1887

Chapter 3.8 : Fecal and Other Gastrointestinal Cultures and Toxin Assays

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fecal and Other Gastrointestinal Cultures and Toxin Assays, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_8-1.gif /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap3_8-2.gif

Abstract:

Gastroenteritis can be caused by bacteria, parasites, or viruses. With such a wide array of pathogens and the need for cost containment, physician input and practice guidelines ( ) can help the laboratory determine which tests are appropriate for detecting the etiological agent of diarrhea. Microbiology laboratories should review the local epidemiology of bacterial enterocolitis and implement routine stool culture methods that will allow recovery and detection of all of the major pathogens causing most of the cases in their geographic area. All microbiology laboratories should routinely test for the presence of spp., spp., and spp. on all stool cultures. Other major pathogens, such as Shiga-toxin-producing , particularly O157 or enterohemorrhagic (EHEC), should also be routinely tested for on bloody stool samples during the spring, summer, and early fall months in geographic areas where the prevalence of these strains has been shown to be increased. Microbiology laboratories situated in or near coastal communities may also test for and spp. since the prevalence of these types of infections is increased with exposure to water or contaminated food such as shellfish.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 3.8.1-1
Figure 3.8.1-1

Flowchart for the identification of oxidase-positive stool pathogens from BAP or from either TCBS or CIN. Most are also indole positive. Biochemical reactions for species identification are available on many commercial kits. Growth on TCBS implies that the organism is a sp., but not all spp. grow on TCBS. Abbreviations: MH, Mueller-Hinton agar; ID, identification; K, alkaline; A, acid; r/o, rule out.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.8.1-2
Figure 3.8.1-2

Flowchart for identification of stool pathogens from routine stool cultures. Set up either TSI or KIA, BAP, and urea agar (or rapid urea tube) from all lactosenegative or HS-positive colonies on enteric selective agars. Reactions of the slant are listed with a slash before the butt reaction. Optionally for HS-negative colonies, Andrade's glucose tube with Durham tube for gas will eliminate most questionable production of gas and provide a broth for VP testing. Perform spot tests (indole, oxidase, PYR) only from BAP. r/o, rule out.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.8.2–1
Figure 3.8.2–1

identification flowchart for minimum identification of from stool specimens. Abbreviations: R, no zone; S, zone.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.8.3-1
Figure 3.8.3-1

