1887

Chapter 3.4 : Blood Cultures

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Blood Cultures, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_4-1.gif /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_4-2.gif

Abstract:

When bacteria or fungi overcome the host's normal defense mechanisms and enter the bloodstream through the lymphatics or from extravascular sites, they can quickly disseminate throughout the body, causing severe illness. In addition, the by-products of their metabolism can lead to septic shock, among the most serious complications of infectious diseases. . Laboratory diagnosis of bacteremia and fungemia depends on blood cultures, which are probably the most important cultures performed by the microbiology laboratory. Because the culture methods are so sensitive, the procedure must be carefully controlled beginning at the preanalytical stage (collection), to avoid the misinterpretation of a procurement-associated skin commensal microorganism as an agent of infection.

Citation: Garcia L. 2010. Blood Cultures, p 151-182. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.4
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.4.2-1
Figure 3.4.2-1

Identification flowchart for spp. from cultures

Citation: Garcia L. 2010. Blood Cultures, p 151-182. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817435.chap3.4
1. Baron, E. J.,, M. P. Weinstein,, W. M. Dunne, Jr.,, P. Yagupsky,, D. F. Welch,, and D. M. Wilson. 2005. Cumitech 1C, Blood Cultures IV. Coordinating ed., E. J. Baron. ASM Press, Washington, DC.
2. Blot, F.,, G. Nitenberg,, E. Chachaty,, B. Raynard,, N. Germann,, S. Antoun,, A. Laplanche,, C. Brun-Buisson,, and C. Tancrede. 1999. Diagnosis of catheter-related bacteremia: a prospective comparison of the time to positivity of hub-blood versus peripheral-blood cultures. Lancet 354: 1071 1077.
3. Bourbeau, P. P.,, and J. K. Pohlman. 2001. Three days of incubation may be sufficient for routine blood cultures with BacT/Alert FAN blood culture bottles. J. Clin. Microbiol. 39: 2079 2082.
4. Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media , 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
5. Clinical and Laboratory Standards Institute. 2008. Performance Standards for Antimicrobial Susceptibility Testing. Eighteenth informational supplement. Approved standard M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
6. Cornish, N.,, B. A. Kirkley,, K. A. Easley,, and J. A. Washington. 1998. Reassessment of the incubation time in a controlled clinical comparison of the BacT/Alert aerobic FAN bottle and standard anaerobic bottle used aerobically for the detection of bloodstream infections. Diagn. Microbiol. Infect. Dis. 32: 1 7.
7. Cornish, N.,, B. A. Kirkley,, K. A. Easley,, and J. A. Washington. 1999. Reassessment of the routine anaerobic culture and incubation time in the BacT/Alert FAN blood culture bottles. Diagn. Microbiol. Infect. Dis. 35: 93 99.
8. Doern, G. V.,, A. G. Brueggemann,, W. M. Dunne,, S. G. Jenkins,, D. C. Halstead,, and J. McLaughlin. 1997. Four-day incubation period for blood culture bottles processed with the Difco ESP blood culture system. J. Clin. Microbiol. 35: 1290 1292.
9. Evangelista, A. T.,, A. L. Truant,, and P. P. Bourbeau,. 2002. Rapid systems and instruments for the identification of bacteria, p. 22 49. In A. L. Truant (ed.), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
10. Forrest, G. N.,, M. C. Roghmann,, L. S. Toombs,, J. K. Johnson,, E. Weekes,, D. P. Lincalis,, and R. A. Venezia. 2008. Peptide nucleic acid fluorescent in situ hybridization for hospital-acquired enterococcal bacteremia: delivering earlier antimicrobial therapy. Antimicrob. Agents Chemother. 52: 3558 3563.
11. Grace, C. J.,, J. Lieberman,, K. Pierce,, and B. Littenberg. 2001. Usefulness of blood culture for hospitalized patients who are receiving antibiotic therapy. Clin. Infect. Dis. 32: 1651 1655.
