55: 311 315.
4. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 221 232. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
5. Marraro, R. V.,, J. L. Mitchell,, and C. R. Payet. 1977. A chromogenic characteristic of an aerobic pseudomonad species in 2% tryptone (indole) broth. Am. Med. Technol. 39: 13 19.
6. Vracko, R.,, and J. C. Sherris. 1963. Indolespot test in bacteriology. Am. J. Clin. Pathol. 39: 429 432.
1. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., P. 221 232. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
1. Hodge, D. S.,, A. Borczyk,, and L. L. Wat. 1990. Evaluation of the indoxyl acetate hydrolysis test for the differentiation of campylobacters. J. Clin. Microbiol. 28: 1482 1483.
2. Mills, C. K.,, and R. L. Gherna. 1987. Hydrolysis of indoxyl acetate by Campylobacter. J. Clin. Microbiol. 25: 1560 1561.
3. Popovic-Uroic, T.,, C. M. Patton,, M. A. Nicholson,, and J. A. Kiehlbauch. 1990. Evaluation of the indoxyl acetate hydrolysis test for rapid differentiation of Campylobacter, Helicobacter, and Wolinella species. J. Clin. Microbiol. 28: 2335 2339.
4. Speeleveld, E.,, J. M. Fossépré,, B. Gordts,, and H. W. Van Landuyt. 1994. Comparison of three rapid methods, tributyrine, 4-methylumbelliferyl butyrate, and indoxyl acetate, for rapid identification of Moraxella catarrhalis. J. Clin. Microbiol. 32: 1362 1363.
1. Bulmash, J. M.,, and M. Fulton. 1964. Discrepant tests for hydrogen sulfide. J. Bacteriol. 88: 1813.
2. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
3. Hajna, A. A. 1945. Triple-sugar iron agar medium for identification of the intestinal group of bacteria. J. Bacteriol. 49: 516 517.
4. Kligler, I. J. 1917. A simple medium for the differentiation of members of the typhoid-paratyphoid group. Am. J. Public Health 7: 1042 1044.
5. Kligler, I. J. 1918. Modifications of culture media used in the isolation and differentiation of typhoid, dysentery and allied bacilli. J. Exp. Med. 28: 319 322.
6. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 239 253. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
7. Sulkin, S. E.,, and J. C. Willett. 1940. A triple sugar-ferrous sulfate medium for use in identification of enteric organisms. J. Lab. Clin. Med. 25: 649 653.
8. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 2 3, 22. Williams & Wilkins, Baltimore, MD.
1. Facklam, R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
2. LaClaire, L. L.,, and R. R. Facklam. 2000. Comparison of three commercial rapid identification systems for the unusual gram-positive cocci Dolosigranulum pigrum, Ignavigranum ruoffiae, and Facklamia species. J. Clin. Microbiol. 38: 2037 2042.
1. Aroutcheva, A. A.,, J. A. Simoes,, K. Behbakht,, and S. Faro. 2001. Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin. Infect. Dis. 33: 1022 1027.
2. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 273 281, 286 293. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
3. Phillips, E.,, and P. Nash,. 1985. Culture media, p. 1064 1065. In E. H. Lennette,, A. Balows,, W. J. Hausler, Jr.,, and H. J. Shadomy (ed.), Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington, DC.
1. Phillips, E.,, and P. Nash,. 1985. Culture media, p. 1064 1065. In E. H. Lennette,, A. Balows,, W. J. Hausler, Jr.,, and H. J. Shadomy (ed.), Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington, DC.
1. Funke, G.,, K. Peters,, and M. Aravena-Roman. 1998. Evaluation of the RapID CB Plus system for identification of coryneform bacteria and Listeria spp. J. Clin. Microbiol. 36: 2439 2442.
2. Funke, G.,, F. N. R. Renaud,, J. Freney,, and P. Riegel. 1997. Multicenter evaluation of the updated and extended API (RAPID) Coryne database 2.0. J. Clin. Microbiol. 35: 3122 3126.