Example of worksheet diagram to accompany a 96-well microtiter tray previously inoculated with a monolayer of fibroblasts and subsequently inoculated with patient specimen, controls, toxin, and antitoxin. Day 1 is the first date the tray is used. Day 2 illustrates the controls omitted on subsequent days; i.e., MEM and antitoxin control wells are not needed. Patient stool specimens in dilutions of 1:20 and 1:100 are indicated as patient A, B, C, D, and E, inoculated on day 1, and patients F and G, inoculated on day 2. Note that outer wells are not used. A, antitoxin.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817435.chap3.8
1. Abbott, S. L.,, L. S. Seli,, M. Catino, Jr.,, M. A. Hartley,, and J. M. Janda. 1998. Misidentification of unusual Aeromonas species as members of the genus Vibrio: a continuing problem. J. Clin. Microbiol. 36:11031104.
2. Blum, R. N.,, C. D. Berry,, M. G. Phillips,, D. L. Hamilos,, and E. W. Koneman. 1992. Clinical illnesses associated with isolation of dysgonic fermenter 3 from stool samples. J. Clin. Microbiol. 30:396400.
3. Brazier, J. S. 1993. Role of the laboratory in investigations of Clostridium difficile diarrhea. Clin. Infect. Dis. 16:228233.
4. Brenner, F. W.,, R. G. Villar,, F. J. Angulo,, R. Tauxe,, and B. Swaminathan. 2000. Salmonella nomenclature. J. Clin. Microbiol. 38:24652467.
5. Church, D. L.,, G. Cadrain,, A. Kabani,, T. Javaji,, and C. Trevenen. 1995. Practice guideline for ordering stool cultures in a pediatric population. Alberta Children's Hospital, Calgary, Alberta, Canada. Am. J. Clin. Pathol. 103:149153.
6. Church, D. L.,, D. Emshey,, H. Semeniuk,, T. Lloyd,, and J. Pitout. 2007. Evaluation of BBL CHROMagar O157 versus sorbitol-MacConkey medium for routine detection of Escherichia coli O157 in a centralized regional microbiology laboratory. J. Clin. Microbiol. 45:30983100.
7. Clark, R. B.,, and J. M. Janda. 1991. Plesiomonas and human disease. Clin. Microbiol. Newsl. 13:4952.
8.Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
9.Clinical and Laboratory Standards Institute. 2008. Performance Standards for Antimicrobial Susceptibility Testing. Eighteenth informational supplement. Approved standard M100-S18. Clinical and Laboratory Standards Institute, Wayne, PA.
10. Darland, G.,, W. H. Ewing,, and B. R. Davis. 1974. The Biochemical Characteristics of Yersinia enterocolitica and Yersinia pseudotuberculosis. Center for Disease Control, Atlanta, GA.
11. Farmer, J. J., III,, B. R. Davis,, F. W. Hickman-Brenner,, A. McWhorter,, G. P. Huntley-Carter,, M. A. Asbury,, C. Riddle,, H. G. Wathen-Grady,, C. Elias,, G. R. Fanning,, A. G. Steigerwalt,, C. M. O'Hara,, G. K. Morris,, P. B. Smith,, and D. J. Brenner. 1985. Biochemical identification of new species and biogroups of Enterobacteriaceae isolated from clinical specimens. J. Clin. Microbiol. 21:4676.
12. Fey, P. D.,, R. S. Wickert,, M. E. Rupp,, T. J. Safranek,, and S. H. Hinrichs. 2000. Prevalence of non-O157:H7 Shiga toxin-producing Escherichia coli in diarrheal stool samples from Nebraska. Emerg. Infect. Dis. 6:530533.
13. Guerrant, R. L.,, T. Van Gilder,, T. S. Steiner,, N. M. Thielman,, L. Slutsker,, R. V. Tauxe,, T. Hennessy,, P. M. Griffin,, H. DuPont,, R. B. Sack,, P. Tarr,, M. Neill,, I. Nachamkin,, L. B. Reller,, M. T. Osterholm,, M. L. Bennish,, and L. K. Pickering. 2001. Practice guidelines for the management of infectious diarrhea. Clin. Infect. Dis. 32:331351.
14. Hayes, P. S.,, K. Blom,, P. Feng,, J. Lewis,, N. A. Strockbine,, and B. Swaminathan. 1995. Isolation and characterization of a β-D-glucuronidase-producing strain of Escherichia coli serotype O157:H7 in the United States. J. Clin. Microbiol. 33:33473348.
15. Huys, G.,, P. Kampfer,, M. Altwegg,, I. Kersters,, A. Lamb,, R. Coopman,, J. Luthy-Hottenstein,, M. Vancanneyt,, P. Janssen,, and K. Kersters. 1997. Aeromonas popoffii sp. nov., a mesophilic bacterium isolated from drinking water production plants and reservoirs. Int. J. Syst. Bacteriol. 47:11651171.
16. Janda, J. M.,, C. Powers,, R. G. Bryant,, and S. L. Abbott. 1988. Current perspectives on the epidemiology and pathogenesis of clinically significant Vibrio spp. Clin. Microbiol. Rev. 1:245267.
17. Janda, J. M. 1991. Recent advances in the study of the taxonomy, pathogenicity, and infectious syndromes associated with the genus Aeromonas. Clin. Microbiol. Rev. 4:397410.
18. Karmali, M. 1989. Infection by verocytotoxin-producing Escherichiacoli. Clin. Microbiol. Rev. 2:1538.
19. Kehl, K. S.,, P. Havens,, C. E. Behnke,, and D. W. Acheson. 1997. Evaluation of the Premier EHEC assay for detection of Shiga toxin-producing Escherichia coli. J. Clin. Microbiol. 35:20512054.
20. Kelly, M. T.,, E. M. Stroh,, and J. Jessop. 1988. Comparison of blood agar, ampicillin blood agar, MacConkey-ampicillin-Tween agar, and modified cefsulodin-Irgasan-novobiocin agar for isolation of Aeromonas spp. from stool specimens. J. Clin. Microbiol. 26:17381740.
21. King, S.,, and W. I. Metzger. 1968. A new plating medium for the isolation of enteric pathogens. I. Hektoen enteric agar. Appl. Microbiol. 16:577578.