12. Han, X. Y.,, and A. L. Truant. 1999. The detection of positive blood cultures by the AccuMed ESP-384 system: the clinical significance of three-day testing. Diagn. Microbiol. Infect. Dis. 33: 1 6.
13. Hardy, D. J.,, B. B. Hulbert,, and P. C. Migneault. 1992. Time to detection of positive BacT/Alert blood cultures and lack of need for routine subculture of 5-to 7-day negative cultures. J. Clin. Microbiol. 30: 2743 2745.
14. Ilstrup, D. M., 1978. Statistical methods employed in the study of blood culture media, p. 31 39. In J. A. Washington II (ed.), The Detection of Septicemia. CRC Press, West Palm Beach, FL.
15. Ilstrup, D. M.,, and J. A. Washington II. 1983. The importance of volume of blood cultured in the detection of bacteremia and fungemia. Diagn. Microbiol. Infect. Dis. 1: 107 110.
16. James, P. A.,, and K. M. Al-Shafi. 2000. Clinical value of anaerobic blood culture: a retrospective analysis of positive patient episodes. J. Clin. Pathol. 53: 231 233.
17. Kellogg, J. A.,, F. L. Ferrentino,, J. Liss,, S. L. Shapiro,, and D. A. Bankert. 1994. Justification and implementation of a policy requiring two blood cultures when one is ordered. Lab. Med. 25: 323 330.
18. Kellogg, J. A.,, J. P. Manzella,, and D. A. Bankert. 2000. Frequency of low-level bacteremia in children from birth to fifteen years of age. J. Clin. Microbiol. 38: 2181 2185.
19. Li, J.,, J. J. Plorde,, and L. G. Carlson. 1994. Effects of volume and periodicity on blood cultures. J. Clin. Microbiol. 32: 2829 2831.
20. Mirrett, S.,, M. P. Weinstein,, L. G. Reimer,, M. L. Wilson,, and L. B. Reller. 2001. Relevance of the number of positive bottles in determining clinical significance of coagulase-negative staphylococci in blood cultures. J. Clin. Microbiol. 39: 3279 3281.
21. Oliveira, K.,, G. W. Procop,, D. Wilson,, J. Coull,, and H. Stender. 2002. Rapid identification of Staphylococcus aureus from blood cultures by fluorescence in situ hybridization with peptide nucleic acid probes. J. Clin. Microbiol. 40: 247 251.
22. Reimer, L. G.,, M. L. Wilson,, and M. P. Weinstein. 1997. Update on detection of bacteremia and fungemia. Clin. Microbiol. Rev. 10: 444 465.
23. Reisner, B. S.,, and G. L. Wood. 1999. Times to detection of bacteria and yeasts in BACTEC 9240 blood culture bottles. J. Clin. Microbiol. 37: 2024 2026.
24. Teong, H. H.,, Y. S. Leo,, S. Y. Wong,, L. H. Sng,, and Z. P. Ding. 2000. Case report of Staphylococcus lugdunensis native valve endocarditis and review of the literature. Ann. Acad. Med. Singapore 29: 673 677.
25. Waites, K. B.,, E. S. Brookings,, S. A. Moser,, and B. L. Zimmer. 1998. Direct bacterial identification from positive BacT/Alert blood cultures using MicroScan overnight and rapid panels. Diagn. Microbiol. Infect. Dis. 32: 21 26.
26. Waltzman, M. L.,, and M. Harper. 2001. Financial and clinical impact of false-positive blood culture results. Clin. Infect. Dis. 33: 296 299.
27. Weinbaum, F. I.,, S. Lavie,, M. Danek,, D. Sixsmith,, G. F. Heinrich,, and S. S. Mills. 1997. Doing it right the first time: quality improvement and the contaminant blood culture. J. Clin. Microbiol. 35: 563 565.
28. Weinstein, M. P.,, S. Mirrett,, M. L. Wilson,, L. G. Reimer,, and L. B. Reller. 1994. Controlled evaluation of 5 versus 10 milliliters of blood cultured in aerobic BacT/Alert blood culture bottles. J. Clin. Microbiol. 32: 2103 2106.
29. Weinstein, M. P.,, and B. Reller,. 2002. Commercial blood culture systems and methods, p. 12 21. In A. L. Truant (ed.), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
30. Weinstein, M. P.,, M. L. Towns,, S. M. Quartey,, S. Mirrett,, L. G. Reimer,, G. Parmigiani,, and L. B. Reller. 1997. The clinical significance of positive blood cultures in the 1990s: a prospective comprehensive evaluation of the microbiology, epidemiology, and outcome of bacteremia and fungemia in adults. Clin. Infect. Dis. 24: 584 602.