3. Funke, G.,, A. von Graevenitz,, J. E. Clarridge III,, and K. A. Bernard. 1997. Clinical microbiology of coryneform bacteria. Clin. Microbiol. Rev. 10: 125 159.
4. Hudspeth, M. K.,, S. Hunt Gerardo,, D. M. Citron,, and E. J. C. Goldstein. 1998. Evaluation of the RapID CB Plus system for identification of Corynebacterium species and other gram-positive rods. J. Clin. Microbiol. 36: 543 547.
1. Leifson, E. 1933. Fermentation of sodium malonate as a means of differentiating Aerobacter and Escherichia. J. Bacteriol. 26: 329 330.
2. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 310 315. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
1. Carvalho, M. G.,, L. M. Teixeira,, and R. R. Facklam. 1998. Use of tests for acidificationof methyl-α-D-glucopyranoside and susceptibilityto efrotomycin for differentiation ofstrains of Enterococcus and some related genera. J. Clin. Microbiol. 36: 1584 1587.
2. Chen, D. K.,, L. Pearce,, A. McGeer,, D. E. Low,, and B. M. Willey. 2000. Evaluation of D-xylose and 1% methyl-α-D-glucopyranosidefermentation tests for distinguishing Enterococcus gallinarum from Enterococcus faecium. J. Clin. Microbiol. 38: 3652 3655.
3. Clinical and Laboratory Standards Institute. 2008. Performance Standards for Antimicrobial Susceptibility Testing. Eighteenth informational supplement. Approved standardM100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
4. Devriese, L. A.,, B. Pot,, K. Kersters,, S. Lauwers,,and F. Haesebrouck. 1996. Acidification of methyl-α-D-glucopyranoside: a usefultest to differentiate Enterococcus casseliflavus and Enterococcus gallinarum from Enterococcusfaecium species group and from Enterococcusfaecalis. J. Clin. Microbiol. 34: 2607 2608.
5. Facklam, R. R.,, and M. D. Collins. 1989. Identification of Enterococcus species isolatedfrom human infections by a conventional testscheme. J. Clin. Microbiol. 27: 731 734.
6. Gin, A. S.,, and G. G. Zhanel. 1996. Vancomycin-resistant enterococci. Ann. Pharmacother. 30: 615 624.
7. Hanson, K. L.,, and C. P. Cartwright. 1999. Comparison of simple and rapid methods for identifying enterococci intrinsically resistant to vancomycin. J. Clin. Microbiol. 37: 815 817.
8. Turenne, C. Y.,, D. J. Hoban,, J. A. Karlowsky,, G. G. Zhanel,, and A. M. Kabani. 1998. Screening of stool samples for identificationof vancomycin-resistant Enterococcus isolates should include the methyl-α-D-glucopyranoside test to differentiate non motile Enterococcus gallinarum from E. faecium. J. Clin. Microbiol. 36: 2333 2335.
9. Van Horn, K. G.,, and K. M. Rodney. 1998. Colonization and microbiology of the motile enterococci in a patient population. Diagn. Microbiol. Infect. Dis. 31: 525 530.
1. Cleary, T. 2002. Evaluation of wet-prep motility test for presumptive identification of Bacillus species. J. Clin. Microbiol. 40: 730. (Letter to the editor.).
2. Edmondson, E. B.,, and J. P. Sanford. 1967. The Klebsiella-Enterobacter (Aerobacter), Serratia group. Medicine 46: 323 340.
3. Leifson, E. 1960. Bacterial Flagellation. Academic Press, New York, NY.
4. Tittsler, R. P.,, and L. A. Sandholzer. 1936. The use of semi-solid agar for the detection of bacterial motility. J. Bacteriol. 31: 575 580.
5. Toth, C.,, and K. Van Horn. 1999. Evaluation of motility media for detection of motility in enterococci, abstr.C-442, p. 196. Abstr. 99th Gen. Meet. Am. Soc. Microbiol. American Society for Microbiology, Washington, DC.