22. Lesmana, M.,, E. Richie,, D. Subekti,, C. Simanjuntak,, and S. E. Walz. 1997. Comparison of direct-plating and enrichment methods for isolation of Vibrio cholerae from diarrhea patients. J. Clin. Microbiol. 35:18561858.
23. Mackenzie, A. M. R.,, P. Lebel,, E. Orrbine,, P. C. Rowe,, L. Hyde,, F. Chan,, W. Johnson,, P. N. McLaine, and The Synsorb Pk Study Investigators. 1998. Sensitivities and specificities of Premier E. coli O157 and Premier EHEC enzyme immunoassays for diagnosis of infection with verotoxin (Shiga-like toxin)producing Escherichia coli. J. Clin. Microbiol. 36:16081611.
24. Molbak, K.,, P. S. Mead,, and P. M. Griffin. 2002. Antimicrobial therapy in patients with Escherichia coli O157:H7 infection. JAMA 288:10141016.
25. Safdar, N.,, A. Said,, R. E. Gangnon,, and D. G. Maki. 2002. Risk of hemolytic uremic syndrome after antibiotic treatment of Escherichia coli O157:H7. A meta-analysis. JAMA 288:9961001.
26. Savola, K. L.,, E. J. Baron,, L. S. Tompkins,, and D. J. Passaro. 2001. Fecal leukocyte stain has diagnostic value for outpatients but not inpatients. J. Clin. Microbiol. 39:266269.
27. Schiemann, D. A. 1979. Synthesis of a selective agar medium for Yersinia enterocolitica. Can. J. Microbiol. 25:1298.
28. Schiemann, D. A. 1982. Development of a two-step enrichment procedure for recovery of Yersinia enterocolitica from food. Appl. Environ. Microbiol. 43:14.
29. Sirisanthana, T.,, and A. E. Brown. 2002. Anthrax of the gastrointestinal tract. Emerg. Infect. Dis. 8:649651.
30. Slutsker, L.,, A. A. Ries,, K. D. Greene,, J. G. Wells,, L. Hutwagner,, and P. M. Griffin. 1997. Escherichia coli O157:H7 diarrhea in the United States: clinical and epidemiologic features. Ann. Intern. Med. 126:505513.
31. Taylor, W. I. 1965. Isolation of shigellae. I. Xylose lysine agars: new media for isolation of enteric pathogens. Am. J. Clin. Pathol. 44:471475.
32. van Dijk, S.,, M. J. Bruins,, and G. J. H. M. Ruijs. 2009. Evaluation and implementation of a chromogenic agar medium for Salmonella detection in stool in routine laboratory diagnostics. J. Clin. Microbiol. 47:456458.
33. Ewing, W. H. (ed.). 1986. Edwards and Ewing's Identification of Enterobacteriaceae, 4th ed. Elsevier Science Publishing Co., New York, NY.
34. Gilligan, P. H.,, J. M. Janda,, M. A. Karmali,, and J. M. Miller. 1992. Cumitech 12A, Laboratory Diagnosis of Bacterial Diarrhea. Coordinating ed., F. S. Nolte. American Society for Microbiology, Washington, DC.
35. Jeppesen, C. 1995. Media for Aeromonas spp., Plesiomonas shigelloides and Pseudomonas spp. from food and environment. Int. J. Food Microbiol. 26:2541.
36. Karch, H.,, and M. Bielaszewska. 2001. Sorbitol-fermenting Shiga toxin-producing Escherichia coli O157:H(–) strains: epidemiology, phenotypic and molecular characteristics, and microbiological diagnosis. J. Clin. Microbiol. 39:20432049.
37. McFaddin, J. F. 1985. Media for Isolation, Cultivation, Identification, and Maintenance of Bacteria, vol. I. Williams & Wilkins, Baltimore, MD.
38. Mead, P. S.,, L. Slutsker,, V. Dietz,, L. F. McCaig,, J. S. Bresee,, C. Shapiro,, P. M. Griffin,, and R. V. Tauxe. 1999. Food-related illness and death in the United States. Emerg. Infect. Dis. 5:607625.
39. Ewing, W. H. 1986. Edwards and Ewing's Identification of Enterobacteriaceae, 4th ed. Elsevier Science Publishing Co., New York, NY.
1. Mackenzie, A. M. R.,, P. Lebel,, E. Orrbine,, P. C. Rowe,, L. Hyde,, F. Chan,, W. Johnson,, P. N. McLaine, and The Synsorb Pk Study Investigators. 1998. Sensitivities and specificities of Premier E. coli O157 and Premier EHEC enzyme immunoassays for diagnosis of infection with verotoxin (Shiga-like toxin)-producing Escherichia coli. J. Clin. Microbiol. 36:16081611.
2. Sowers, E. G.,, J. G. Wells,, and N. A. Strockbine. 1996. Evaluation of commercial latex reagents for identification of O157 and H7 antigens of Escherichia coli. J. Clin. Microbiol. 34:12861289.
3. Thompson, J. S.,, D. S. Hodge,, and A. A. Borczyk. 1990. Rapid biochemical test to identify verocytototoxin-positive strains of Escherichia coli serotype O157. J. Clin. Microbiol. 28:21652168.
1. Allos, B. M. 2001. Campylobacter jejuni infections: update on emerging issues and trends. Clin. Infect. Dis. 32:12011206.
2. Barrett, T. J.,, C. M. Patton,, and G. K. Morris. 1988. Differentiation of Campylobacter species using phenotypic characterization. Lab. Med. 19:96102.
3.ClinicalandLaboratoryStandardsInstitute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved Standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
4. Endtz, H. P.,, G. J. Ruijs,, A. H. Zwinderman,, T. van der Reijden,, M. Biever,, and R. P. Mouton. 1991. Comparison of six media, including semisolid agar, for the isolation of various Campylobacter species from stool specimens. J. Clin. Microbiol. 29:10071010.
5. Engberg, J.,, S. L. On,, C. S. Harrington,, and P. Gerner-Smidt. 2000. Prevalence of Campylobacter, Arcobacter, Helicobacter, and Sutterella spp. in human fecal samples as estimated by a reevaluation of isolation methods for campylobacters. J. Clin. Microbiol. 38:286291.