31. Wilson, D. A.,, M. J. Joyce,, L. S. Hall,, L. B. Reller,, G. D. Roberts,, G. S. Hall,, B. D. Alexander,, and G. W. Procop. 2005. Multicenter evaluation of a Candida albicans peptide nucleic acid fluorescent in situ hybridization probe for characterization of yeast isolates from blood cultures. J. Clin. Microbiol. 43: 2909 2912.
32. Wilson, M. L.,, S. Mirrett,, L. B. Reller,, M. P. Weinstein,, and L. G. Reimer. 1993. Recovery of clinically important microorganisms from the BacT/Alert blood culture system does not require testing for seven days. Diagn. Microbiol. Infect. Dis. 16: 31 33.
33. Wilson, M. L.,, M. P. Weinstein,, S. Mirrett,, L. G. Reimer,, R. J. Feldman,, C. R. Chuard,, and L. B. Reller. 1995. Controlled evaluation of BacT/Alert standard anaerobic and FAN anaerobic blood culture bottles for detection of bacteremia and fungemia. J. Clin. Microbiol. 33: 2265 2270.
34. York, M. K. 1990. Bacillusspecies pseudo-bacteremia in AIDS patients traced to contaminated gloves in blood collection. J. Clin. Microbiol. 28: 2114 2116.
35. Barenfanger, J.,, C. Drake,, and G. Kacich. 1999. Clinical and financial benefits of rapid bacterial identification and antimicrobial susceptibility testing. J. Clin. Microbiol. 37: 1415 1418.
36. Barenfanger, J.,, M. Short,, and A. Groesch. 2001. Improved antimicrobial interventions have benefits. J. Clin. Microbiol. 39: 2823 2828.
37. Doern, G.,, R. Vautour,, M. Gaudet,, and B. Levy. 1994. Clinical impact of rapid in vitro susceptibility testing and bacterial identification. J. Clin. Microbiol. 32: 1757 1762.
38. Dunne, W. M.,, F. S. Nolte,, and M. L. Wilson. 1997. Cumitech1B, Blood Cultures III. Coordinating ed., J. A. Hindler. American Society for Microbiology, Washington, DC.
39. O'Grady, N. P.,, P. S. Barie,, J. G. Bartlett,, T. Bleck,, G. Garvey,, J. Jacobi,, P. Linden,, D. G. Maki,, M. Nam,, W. Pasculle,, M. Pasquale,, D. L. Tribett,, and H. Masur. 1998. Practice guidelines for evaluating new fever in critically ill patients. Clin. Infect.Dis. 26: 1042 1059
1. Goldenberger, D.,, A. Kunzli,, P. Vogt,, R. Zbinden,, and M. Altwegg. 1997. Molecular diagnosis of bacterial endocarditis by broad-range PCR amplification and direct sequencing. J. Clin. Microbiol. 35: 4759 4764.
2. Harris, K. A.,, and J. C. Hartley. 2003. Development of broad-range 16S rRNA PCR for use in the routine diagnostic clinical microbiology service. J. Med. Microbiol. 52: 685 691.
3. Marcon, M. J.,, and D. A. Powell. 1992. Human infections due to Malasseziaspp. Clin. Microbiol. Rev. 5: 101 119.
4. Rantakokko-Jalava, K.,, S. Nikkari,, J. Jalava,, E. Eerola,, M. Skurnik,, O. Meurman,, O. Ruuskanen,, A. Alanen,, E. Kotilainen,, P. Toivanen,, and P. Kotilainen. 2000. Direct amplification of rRNA genes in diagnosis of bacterial infection. J. Clin. Microbiol. 38: 32 39.
5. Reimer, L. G.,, M. L. Wilson,, and M. P. Weinstein. 1997. Update on detection of bacteremia and fungemia. Clin.Microbiol.Rev. 10: 444 465.
6. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Un-usual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Williams & Wilkins, Baltimore, MD.
7. Zucol, F.,, R. A. Ammann,, C. Berger,, C. Aebi,, M. Altwegg,, F. K. Niggli,, and D. Nadal. 2006. Real-time quantitative broad-range PCR assay for detection of the 16S rRNA gene followed by sequencing for species identification. J.Clin.Microbiol. 44: 2750 2759.
47. Beebe, J. L.,, and E. W. Koneman. 1995. Recovery of uncommon bacteria from blood: association with neoplastic disease. Clin. Microbiol. Rev. 8: 336 356.
48. Brouqui, P., and D. Raoult. 2001. Endocarditis due to rare and fastidious bacteria. Clin. Microbiol. Rev. 14: 177 207.
1. Arpi, M.,, B. Gahrn-Hansen,, and V. T. Rosdahl. 1988. Contaminating coagulase-negative staphylococci isolated in a lysis-centrifugation (Isolator) blood culture system. Application of different epidemiological markers for deduction of mode of contamination. APMIS 96: 611 617.
2. Henry, N. K.,, C. A. McLimans,, A. J. Wright,, R. L. Thompson,, W. R. Wilson,, and J. A. Washington II. 1983. Microbiological and clinical evaluation of the Isolator lysis-centrifugation blood culture tube. J. Clin. Microbiol 17: 864 869.