6. Turenne, C. Y.,, D. J. Hoban,, J. A. Karlowsky,, G. G. Zhanel,, and A. M. Kabani. 1998. Screening of stool samples for identification of vancomycin-resistant Enterococcus isolates should include the methyl-α-D-glucopyranoside test to differentiate nonmotile Enterococcus gallinarum from E. faecium. J. Clin. Microbiol. 36: 2333 2335.
7. Van Horn, K.,, C. Tóth,, R. Kariyama,, R. Mitsuhata,, and H. Kumon. 2002. Evaluation of 15 motility media and a direct microscopic method for detection of motility in enterococci. J. Clin. Microbiol. 40: 2476 2479.
8. Van Horn, K. G.,, and K. M. Rodney. 1998. Colonization and microbiology of the motile enterococci in a patient population. Diagn. Microbiol. Infect. Dis. 31: 525 530.
9. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 13 14. Williams & Wilkins, Baltimore, MD.
1. De Mann, J. D.,, M. Rogosa,, and M. E. Sharpe. 1960. A medium for the cultivation of lactobacilli. J. Appl. Bacteriol. 23: 130 135.
2. Facklam, R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
3. Facklam, R.,, D. Hollis,, and M. D. Collins. 1989. Identification of gram-positive coccal and coccobacillary vancomycin-resistant bacteria. J. Clin. Microbiol. 27: 724 730.
4. Isenberg, H. D.,, E. M. Vellozzi,, J. Shapiro,, and L. G. Rubin. 1988. Clinical laboratory challenges in the recognition of Leuconostoc spp. J. Clin. Microbiol. 26: 479 483.
5. Olano, A.,, J. Chua,, S. Schroedar,, A. Minari,, M. La Salvia,, and G. Hall. 2001. Weissella confusa bacteremia: a case report. J. Clin. Microbiol. 39: 1604 1607.
1. Barritt, M. M. 1936. The intensification of the Voges-Proskauer reaction by the addition of (-naphthol. J. Pathol. Bacteriol. 42: 441 454.
2. Clark, W. M.,, and H. A. Lubs. 1915. The differentiation of bacteria of the colon-aero-genes family by the use of indicators. J. Infect. Dis. 17: 161 173.
3. Coblentz, L. M. 1943. Rapiddetectionoftheproductionofacetyl-methyl-carbinol. Am. J. Public Health 33: 815 817.
4. Coykendall, A. 1989. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 2: 315 328.
5. Ewing, W. H. 1986. Edwards and Ewing's Identification of Enterobacteriaceae, 4th ed. Elsevier Scientific Publishing Co., New York, NY.
6. Facklam, R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
7. Farmer, J. J., III, B. R. Davis, F. W. Hickman-Brenner, A. McWhorter, G. P. Huntley-Carter, M. A. Asbury, C. Riddle, H. G. Wathen-Grady, C. Elias, G. R. Fanning, A. G. Steigerwalt, C. M. O'Hara, G. K. Morris, P. B. Smith, and D. J. Brenner. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21: 46 76.
8. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 321 326, 439 450. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
9. Voges, O.,, and B. Proskauer. 1898. BeitragzurErnärugsphysiologieundzurDifferential-diagnosederBakterienderhämorrhagischenSepticemia. Z. Hyg. Infektkr. 28: 20 37.
10. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed.,p. 22 23. Williams & Wilkins, Baltimore, MD.
1. Edberg, S. C.,, and C. M. Kontnick. 1986. Comparison of β-glucuronidase-based substrate systems for identification of Escherichia coli. J. Clin. Microbiol. 24: 368 371.
2. Feng, P. C. S.,, and P. A. Hartman. 1982. Fluorogenic assays for immediate confirmation of Escherichia coli. Appl. Environ. Microbiol. 43: 1320 1329.
3. Hayes, P. S.,, K. Blom,, P. Feng,, J. Lewis,, N. A. Strockbine,, and B. Swaminathan. 1995. Isolation and characterization of a beta-D-glucuronidase- producing strain of Escherichia coli serotype O157:H7 in the United States. J. Clin. Microbiol. 33: 3347 3348.