6. Fox, J. G.,, C. C. Chien,, F. E. Dewhirst,, B. J. Paster,, Z. Shen,, P. L. Melito,, D. L. Woodward,, and F. G. Rogers. 2000. Helicobacter canadensis sp. nov. isolated from humans with diarrhea as an example of an emerging pathogen. J. Clin. Microbiol. 38:25462549.
7. Friedman, C.R.,, J. Neimann,, H. C. Wegener,, and R. V. Tauxe,. 2000. Epidemiology of Campylobacter jejuni infections in the United States and other industrialized nations, p. 121138. In I. Nachamkin, and M. J. Blaser (ed.), Campylobacter, 2nd ed. ASM Press, Washington, DC.
8. Hindiyeh, M.,, S. Jense,, S. Hohmann,, H. Benett,, C. Edwards,, W. Aldeen,, A. Croft,, J. Daly,, S. Mottice,, and K. C. Carroll. 2000. Rapid detection of Campylobacter jejuni in stool specimens by enzyme immunoassay and surveillance for Campylobacter upsaliensis in the greater Salt Lake City area. J. Clin. Microbiol. 38:30763079.
9. Hutchinson, D. N.,, and F. J. Bolton. 1984. Improved blood free selective medium for the isolation of Campylobacter jejuni from faecal specimens. J. Clin. Pathol. 37:956957.
10. Lambert, M. A.,, C. M. Patton,, T. J. Barrett,, and C. W. Moss. 1987. Differentiation of Campylobacter and Campylobacter-like organisms by cellular fatty acid composition. J. Clin. Microbiol. 25:706713.
11. Luechtefeld, N. W.,, W. L. Wang,, M. J. Blaser,, and L. B. Reller. 1981. Evaluation of transport and storage techniques for isolation of Campylobacter fetus subsp. jejuni from turkey cecal specimens. J. Clin. Microbiol. 12:438443.
12. Megraud, F.,, D. Chevrier,, N. Desplaces,, A. Sedallian,, and J. L. Guesdon. 1988. Urease-positive thermophilic Campylobacter (Campylobacter laridis variant) isolated from an appendix and from human feces. J. Clin. Microbiol. 26:10501051.
13. Morris, G. K.,, M. R. el Sherbeeny,, C. M. Patton,, H. Kodaka,, G. L. Lombard,, P. Edmonds,, D. G. Hollis,, and D. J. Brenner. 1985. Comparison of four hippurate hydrolysis methods for identification of thermophilic Campylobacter spp. J. Clin. Microbiol. 22:714718.
14. Morris, G. K.,, and C. M. Patton,. 1985. Campylobacter, p. 302308. In E. H. Lennette,, A. Balows,, W. J. Hausler, Jr.,, and H. J. Shadomy (ed.), Manual of Clinical Microbiology, 4th ed. American Society for Microbiology, Washington, DC.
15. Nachamkin, I.,, H. Ung,, and M. Li. 2002. Increasing fluoroquinolone resistance in Campylobacter jejuni, Pennsylvania, USA, 1982-2001. Emerg. Infect. Dis. 8:15011503.
16. On, S. L. 1996. Identification methods for campylobacters, helicobacters, and related organisms. Clin. Microbiol. Rev. 9:405422.
17. Owen, R. J.,, S. R. Martin,, and P. Borman. 1985. Rapid urea hydrolysis by gastric campylobacters. Lancet 1:111.
18. Park, C. H.,, D. L. Hixon,, A. S. Polhemus,, C. B. Ferguson,, S. L. Hall,, C. C. Risheim,, and C. B. Cook. 1983. A rapid diagnosis of Campylobacter enteritis by direct smear examination. Am. J. Clin. Pathol. 80:388390.
19. Popovic-Uroic, T.,, C. M. Patton,, M. A. Nicholson,, and J. A. Kiehlbauch. 1990. Evaluation of the indoxyl acetate hydrolysis test for rapid differentiation of Campylobacter, Helicobacter, and Wolinella species. J. Clin. Microbiol. 28:23352339.
20. Sazie, E. S. M.,, and A. E. Titus. 1982. Rapid diagnosis of Campylobacter enteritis. Ann. Intern. Med. 96:6263.
21. Tolcin, R.,, M. M. LaSalvia,, B. A. Kirkley,, E. A. Vetter,, F. R. Cockerill III,, and G. W. Procop. 2000. Evaluation of the Alexon-Trend ProSpectT Campylobacter microplate assay. J. Clin. Microbiol. 38:38533855.
22. Vandamme, P.,, E. Falsen,, R. Rossau,, B. Hoste,, P. Segers,, R. Tytgat,, and J. De Ley. 1991. Revision of Campylobacter, Helicobacter, and Wolinella taxonomy: emendation of generic descriptions and proposal of Arcobacter gen. nov. Int. J. Syst. Bacteriol. 41:88103.
23. Vandamme, P.,, L. J. Van Doorn,, S. T. al Rashid,, W. G. Quint,, J. van der Plas,, V. L. Chan,, and S. L. On. 1997. Campylobacter hyoilei Alderton et al. 1995 and Campylobacter coli Veron and Chatelain 1973 are subjective synonyms. Int. J. Syst. Bacteriol. 47:10551060.
24. Weir, S.,, B. Cuccherini,, A. M. Whitney,, M. L. Ray,, J. P. MacGregor,, A. Steigerwalt,, M. I. Daneshvar,, R. Weyant,, B. Wray,, J. Steele,, W. Strober,, and V. J. Gill. 1999. Recurrent bacteremia caused by a “Flexispira”-like organism in a patient with X-linked (Bruton's) agammaglobulinemia. J. Clin. Microbiol. 37:24392445.
67. Nachamkin, I., 2003. Campylobacter and Arcobacter, p. 902914. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
68. Nachamkin, I.,, and M. J. Blaser (ed.). 2000. Campylobacter, 2nd ed. ASM Press, Washington, DC.
69. Penner, J. L. 1988. The genus Campylobacter: a decade of progress. Clin. Microbiol. Rev. 1:157172.
70. Versalovic, J.,, and J. G. Fox,. 2003. Helicobacter, p. 915928. In P. R. Murray,, E. J. Baron,, J. H. Jorgensen,, M. A. Pfaller,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 8th ed. ASM Press, Washington, DC.
1. Endtz, H. P.,, C. W. Ang,, N. van den Braak,, A. Luijendijk,, B. C. Jacobs,, P. de Man,, J. M. van Duin,, A. van Belkum,, and H. A. Verbrugh. 2000. Evaluation of a new commercial immunoassay for rapid detection of Campylobacter jejuni in stool samples. Eur. J. Clin. Microbiol. Infect. Dis. 19:794797.
