1887

Chapter 4.8 : Rapid Enzymatic Systems for the Identification of Anaerobes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Rapid Enzymatic Systems for the Identification of Anaerobes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap4_8-1.gif /docserver/preview/fulltext/10.1128/9781555817435/9781555815271_Chap4_8-2.gif

Abstract:

Rapid identification of anaerobes can be accomplished with commercially available microsystems that detect preformed enzymes within a few hours, eliminating the need for growth of the isolates ( ). The systems that are available are listed in Table 4.8-1 . In a study that recently surveyed what methods laboratories were using to identify isolated anaerobes, 66% reported using a system that detected preformed enzymes ( ). The systems listed in Table 4.8-1 require only 4 h of aerobic incubation after inoculation with a turbid suspension of the organism equivalent to a no. 3 or 4 McFarland standard. There are differences in the numbers and types of organisms included in each database as well as in the substrates that are used for differentiation. Some use fluorogenic and some use chromogenic substrates. Most require some reagent addition after incubation, before reading. Database and numerical identification profiles are provided for each system.

Citation: Garcia L. 2010. Rapid Enzymatic Systems for the Identification of Anaerobes, p 740-744. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch4.8
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817435.chap4.8
1. Burlage, R. S.,, and P. D. Ellner. 1985. Comparison of the PRAS II, An-Ident, and RapID-ANA systems for identification of anaerobic bacteria. J. Clin. Microbiol. 22: 32 35
2. Cavallaro, J. J.,, L. S. Wiggs,, and J. M. Miller. 1997. Evaluation of the BBL Crystal anaerobe identification system. J. Clin. Microbiol. 35: 3186 3191.
3. Celig, D. M.,, and P. C. Shreckenberger. 1991. Clinical evaluation of the RapID-ANA panel for identification of anaerobic bacteria. J. Clin. Microbiol. 29: 457 462.
4. Dellinger, C. A.,, and L. V. H. Moore. 1986. Use of the RapID-ANA system to screen for enzyme activities that differ among species of bile-inhibited Bacteroides. J. Clin. Microbiol. 23: 289 293.
5. Goldstein, E. J.,, D. M. Citron,, P. J. Goldman,, and R. J. Goldman. 2008. National hospital survey of anaerobic culture and susceptibility methods: III. Anaerobe 14: 68 72.
6. Jenkins, S. A.,, D. B. Drucker,, M. G. L. Keanly,, and L. A. Langull. 1991. Evaluation of the Rapid ID 32A system for the identification of Bacteroides fragilis and related organisms. J. Appl. Bacteriol. 71: 360 365.
7. Karachewski, N. O.,, E. L. Busch,, and C. L. Wells. 1985. Comparison of PRAS II, RapID ANA, and API 20A systems for identification of anaerobic bacteria. J. Clin. Microbiol. 21: 122 126.
8. Moll, W. M.,, J. Ungerechts,, G. Marklein,, and K. P. Schaal. 1996. Comparison of BBL Crystal ANR ID kit and API Rapid ID 32 A for identification of anaerobic bacteria. Zentralbl. Bakteriol. 284: 329 347.
9. Moncla, B. J.,, P. Braham,, L. K. Rabe,, and S. L. Hillier. 1991. Rapid presumptive identification of black-pigmented gram-negative anaerobic bacteria by using 4-methylumbelli-ferone derivatives. J. Clin. Microbiol. 29: 1955 1958.
10. Nagy, E.,, E. Urbán,, J. Sóki,, G. Terhes,, and K. Nagy. 2006. The place of molecular genetic methods in the diagnostics of human pathogenic anaerobic bacteria. A minireview. Acta Microbiol. Immunol. Hung. 53: 183 194.
11. Porschen, R. K.,, and E. H. Spaulding. 1974. Phosphatase activity of anaerobic organisms. Appl. Microbiol. 27: 744.
12. Rennie, R. P.,, C. Brosnikoff,, L. Turnbull,, L. B. Reller,, S. Mirrett,, W. Janda,, K. Ristow,, and A. Krilcich. 2008. Multicenter evaluation of the Vitek 2 anaerobe and Coryne-bacterium identification card. J. Clin. Microbiol. 46: 2646 2651.
13. Santala, A.-M.,, N. Sarkonen,, V. Hall,, P. Carlson,, H. Jousimies-Somer,, and E. Könönen. 2004. Evaluation of four commercial test systems for identification of Actinomyces and some closely related species. J. Clin. Microbiol. 42: 418 420.
14. Schreckenberger, P. C.,, D. M. Celig,, and W. M. Janda. 1988. Clinical evaluation of the Vitek ANI card for identification of anaerobic bacteria. J. Clin. Microbiol. 26: 225 230.
15. Simmon, K. E.,, S. Mirrett,, L. B. Reller,, and C. A. Petti. 2008. Genotypic diversity of an-aerobic isolates from bloodstream infections. J. Clin. Microbiol. 46: 1596 1601.
16. Stoakes, L.,, K. M. Kelly,, K. Manarin,, B. Schieven,, R. Lannigan,, D. Groves,, and Z. Hussain. 1990. Accuracy and reproducibility of the MicroScan rapid anaerobe identification system with an automated reader. J. Clin. Microbiol. 28: 1135 1138.
17. Song, Y. 2005. Anaerobiosis: molecular biology, genetics and other aspects—minireview. PCR-based diagnostics for anaerobic infections. Anaerobe 11: 79 91.
18. Woo, P. C.,, S. K. Lau,, J. L. Teng,, H. Tse,, and K. Y. Yuen. 2008. Then and now: use of 16S rDNA gene sequencing for bacterial identification and discovery of novel bacteria in clinical laboratories. Clin. Microbiol. Infect. 14: 908 934.

Tables

Generic image for table
Table 4.8-1

Characteristics of rapid identification systems

bioMérieux, Inc., Hazelwood, MO.

Remel, Inc., Lenexa, KS.

Siemens MicroScan, Inc., West Sacramento, CA.

bioMérieux, Inc., Hazelwood, MO.

BD Biosciences, Sparks, MD.

Citation: Garcia L. 2010. Rapid Enzymatic Systems for the Identification of Anaerobes, p 740-744. In Clinical Microbiology Procedures Handbook, 3rd Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817435.ch4.8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error