4. Iritani, B.,, and T. J. Inzana. 1988. Evaluation of a rapid tube assay for presumptive identification of Escherichia coli from veterinary specimens. J. Clin. Microbiol. 26: 564 566.
5. Kilian, M.,, and P. Bülow. 1976. Rapid diagnosis of Enterobacteriaceae. I. Detection of bacterial glucosidases. Acta Pathol. Microbiol. Scand. Sect. B 84: 245 251.
6. Perez, J. L.,, C. I. Berrocal,, and L. Berrocal. 1986. Evaluation of a commercial β-glucuronidase test for rapid and economical identification of Escherichia coli. J. Appl. Bacteriol. 61: 541 545.
7. Ratnam, S.,, S. B. March,, R. Ahmed,, G. S. Bezanson,, and S. Kasatiya. 1988. Characterization of Escherichia coli serotype O157:H7. J. Clin. Microbiol. 26: 2006 2012.
8. Thaller, M. C.,, F. Berlutti,, B. Dainelli,, and R. Pezzi. 1988. New plate medium for screening and presumptive identification of gramnegative urinary tract pathogens. J. Clin. Microbiol. 26: 791 793.
9. Thompson, J. S.,, D. S. Hodge,, and A. A. Borczyk. 1990. Rapid biochemical test to identify verocytotoxin-positive strains of Escherichia coli serotype O157. J. Clin. Microbiol. 28: 2165 2168.
10. Trepeta, R. W.,, and S. C. Edberg. 1984. Methylumbelliferyl-β-D-glucuronide-based medium for rapid isolation and identification of Escherichia coli. J. Clin. Microbiol. 19: 172 174.
11. York, M. K.,, E. J. Baron,, M. Weinstein,, R. Thomson,, and J. E. Clarridge. 2000. A multilaboratory validation of rapid spot tests for identification of Escherichia coli. J. Clin. Microbiol. 38: 3394 3398.
1. Cowan, S. T. 1974. Cowan & Steels Manual for the Identification of Medical Bacteria, 2nd ed., p. 38 39, 167. Cambridge University Press, Cambridge, United Kingdom.
2. Janda, W. M.,, and J. S. Knapp,. 2003. Neisseria and Moraxella catarrhalis, p. 585 608. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 348 358. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
4. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 14 15. Williams & Wilkins, Baltimore, MD.
1. Abbott, S. L.,, W. K. Cheung,, B. A. Portoni,, and J. M. Janda. 1992. Isolation of vibriostatic agent O/129-resistant Vibrio cholera non-O1 from a patient with gastroenteritis. J. Clin. Microbiol. 30: 1598 1599.
2. Abbott, S. L.,, L. S. Seli,, M. Catino, Jr.,, M. A. Hartley,, and J. M. Janda. 1998. Misidentification of unusual Aeromonas species as members of the genus Vibrio: a continuing problem. J. Clin. Microbiol. 36: 1103 1104.
3. Furniss, A. L.,, J. V. Lee,, and T. J. Donovan. 1978. The Vibrios. Public Health Laboratory Service monograph ser. no. 11. Her Majesty's Stationery Office, London, United Kingdom.
4. Janda, J. M.,, C. Powers,, R. G. Bryant,, and S. L. Abbott. 1988. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin. Microbiol. Rev. 1: 245 267.
5. Janda, J. M. 1991. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4: 397 410.
1. Negut, M.,, and G. Hermann. 1975. A comparison of two methods for detecting b-D-galactosidase. Public Health Lab. 33: 190 193.
2. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed., p. 16. Williams & Wilkins, Baltimore, MD.
1. Borek, A. P.,, D. C. Dressel,, J. Hussong,, and L. R. Peterson. 1997. Evolving clinical problems with Streptococcus pneumoniae: increasing resistance to antimicrobial agents, and failure of traditional optochin identification in Chicago, Illinois, between 1993 and 1996. Diagn. Microbiol. Infect. Dis. 29: 209 214.