3. Isenberg, H. D., 1983. Clinical laboratory comparison of the lysis-centrifugation blood culture technique with radiometric and broth approaches, p. 38 54. In A. Balows, and A. Sonnenwirth (ed.), Bacteremia—Laboratory and Clinical Aspects. Charles C Thomas, Springfield, IL.
4. Thomson, R. B., Jr.,, S. J. Vanzo,, N. K. Henry,, K. L. Guenther,, and J. A. Washington II. 1984. Contamination of cultures processed with the Isolator lysis-centrifugation blood culture tube. J. Clin. Microbiol. 19: 97 99.
1. Bannatyne, R. M.,, M. C. Jackson,, and Z. Memish. 1997. Rapid detection of Brucella bacteremia by using the BACTEC 9240 system. J. Clin. Microbiol. 35: 2673 2674.
2. Castaneda, M. R. 1947. A practical method for routine blood culture in brucellosis. Proc. Soc. Biol. Med. 64: 114.
3. Centers for Disease Control and Prevention. 2000. Biological and chemical terrorism: strategic plan for preparedness and response (recommendations of the CDC Strategic Planning Workgroup). MMWR Morb. Mortal. Wkly. Rep. 49: 114.
4. Centers for Disease Control and Prevention. Basic Protocols for Level A Laboratories for the Presumptive Identification of Brucella spp. Centers for Disease Control and Prevention, Atlanta, GA. http://www.cdc.gov.
5. Centers for Disease Control and Prevention, Association of Public Health Laboratories. 2002. Presumptive Brucella spp. Identification and Similar Organisms. Centers for Disease Control and Prevention, Association of Public Health Laboratories. http://www.bt.cdc.gov/agent/agentlist.asp.
6. Ederer, G. M.,, J. H. Chu,, and D. J. Blazevic. 1971. Rapid test for urease and phenylalanine deaminase production. Appl. Microbiol. 21: 545.
7. Fiori, P. L.,, S. Mastrandrea,, P. Rappelli,, and P. Cappuccenelli, 2000. Brucella abortus infection acquired in microbiology laboratories. J. Clin. Microbiol. 38: 2005 2006.
8. Gotuzzo, E.,, C. Carrillo,, J. Guerra,, and L. Llosa. 1986. An evaluation of diagnostic methods for brucellosis—the value of bone marrow culture. J. Infect. Dis. 153: 122 125.
9. Lindquist, D.,, M. C. Chu,, and W. S. Probert,. 2007. Francisella and Brucella, p. 815 834. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. L. Landry,, and M. A. Pfaller (ed.), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
10. Moyer, N. P.,, G. M. Evins,, N. E. Pigott,, J. D. Hudson,, C. E. Farshy,, J. C. Feeley,, and W. J. Hausler, Jr. 1987. Comparison of serologic screening tests for brucellosis. J. Clin. Microbiol. 25: 1969 1972.
11. Staszkiewicz, J.,, C. M. Lewis,, J. Colvile,, M. Zervos,, and J. Band. 1991. Outbreak of Brucella melitensis among microbiology laboratory workers in a community hospital. J. Clin. Microbiol. 29: 287 290.
12. Weyant, R. S.,, C. W. Moss,, R. E. Weaver,, D. G. Hollis,, J. G. Jordan,, E. C. Cook,, and M. I. Daneshvar. 1995. Identification of Unusual Pathogenic Gram-Negative Aerobic and Facultatively Anaerobic Bacteria, 2nd ed. Williams & Wilkins, Baltimore, MD.
13. Yagupsky, P. 1999. Detection of brucellae in blood cultures. J. Clin. Microbiol. 37: 3437 3442.
14. Yagupsky, P.,, and E. J. Baron. 2005. Laboratory exposures to brucellae and implications for bioterrorism. Emerg. Infect. Dis. 11: 1180 1185.
15. Yagupsky, P.,, N. Peled,, J. Press,, O. Abramson,, and M. Abu-Rashid. 1997. Comparison of BACTEC 9240 Peds Plus medium and Isolator 1.5 microbial tube for detection of Brucella melitensis from blood cultures. J. Clin. Microbiol. 35: 1382 1384.
1. Adal, K. A.,, C. J. Cockerell,, and W. A. Petri. 1994. Cat scratch disease, bacillary angiomatosis, and other infections due to Rochalimaea. N. Engl. J. Med. 330: 1509 1515.
2. Anderson, B. E.,, and M. A. Neuman. 1997. Bartonela spp. as emerging human pathogens. Clin. Microbiol. Rev. 10: 203 219.
3. Birtles, R. J.,, N. K. Fry,, P. Ventosilla,, A. G. Cáceres,, E. Sánchez,, H. Vizcarra,, and D. Raoult. 2002. Identification of Bartonella bacilliformis genotypes and their relevance to epidemiological investigations of human bartonellosis. J. Clin. Microbiol. 40: 3606 3612.