2. Hindiyeh, M.,, S. Jense,, S. Hohmann,, H. Benett,, C. Edwards,, W. Aldeen,, A. Croft,, J. Daly,, S. Mottice,, and K. C. Carroll. 2000. Rapid detection of Campylobacter jejuni in stool specimens by an enzyme immunoassay and surveillance for Campylobacter upsaliensis in the greater Salt Lake City area. J. Clin. Microbiol. 38:30763079.
3. Tolcin, R.,, M. M. LaSalvia,, B. A. Kirkley,, E. A. Vetter,, F. R. Cockerill III,, and G. W. Procop. 2000. Evaluation of the Alexon-Trend ProSpectT Campylobacter microplate assay. J. Clin. Microbiol. 38:38533855.
1. Allen, S. A.,, C. L. Emery,, and J. A. Siders,. 2002. Anaerobic bacteriology, p. 6976. In A. L. Truant (ed.), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
2. Depitre, C.,, M. Delmee,, V. Avesani,, R. L'Haridon,, A. Roels,, M. Popoff,, and G. Corthier. 1993. Serogroup F strains of Clostridium difficile produce toxin B but not toxin A. J. Med. Microbiol. 38:434441.
3. Fekety, R. 1997. Guidelines for the diagnosis and management of Clostridium difficile-associated diarrhea and colitis. American College of Gastroenterology, Practice Parameters Committee. Am. J. Gastroenterol. 92:739750.
4. Gerding, D. N.,, S. Johnson,, L. R. Peterson,, M. E. Mulligan,, and J. Silva, Jr. 1995. Clostridium difficile-associated diarrhea and colitis. Infect. Control Hosp. Epidemiol. 16:459477.
5. Gerding, D. N.,, M. M. Olson,, L. R. Peterson,, D. G. Teasley,, R. L. Gebhard,, M. L. Schwartz,, and J. T. Lee, Jr. 1986. Clostridium difficile-associated diarrhea and colitis in adults. A prospective case-controlled epidemiologic study. Arch. Intern. Med. 146:95100.
6. Johnson, S.,, and D. N. Gerding. 1998. Clostridium difficile-associated diarrhea: a review. Clin. Infect. Dis.26:10271034.
7. Kader, H. A.,, D. A. Piccoli,, A. F. Jawad,, K. L. McGowan,, and E. S. Maller. 1998. Single toxin detection is inadequate to diagnose Clostridium difficile diarrhea in pediatric patients. Gastroenterology 115:13291334.
8. Landry, M. L.,, J. Topal,, D. Ferguson,, D. Giudetti,, and Y. Tang. 2001. Evaluation of Biosite Triage Clostridium difficile panel for rapid detection of Clostridium difficile in stool samples. J. Clin. Microbiol. 39:18551858.
9. Lyerly, D.,, H. Krivan,, and T. Wilkins. 1988. Clostridium difficile: its diseases and toxins. Clin. Microbiol. Rev.1:118.
10. Lyerly, D. M.,, D. W. Ball,, J. Toth,, and T. D. Wilkins. 1988. Characterization of cross-reactive proteins detected by Culturette brand rapid latex test for Clostridium difficile. J. Clin. Microbiol. 26:397400.
11. Moncrief, J. S.,, L. Zheng,, L. M. Neville,, and D. M. Lyerly. 2000. Genetic characterization of toxin A-negative, toxin B-positive Clostridium difficile isolates by PCR. J. Clin. Microbiol. 38:30723075.
12. Mylonakis, E.,, E. T. Ryan,, and S. B. Calderwood. 2001. Clostridium difficile-associated diarrhea: a review. Arch. Intern. Med. 161:525533.
13. O'Connor, D.,, P. Hynes,, M. Cormican,, E. Collins,, G. Corbett-Feeney,, and M. Cassidy. 2001. Evaluation of methods for detection of toxins in specimens of feces submitted for diagnosis of Clostridium difficile-associated diarrhea. J. Clin. Microbiol. 39:28462849.
14. Peach, S. L.,, S. P. Borriello,, H. Gaya,, F. E. Barclay,, and A. R. Welch. 1986. Asymptomatic carriage of Clostridium difficile in patients with cystic fibrosis. J. Clin. Pathol. 39:10131018.
15. Turgeon, D. K.,, T. J. Novicki,, J. Quick,, L. Carlson,, P. Miller,, B. Ulness,, A. Cent,, R. Ashley,, A. Larson,, M. Coyle,, A. P. Limaye,, B. T. Cookson,, and T. R. Fritsche. 2003. Six rapid tests for direct detection of Clostridium difficile and its toxins in fecal samples compared with the fibroblast cytotoxicity assay. J. Clin. Microbiol. 41:667670.
16. Viscidi, R.,, S. Willey,, and J. G. Bartlett. 1981. Isolation rates and toxigenic potential of Clostridium difficile isolates from various populations. Gastroenterology 81:59.
17. Wilson, K. H. 1993. The microbiology of Clostridium difficile. Clin. Infect. Dis. 16(suppl. 4):S214S218.
1. Blaser, M. J. 1998. Helicobacters are indigenous to the human stomach: duodenal ulceration is due to changes in gastric microecology in the modern era. Gut 43:721727.
2. Blaser, M. J. 1999. Hypothesis: the changing relationships of Helicobacter pylori and humans: implications for health and disease. J. Infect. Dis. 179:15231530.
3. Chey, W. D. 2000. Accurate diagnosis of Helicobacter pylori.14C-urea breath test. Gastroenterol. Clin. N. Am. 29:895902.
4.Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
5. Dunn, B. E.,, H. Cohen,, and M. J. Blaser. 1997. Helicobacter pylori. Clin. Microbiol. Rev. 10:720741.
6. Laheij, R. J. F.,, H. Straatman,, J. B. M. J. Jansen,, and A. L. M. Verbeek. 1998. Evaluation of commercially available Helicobacter pylori serology kits: a review. J. Clin. Microbiol. 36:28032809.
7. Laine, L.,, D. Chung,, C. Stein,, I. El-Beblawi,, V. Sharma,, and P. Chandra-Soma. 1996. The influence of size or number of biopsies on rapid urease test results: a prospective evaluation. Gastroinest. Endosc. 43:4953.