2. Bowen, E. F.,, and L. R. Jeffries. 1955. Optochin in the identification of Str. pneumoniae. J. Clin. Pathol. 8: 58 60.
3. Gardam, M. A.,, and M. A. Miller. 1998. Optochin revisited: defining the optimal type of blood agar for presumptive identification of Streptococcus pneumoniae. J. Clin. Microbiol. 36: 833 834.
4. Kellogg, J. A.,, D. A. Bankert,, C. J. Elder,, J. L. Gibbs,, and M. C. Smith. 2001. Identification of Streptococcus pneumonia revisited. J. Clin.Microbiol. 39: 3373 3375.
5. Moore, H. F. 1915. The action of ethylhydrocupreine (optochin) on type strains of pneumococci in vitro and in vivo, and on some other microorganisms in vitro. J. Exp. Med. 22: 269 285.
6. Mundy, L. S.,, E. N. Janoff,, K. E. Schwebke,, C. J. Shanholtzer,, and K. E. Willard. 1998. Ambiguity in the identification of Streptococcus pneumoniae. Optochin, bile solubility, quellung, and the AccuProbe DNA probe tests. Am. J. Clin. Pathol. 109: 55 61.
7. Pikis, A.,, J. M. Campos,, W. J. Rodriguez,, and J. M. Keith. 2001. Optochin resistance in Streptococcus pneumoniae: mechanism, significance, and clinical implications. J. Infect. Dis. 184: 582 590.
8. Ragsdale, A. R.,, and J. P. Sanford. 1971. Interfering effect of incubation in carbon dioxide on the identification of pneumococci by optochin discs. Appl. Microbiol. 22: 854 855.
1.Clinical and Laboratory Standards Institute. 2008. Abbreviated Identification of Bacteria and Yeasts, 2nd ed. Approved guideline M35-A2. Clinical and Laboratory Standards Institute, Wayne, PA.
2. Faller, A.,, and K. H. Schleifer. 1981. Modified oxidase and benzidine tests for separation of staphylococci from micrococci. J. Clin. Microbiol. 13: 1031 1035.
3. Kovács, N. 1956. Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178: 703.
4. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 368 378. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
1. Ederer, G. M.,, J. H. Chu,, and D. J. Blazevic. 1971. Rapid test for urease and phenylalanine deaminase production. Appl. Microbiol. 21: 545.
2. Ewing, E. H.,, B. R. Davis,, and R. W. Reaves. 1957. Phenylalanine and malonate media and their use in enteric bacteriology. Public Health Lab. 15: 153 160.
3. Hendriksen, S. D. 1950. A comparison of the phenylalanine acid reaction and urease test in the differentiation of Proteus from other enteric organisms. J. Bacteriol. 60: 225 231.
4. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 388 393. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
1. Bosley, G. S.,, R. R. Facklam,, and D. Grossman. 1983. Rapid identification of enterococci. J. Clin. Microbiol. 18: 1275 1277.
2. Chagla, A. H.,, A. A. Borczyk,, J. E. Aldom,, S. Dalla Rosa,, and D. D. Cole. 1993. Evaluation of the L-pyrrolidonyl β-naphthylamidehydrolysis test for the differentiation of membersof the families Enterobacteriaceae and Vibrionaceae. J. Clin. Microbiol. 31: 1946 1948.
3. Ellner, P. D.,, D. A. Williams,, M. E. Hosmer,,and M. A. Cohenford. 1985. Preliminaryevaluation of a rapid colorimetric method for the presumptive identification of group A streptococci and enterococci. J. Clin. Microbiol. 22: 880 881.
4. Facklam, R. R.,, L. G. Thacker,, B. Fox,, and L. Eriquez. 1982. Presumptive identification of streptococci with a new test system. J. Clin.Microbiol. 15: 987 990.