4. Chamberlin, J.,, L. Laughlin,, S. Gordon,, S. Romero,, N. Solorzano,, and R. L. Regnery. 2000. Serodiagnosis of Bartonella bacilliformis infection by indirect fluorescence antibody assay: test development and application to a population in an area of bartonellosis endemicity. J. Clin. Microbiol. 38: 4269 4271.
5. Chomel, B.B.,, and J. M. Rolain,. 2007. Bartonella, p. 850 861. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Landry,, and M. A. Pfaller (ed.), Manual of Clinical Microbiology, 9th ed. ASM Press, Washington, DC.
6. Knobloch, J.,, L. Solano,, O. Alvarez,, and E. Delgado. 1985. Antibodies to Bartonella bacilliformis as determined by fluorescence antibody test, indirect hemagglutination and ELISA. Trop. Med. Parasitol. 36: 183 185.
7. Koehler, J. E. 1996. Bartonella infections. Adv. Pediatr. Infect. Dis. 11: 1 27.
8. Koehler, J. E.,, F. D. Quinn,, T. G. Berger,, P. E. LeBoit,, and J. W. Tappero. 1992. Isolation of Rochalimaea species from cutaneous and osseous lesions of bacillary angiomatosis. N. Engl. J. Med. 327: 1625 1631.
9. Kosek, M.,, R. Lavarello,, R. H. Gilman,, J. Delgado,, C. Maguiña,, M. Verastegui,, A. G. Lescano,, V. Mallqui,, J. C. Kosek,, S. Recavarren,, and L. Cabrera. 2000. Natural history of infection with Bartonella bacilliformis in a non-endemic population. J. Infect. Dis. 182: 865 872.
10. La Scola, B.,, and D. Raoult. 1999. Culture of Bartonella quintana and Bartonella henselae from human samples: a 5-year experience (1993 to 1998). J. Clin. Microbiol. 37: 1899 1905.
11. Matar, G. M.,, J. E. Koehler,, G. Malcolm,, M. A. Lambert-Fair,, J. Tappero,, S. B. Hunter,, and B. Swaminathan. 1999. Identification of Bartonella species directly in clinical specimens by PCR-restriction fragment length polymorphism analysis of a 16S rRNA gene fragment. J. Clin. Microbiol. 37: 4045 4047.
12. Relman, D. A.,, J. S. Loutit,, T. M. Schmidt,, S. Falkow,, and L. S. Tompkins. 1990. The agent of bacillary angiomatosis. An approach to the identification of uncultured pathogens. N. Engl. J. Med. 323: 1573 1580.
13. Renesto, P.,, J. Gouvernet,, M. Drancourt,, V. Roux,, and D. Raoult. 2001. Use of rpoB gene analysis for detection and identification of Bartonella species. J. Clin. Microbiol. 39: 430 437.
14. Spach, D. H.,, A. S. Kanter,, M. J. Dougherty,, A. M. Larson,, M. B. Coyle,, D. J. Brenner,, B. Swaminathan,, G. M. Matar,, D. F. Welch,, R. K. Root,, and W. E. Stamm. 1995. Bartonella (Rochalimaea) quintana bacteremia in inner-city patients with chronic alcoholism. N. Engl. J. Med. 332: 424 428.
15. Walker, T. S.,, and H. H. Winkler. 1981. Bartonella bacilliformis: colonial types and erythrocyte adherence. Infect. Immun. 31: 480 486.
16. Weinman, D., 1981. Bartonellosis and anemias associated with bartonella-like structures, p. 235 248. In A. Balows, and W. J. Hausler, Jr. (ed.), Diagnostic Procedures for Bacterial, Mycotic and Parasitic Infections, 6th ed. American Public Health Association, Washington, DC.
17. Zeaiter, Z.,, Z. Liang,, and D. Raoult. 2002. Genetic classification and differentiation of Bartonella species based on comparison of partial ftsZ gene sequences. J. Clin. Microbiol. 40: 3641 3647.
85. Brouqui, P.,, and D. Raoult. 2001. Endocarditis due to rare and fastidious bacteria. Clin. Microbiol. Rev. 14: 177 207.
86. Daly, J. S.,, M. G. Worthington,, D. J. Brenner,, C. W. Moss,, D. G. Hollis,, R. S. Weyant,, A. G. Steigerwalt,, R. E. Weaver,, M. I. Daneshvar,, and S. P. O'Connor. 1993. Rochalimaea elizabethae sp. nov. isolated from a patient with endocarditis. J. Clin. Microbiol. 31: 872 881.
87. Ellis, B. A.,, L. D. Rotz,, J. A. D. Leake,, F. Samalvides,, J. Bernable,, G. Ventura,, C. Padilla,, P. Villaseca,, L. Beati,, R. Regnery,, J. E. Childs,, J. G. Olsen,, and C. P. Carrillo. 1999. An outbreak of acute bartonellosis (Oroya fever) in the Urubamba region of Peru, 1998. Am. J. Trop. Med. Hyg. 61: 344 349.