8. Laine, L.,, R. Estrada,, D. N. Lewin,, and H. Cohen. 1996. The influence of warming on rapid urease test results—a prospective evaluation. Gastrointest. Endosc. 44:429432.
9. Laine, L.,, D. Lewin,, W. Naritoku,, R. Estrada,, and H. Cohen. 1996. Prospective comparison of commercially available rapid urease tests for the diagnosis of Helicobacter pylori. Gastrointest. Endosc. 44:523526.
10. Leung, W. K.,, and D. Y. Graham. 2000. Clarithromycin for Helicobacter pylori infection. Exp. Opin. Pharmacother. 1:507514.
11. Marshall, B. J.,, and J. R. Warren. 1984. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet i:13111315.
12. Piccolomini, R.,, G. Di Bonaventura,, D. Festi,, G. Catamo,, F. Laterza,, and M. Neri. 1997. Optimal combination of media for primary isolation of Helicobacter pylori from gastric biopsy specimens. J. Clin. Microbiol. 35:15411544.
13. Vaira, D.,, P. Malfertheiner,, F. Mégraud,, A. T. R. Axon,, M. Deltenre,, A. M. Hirschl,, G. Gasbarrini,, C. O'Morain,, J. M. Pajares Garcia,, M. Quina,, G. N. J. Tytgat, and the HpSA European Study Group. 1999. Diagnosis of Helicobacter pylori infection with a new non-invasive antigen-based assay. Lancet 354:3033.
14. Weir, S.,, B. Cuccherini,, A. M. Whitney,, M. L. Ray,, J. P. MacGregor,, A. Steigerwalt,, M. I. Daneshvar,, R. Weyant,, B. Wray,, J. Steele,, W. Strober,, and V. J. Gill. 1999. Recurrent bacteremia caused by a “Flexispira”like organism in a patient with X-linked (Bruton's) agammaglobulinemia. J. Clin. Microbiol. 37:24392445.
1. Evangelista, A. T.,, A. L. Truant,, and P. Bourbeau,. 2002. Rapid systems and instruments for the identification of bacteria, p. 3839. In A. L. Truant (ed.), Manual of Commercial Methods in Microbiology. ASM Press, Washington, DC.
2. Oderda, G.,, A. Rapa,, B. Ronchi,, P. Lerro,, M. Pastore,, A. Staiano,, G. L. de` Angelis,, and P. Strisciuglio. 2000. Detection of Helicobacter pylori in stool specimens by non-invasive antigen enzyme immunoassay in children: multicentre Italian study. BMJ 320:347348.
3. Vaira, D.,, P. Malfertheiner,, F. Me`graud,, A. Axon,, M. Deltenre,, A. M. Hirschl,, G. Gasbarrini,, C. O'Morain,, J. M. Pajares,, M. Quina,, G. N. J. Tytgat, and the HpSA European Study Group. 1999. Diagnosis of Helicobacter pylori infection with a new noninvasive antigen-based assay. Lancet 354:3033.
4. Vaira, D.,, N. Vakil,, M. Menegatti,, B. van Hoff,, C. Ricci,, L. Gatta,, G. Gasbarrini,, and M. Quina. 2002. The stool antigen test for detection of Helicobacter pylori after eradication therapy. Ann. Intern. Med. 136:280287.
1.Centers for Disease Control and Prevention. 1994. Preventing the spread of vancomycin resistance—report from the Hospital Infection Control Practices Advisory Committee. Fed. .Regist. 59:2575825763.
2.Centers for Disease Control and Prevention. 1995. Recommendations for preventing the spread ovancomycin resistance: recommendations of the Hospital Infection Control Practices Advisory Committee (HICPAC). MMWR Morb. Mortal. Wkly. Rep. 44(RR-12): 113.
3.Clinical and Laboratory Standards Institute. 2006. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically, 7th ed. Approved standard M7-A7. Clinical and Laboratory Standards Institute, Wayne, PA.
4.Clinical and Laboratory Standards Institute. 2004. Quality Assurance for Commercially Prepared Microbiological Culture Media, 3rd ed. Approved standard M22-A3. Clinical and Laboratory Standards Institute, Wayne, PA.
5.Difco Laboratories. 1984. Difco Manual, 10th ed., p. 129131. Difco Laboratories, Detroit, MI.
6. Edberg, C. E.,, C. J. Hardalo,, C. Kontnick,, and S. Campbell. 1994. Rapid detection of vancomycin-resistant enterococci. J. Clin. Microbiol. 32:21822184.
7. Gold, H. S. 2001. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin. Infect. Dis. 33:210219.
8. Ieven, M.,, E. Vercauteren,, P. Descheemaeker,, F. van Laer,, and H. Goossens. 1999. Comparison of direct plating and broth enrichment culture for the detection of intestinal colonization by glycopeptide-resistant enterococci among hospitalized patients. J. Clin. Microbiol. 37:14361440.
9. Landman, D.,, J. M. Quale,, E. Oydna,, B. Willey,, V. Ditore,, M. Zaman,, K. Patel,, G. Saurina,, and W. Huang. 1996. Comparison of five selective media for identifying fecal carriage of vancomycin-resistant enterococci. J. .Clin. .Microbiol. 34:751752.
10. Ledeboer, N. A.,, K. Das,, M. Eveland,, C. Roger-Dalbert,, S. Mailler,, S. Chatellier,, and W. M. Dunne. 2007. Evaluation of a novel chromogenic agar medium for isolation and differentiation of vancomycin-resistant Enterococcus sfaecium mand Enterococcus sfae-calis. J. .Clin. .Microbiol. 44:45614563.
11. Willey, B. M.,, R. N. Jones,, A. McGeer,, W. Witte,, G. French,, R. B. Roberts,, S. G. Jenkins,, H. Nadler,, and D. E. Low. 1999. Practical approach to the identification of clinically relevant Enterococcus species. Diagn. Microbiol. Infect. Dis. 34:165171.
120. Boyce, J. M. 1997. Vancomycin-resistant enterococcus: detection, epidemiology and control measures. Infect. Dis. Clin. N. Am. 11:367368.