5. Godsey, J.,, R. Schulman,, and L. A. Eriquez. 1981. The hydrolysis of L-pyrrolidonyl-β-naphthylamide as an aid in the rapid identification of Streptococcus pyogenes, S. avium, and group D enterococci, abstr. C84, p. 276. Abstr. 81st Annu. Meet. Am. Soc. Microbiol. 1981. American Society for Microbiology, Washington, DC.
6. Hébert, G. A.,, C. G. Crowder,, G. A. Hancock,, W. R. Jarvis,, and C. Thornsberry. 1988. Characteristics of coagulase-negativestaphylococci that help differentiate these speciesand other members of the family Micrococcaceae. J. Clin. Microbiol. 26: 1939 1949.
7. York, M. K.,, E. J. Baron,, M. Weinstein,, R. Thomson,, and J. E. Clarridge. 2000. A multilaboratory validation of rapid spot tests for identification of Escherichia coli. J. Clin. Microbiol. 38: 3394 3398.
1. Austrian, R. 1976. The quellung reaction, a neglected microbiologic technique. Mt. Sinai J. Med. 43: 699 709.
2. Facklam, R. R.,, and R. B. Carey,. 1985. Streptococci and aerococci, p. 154 175. In E. H. Lennette,, A. Ballows,, W. J. Hausler, Jr.,, and H. J. Shadomy (ed.), Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington, DC.
3. Heineman, H. S. 1973. Quellung test for pneumonia. N. Engl. J. Med. 288: 1027.
4. Kellogg, J. A.,, D. A. Bankert,, C. J. Elder,, J. L. Gibbs,, and M. C. Smith. 2001. Identification of Streptococcus pneumoniae revisited. J. Clin. Microbiol. 39: 3373 3375.
5. Merrill, C. W.,, J. M. Gwaltney, Jr., , J. W. Hendley,, and M. A. Sande. 1973. Rapid identification of pneumococci. Gram stain vs. the quellung reaction. N. Engl. J. Med. 288: 510 512.
6. Mundy, L. S.,, E. N. Janoff,, K. E. Schwebke,, C. J. Shanholtzer,, and K. E. Willard. 1998. Ambiguity in the identification of Streptococcus pneumoniae. Optochin, bile solubility, quellung, and the AccuProbe DNA probe tests. Am. J. Clin. Pathol. 109: 55 61.
1. Facklam, R.,, and J. A. Elliott. 1995. Identification, classification, and clinical relevance of catalase-negative, gram-positive cocci, excluding the streptococci and enterococci. Clin. Microbiol. Rev. 8: 479 495.
2. Facklam, R.,, D. Hollis,, and M. D. Collins. 1989. Identification of gram-positive coccal and coccobacillary vancomycin-resistant bacteria. J. Clin. Microbiol. 27: 724 730.
3. LaClaire, L.,, and R. Facklam. 2000. Comparison of three commercial rapid identification systems for the unusual gram-positive cocci Dolosigranulum pigrum, Ignavigranum ruoffiae, and Facklamia species. J. Clin. Microbiol. 38: 2037 2042.
4. Qadri, S. M.,, C. W. Nichols,, and S. G. Qadri. 1978. Rapid sodium chloride tolerance test for presumptive identification of enterococci. J. Clin. Microbiol. 7: 238.
5. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Williams & Wilkins, Baltimore, MD.
1. Bottone, E. J.,, C. A. Thomas,, D. Lindquist,, and J. M. Janda. 1995. Difficulties encountered in identification of a nutritionally deficient streptococcus on the basis of its failure to revert to streptococcal morphology. J. Clin. Microbiol. 33: 1022 1024.
2. Collins, M. D.,, and P. A. Lawson. 2000. The genus Abiotrophia (Kawamura et al.) is not monophyletic: proposal of Granulicatella gen. nov., Granulicatella adiacens comb. nov., Granulicatella elegans comb. nov., and Granulicatella balaenopterae comb. nov. Int. J. Syst. Evol. Microbiol. 50: 365 369.
3. Kilian, M. 1974. A rapid method for the differentiation of Haemophilus strains—the porphyrin test. Acta Pathol. Microbiol. Scand. Sect. B 82: 835 842.