Tables

Generic image for table
Table 3.4.1-1

Visible signs of growth caused by organisms commonly encountered in blood cultures

Citation: Garcia L. 2010. Blood Cultures, p 151-182. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.4
Generic image for table
Table 3.4.1-2

Initial processing and reporting results from positive blood culture bottles

Incubate aerobic plates in 5% CO2 and anaerobic plates under anaerobic conditions. For any subsequent positive companion bottles or other positive bottles “collected” within the same 48 h as the first positive bottle, subculture only to BAP unless the Gram stain is different or the original culture did not grow on BAP. In addition, for subsequent positive cultures, inoculate MAC or EMB and either CNA (Columbia colistin-nalidixic acid agar) or PEA (phenylethyl alcohol agar) if gram-negative rods are present and a direct coagulase if gram-positive cocci in clusters are present.

Disk testing is a screen for identification of Lacto, Erysipelothrix, , Leuconostoc, Pediococcus, and vancomycin-resistant and -dependent or Staphylococcus organisms that are penicillin susceptible (see procedure 3.17.4 for details on potency and QC). Disks will also detect mixed cultures but are not a substitute for a standard susceptibility test. A streak of ATCC 25923 perpendicular to but not touching the line of the initial inoculum will aid in identification of group B streptococci and .

Read test up to 4 h and update report and notify physician if test result is positive. Remove coagulase from incubator at ≤4 h and incubate at room temperature for remainder of 24 h.

For methods for preparation of inoculum for direct testing of automated or manual commercial multitest kit identification systems and for AST, see text.

Citation: Garcia L. 2010. Blood Cultures, p 151-182. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.4
Generic image for table
Table 3.4.2-1

Urea-positive fastidious gram-negative coccobacilli similar to

Reactions extracted from references 9 and 12. NA, not applicable; V, variable; CCB, coccobacilli.

O. ureolytica is primarily a uropathogen.

A. actinomycetemcomitans is urea negative and rarely oxidase positive. Urea-positive Actinobacillus organisms are from animal sources.

Grows only on CHOC, or on blood agar associated with staphylococcus colony.

Use rapid urea test to increase sensitivity.

TSI, triple sugar iron agar.

Citation: Garcia L. 2010. Blood Cultures, p 151-182. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error