Tables

Generic image for table
Table 3.8.1-1

Commonly used primary plating and broth media for isolation of and

Either bile salts, deoxycholate, or Selenite is present in each medium to inhibit gram-positive microbiota. Abbreviations: D, differential; E, enriched; S, selective. Ferric ammonium citrate reacts with hydrogen sulfide (HS) from organism to produce black color of colony.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-2

Special highly selective media for specific pathogen requests

Incubate at 37°C in O unless otherwise stated.

Since as many as 20% of asymptomatic hospitalized patients may be colonized with , tests for the presence of toxin in stool are more specific for diagnosis of -associated diarrhea. Isolation of the organism should only be done for epidemiological studies, with confirmation that the isolated strain is a toxin producer. CCFA (containing cycloserine, cefoxitin, fructose, egg yolk, and neutral red) can also be used for isolation. Do not use a medium with neutral red to demonstrate colonial fluorescence ( ).

Prepare TCBS fresh for use from powder or by melting previously prepared or purchased “deeps.” If made from powder, boil but do not autoclave prior to use.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-3a

QC of specialized media for detection of fecal pathogens

Abbreviations are as follows. A, for testing nutritive properties. Inoculate each medium with 10 µl of a 1:100 dilution of standardized cell suspension (0.5 McFarland). If isolated colonies are not obtained, use a 10-fold-lighter inoculum. B, for testing selective properties. Inoculate each medium with 10 µl of a 1:10 dilution of standardized cell suspension (0.5 McFarland). Although ATCC strains are listed, any organism that will yield the identical result is acceptable. For medium abbreviations, refer to Table 3.8.1-2 .

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-3b

QC of specialized media for detection of fecal pathogens

Abbreviations are as follows. A, for testing nutritive properties. Inoculate each medium with 10 µl of a 1:100 dilution of standardized cell suspension (0.5 McFarland). If isolated colonies are not obtained, use a 10-fold-lighter inoculum. B, for testing selective properties. Inoculate each medium with 10 µl of a 1:10 dilution of standardized cell suspension (0.5 McFarland). Although ATCC strains are listed, any organism that will yield the identical result is acceptable. For medium abbreviations, refer to Table 3.8.1-2 .