4. Kilian, M., 2003. Haemophilus, p. 623 635. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
1. Aroutcheva, A. A.,, J. A. Simoes,, K. Behbakht,, and S. Faro. 2001. Gardnerella vaginalis isolated from patients with bacterial vaginosis and from patients with healthy vaginal ecosystems. Clin. Infect. Dis. 33: 1022 1027.
2. Catlin, B. W. 1992. Gardnerella vaginalis: characteristics, clinical considerations, and controversies. Clin. Microbiol. Rev. 5: 213 237.
3. Reimer, L. G.,, and L. B. Reller. 1985. Use of a sodium polyanetholesulfonate disk for the identification of Gardnerella vaginalis. J. Clin. Microbiol. 21: 146 149.
4. Shawar, R.,, J. Sepulveda,, and J. E. Clarridge. 1990. Use of the RapID-ANA system and sodium polyanetholesulfonate disk susceptibility testing in identifying Haemophilusducreyi. J. Clin. Microbiol. 28: 108 111.
1. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3 rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
2. Leifson, E. 1935. New culture media based on sodium desoxycholate for the isolation of in-testinal pathogens and for the enumeration of colon bacilli in milk and water. J. Pathol. Bacteriol. 40: 581 599.
3. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2 nd ed.,p. 20. Williams & Wilkins, Baltimore, MD.
1. Coykendall, A. 1989. Classification and identification of the viridans streptococci. Clin. Microbiol. Rev. 2: 315 328.
2. Facklam, R. R. 1972. Recognition of group D streptococcal species of human origin by biochemical and physiological tests. Appl. Microbiol. 23: 1131 1139.
3. MacFaddin, J. F. 2000. Biochemical Tests for the Identification of Medical Bacteria, 3rd ed., p. 412 423. The Lippincott, Williams & Wilkins Co., Philadelphia, PA.
4. Ruoff, K.,, S. I. Miller,, C. V. Garner,, M. J. Ferraro,, and S. B. Calderwood. 1989. Bacteremia with Streptococcus bovis and Streptococcus salivarius: clinical correlates of more accurate identification of isolates. J. Clin. Microbiol. 27: 305 308.
1. Abdalla, S.,, F. Marco,, R. M. Perez,, J. M. Pique,, J. M. Bordas,, M. T. Jimenez de Anta,, and J. Teres. 1989. Rapid detection of gastric Campylobacter pylori colonization by a simple biochemical test. J. Clin. Microbiol. 27: 2604 2605.
2. Christensen, W. B. 1946. Urea decomposition as a means of differentiating Proteus and paracolon cultures from each other and from Salmonella and Shigella types. J. Bacteriol. 52: 461 466.
3.Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
4. Ederer, G. M.,, J. H. Chu,, and D. J. Blazevic. 1971. Rapid test for urease and phenylalanine deaminase production. Appl. Microbiol. 21: 545.
5. Goldie, J.,, S. J. O. Veldhuyzen van Zanten,, S. Jalali,, J. Hollingsworth,, R. H. Riddell,, H. Richardson,, and R. H. Hunt. 1989. Optimization of medium for rapid urease test for detection of Campylobacter pylori in gastric antral biopsies. J. Clin. Microbiol. 27: 2080ndash; 2082.
6. Mobley, H. L.,, M. D. Island,, and R. P. Hausinger. 1995. Molecular biology of microbial ureases. Microbiol. Rev. 59: 451 480.
7. Owen, R. J.,, S. R. Martin,, and P. Boman. 1985. Rapid urea hydrolysis by gastric campylobacters. Lancet i: 111.

Tables

Generic image for table
Untitled

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Generic image for table
Untitled

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Generic image for table
Untitled

±, with or without.

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Generic image for table
Untitled

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17
Generic image for table
Untitled

NA, not applicable because the organism will not grow on the medium.

Citation: Garcia L. 2010. Biochemical Tests for the Identification of Aerobic Bacteria, p 503-642. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error