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-4

Microscopic and gross observations of fecal specimens associated with various infections

Data are only a guideline, and in any infection, observations are variable. For example, only 50% of -associated cases of diarrhea demonstrate the presence of PMNs.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-5

Biochemical differentiation of selected members of the group

Symbols: −, =9% of strains positive; V, 10 to 89% of strains positive; +, ≥90% of strains positive.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.1-6

Summary of detection media and identification methods for fecal pathogens

For species, see procedure 3.8.2. NA, not applicable.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–1a

Taxonomic position, known sources, and common disease associations of , , , and related species

able adapted from reference .

All organisms listed belong to rRNA superfamily VI. Organisms in boldface type are associated wih human sources. Validly published or most commonly used nomenclature of the taxa described are given priority, with superseded (in quotation marks) or less common nomenclature given in parentheses. Names that have not been validly published are given in single quotation marks. Abbreviations: CNW, catalase negative—weak; NNC, nitrate-negative ; NARTC, NA-resistant thermophilic ; CLO, -like organism; IDO, intracellular organism.

Likely phylogenetic position of taxon in rRNA superfamily VI based on 16S rRNA sequence comparisons or DNA-DNA hybridization data.

Biovar descriptions conform with recent suggestions by On ( ).

Original phylogenetic position in rRNA superfamily VI emended with reference to available 16S rRNA sequence comparisons. Brackets indicate that the taxon is generically misnamed.

The proposed name of ‘’ did not distinguish between the two phylogenetically distinct taxa referred to as ‘ 1’ and ‘ 2.’

Taxonomic position based upon marked morphological similarity to ‘’ spp.

Most current taxonomy indicates to be indistinguishable from ( ).

canadensis is a newly described agent of human gastroenteritis and is closely related to ( ).

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–1b

Taxonomic position, known sources, and common disease associations of , , , and related species

able adapted from reference .

All organisms listed belong to rRNA superfamily VI. Organisms in boldface type are associated wih human sources. Validly published or most commonly used nomenclature of the taxa described are given priority, with superseded (in quotation marks) or less common nomenclature given in parentheses. Names that have not been validly published are given in single quotation marks. Abbreviations: CNW, catalase negative—weak; NNC, nitrate-negative ; NARTC, NA-resistant thermophilic ; CLO, -like organism; IDO, intracellular organism.

Likely phylogenetic position of taxon in rRNA superfamily VI based on 16S rRNA sequence comparisons or DNA-DNA hybridization data.

Biovar descriptions conform with recent suggestions by On ( ).

Original phylogenetic position in rRNA superfamily VI emended with reference to available 16S rRNA sequence comparisons. Brackets indicate that the taxon is generically misnamed.

The proposed name of ‘’ did not distinguish between the two phylogenetically distinct taxa referred to as ‘ 1’ and ‘ 2.’

Taxonomic position based upon marked morphological similarity to ‘’ spp.

Most current taxonomy indicates to be indistinguishable from ( ).

canadensis is a newly described agent of human gastroenteritis and is closely related to ( ).

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–1c

Taxonomic position, known sources, and common disease associations of , , , and related species

able adapted from reference .

All organisms listed belong to rRNA superfamily VI. Organisms in boldface type are associated wih human sources. Validly published or most commonly used nomenclature of the taxa described are given priority, with superseded (in quotation marks) or less common nomenclature given in parentheses. Names that have not been validly published are given in single quotation marks. Abbreviations: CNW, catalase negative—weak; NNC, nitrate-negative ; NARTC, NA-resistant thermophilic ; CLO, -like organism; IDO, intracellular organism.

Likely phylogenetic position of taxon in rRNA superfamily VI based on 16S rRNA sequence comparisons or DNA-DNA hybridization data.

Biovar descriptions conform with recent suggestions by On ( ).

Original phylogenetic position in rRNA superfamily VI emended with reference to available 16S rRNA sequence comparisons. Brackets indicate that the taxon is generically misnamed.

The proposed name of ‘’ did not distinguish between the two phylogenetically distinct taxa referred to as ‘ 1’ and ‘ 2.’

Taxonomic position based upon marked morphological similarity to ‘’ spp.

Most current taxonomy indicates to be indistinguishable from ( ).

canadensis is a newly described agent of human gastroenteritis and is closely related to ( ).

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–2

Human disease associations of species by clinical syndrome

GI, gastrointestinal.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–3

Commercial systems for generating microaerobic environments and the approximate atmospheric content

This system produces negligible H and may not grow H-requiring species.

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Table 3.8.2–4

Phenotypic reactions of clinically important and species

+, positive reaction; 0, negative reaction; w, weakly positive; V, variable reaction, NA, not available. See procedure 3.8.4 for identification.

Urease-positive thermophilic campylobacters or -like strains may be found ( ).

Growth at 42°C; catalase negativity suggests .

/CLO1B can be separated by DNA homology tests. /CLO1B, , and can be definitively identified by cellular fatty acid analysis ( ).

Rare subsp. fetus strains are aerobic.

These species are historically sensitive to NA; however, resistant strains are seen in as high as 35% of isolates due to acquired fluoroquinolone resistance, which may make this assay less useful in identification.

HS in TSI suggests .

There are isolated reports of species that are urease producing other than ( ).

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Untitled

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Untitled

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Untitled

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8
Generic image for table
Untitled

Citation: Garcia L. 2010. Fecal and Other Gastrointestinal Cultures and Toxin Assays, p 209-268. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch3.8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error