1887

Chapter 1 : New Technologies for Studying Biofilms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

New Technologies for Studying Biofilms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817466/9781555817459_Chap01-2.gif

Abstract:

The results of recent biofilm characterizations have helped reveal the complexities of these surface-associated communities of microorganisms. The activities of the cells and the structure of the extracellular matrix material demonstrate that biofilm bacteria engage in a variety of physiological behaviors that are distinct from planktonic cells ( ). For example, bacteria in biofilms are adapted to growth on surfaces, and most produce adhesins and extracellular polymers that allow the cells to firmly adhere to the surfaces or to neighboring cells ( ). The extracellular material of biofilms contains polysaccharides, proteins, and DNA that form a glue-like substance for adhesion to the surface and for the three-dimensional (3D) biofilm architecture ( ). The matrix material, although produced by the individual cells, forms structures that provide benefits for the entire community, including protection of the cells from various environmental stresses ( ). Biofilm cells form a community and engage in intercellular signaling activities ( ). Diffusible signaling molecules and metabolites provide cues for expression of genes that may benefit the entire community, such as genes for production of extracellular enzymes that allow the biofilm bacteria to utilize complex nutrient sources ( ). Biofilm cells are not static. Many microorganisms have adapted to surface-associated motility, such as twitching and swarming motility ( ). Cellular activities, including matrix production, intercellular signaling, and surface-associated swarming motility suggest that biofilms engage in communal activities. As a result, biofilms have been compared to multicellular organs where cells differentiate with specialized functions ( ). However, bacteria do not always cooperate with each other. Biofilms are also sites of intense competition. The bacteria within biofilms compete for nutrients and space by producing toxic chemicals to inhibit or kill neighboring cells or inject toxins directly into neighboring cells through type VI secretion ( ). Therefore, biofilm cells exhibit both communal and competitive activities.

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Examples of methods for biofilm cultivation under static conditions. (A) Biofilm cultured at the air-water interface, forming a pellicle. Published with permission from reference . (B) Biofilm cultured on a glass coupon under static conditions. Published with permission from reference . (C) Example of biofilm growth as a colony biofilm. Published with permission from reference . doi:10.1128/microbiolspec.MB-0016-2014.f1

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Examples of continuous-flow reactors for biofilm cultivation. (A) CDC reactor with medium inlet and outlet ports. Biofilms form on coupons arranged on removable Teflon rods. Published with permission from reference . (B) Drip-flow reactor with medium inlet and outlet ports and air exchange ports. Biofilms form on removable slides. Published with permission from reference . (C) Capillary flow cell for imaging biofilms. Published with permission from http://centerforgenomicsciences.org/research/biofilm_flow.html. doi:10.1128/microbiolspec.MB-0016-2014.f2

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Examples of microfluidics approaches applied to biofilm research. (A) Example of a microfluidics device for precise control of fluids. Published with permission from reference . (B) Biofilm streamers forming within a microfluidics flow channel. Published with permission from reference . Microdroplet biofilm reactor showing phenotypic switching of cells and simultaneous change in expression from cyan fluorescent protein to the yellow fluorescent protein Published with permission from reference . (D) Schematic representation of microfluidics flow cell. Published with permission from reference . doi:10.1128/microbiolspec.MB-0016-2014.f3

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Example of a biofilm vertical transect, showing GFP–gene expression heterogeneity. Areas were cut from different biofilm strata and captured for transcriptomics analyses. Published with permission from reference . doi:10.1128/microbiolspec.MB-0016-2014.f4

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Gene expression heterogeneity, demonstrated by translational fusions of target proteins to the yellow fluorescent protein (YFP). (A) Translational fusion of the IbpA protein to YFP, showing uniform distribution of IbpA throughout the biofilm. Cells were counterstained with mCherry fluorescent protein (mCFP). (B) Translational fusion of Rmf protein to YFP, showing that most Rmf production occurs in cells at the top of the biofilm. Cells counterstained with mCFP (M.J. Franklin, unpublished data). doi:10.1128/microbiolspec.MB-0016-2014.f5

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

(A) Images of biofilms, where the cells constitutively express the GFP. (B) Extracellular matrix material stained with Bodipy 630/650-X NHS from Life Technologies. (C) Combined image showing GFP-fluorescent bacteria and Bodipy-stained matrix (M.J. Franklin, unpublished data). doi:10.1128/microbiolspec.MB-0016-2014.f6

Citation: Franklin M, Chang C, Akiyama T, Bothner B. 2015. New Technologies for Studying Biofilms, p 1-32. In Ghannoum M, Parsek M, Whiteley M, Mukherjee P (ed), Microbial Biofilms, Second Edition. ASM Press, Washington, DC. doi: 10.1128/microbiolspec.MB-0016-2014
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817466.chap1
1. Costerton JW,, Cheng KJ,, Geesey GG,, Ladd TI,, Nickel NC,, Dosgupton M,, Marine IJ . 1987. Bacterial biofilms in nature and disease. Annu Rev Microbiol 41 : 435461.[PubMed] [CrossRef]
2. Costerton JW,, Lewandovski Z,, Caldwell DE,, Korber DR,, Lappin-Scott HM . 1995. Microbial biofilms. Annu Rev Microbiol 49 : 711745.[PubMed] [CrossRef]
3. Costerton JW,, Stewart PS,, Greenberg EP . 1999. Bacterial biofilms: a common cause of persistent infections. Science 284 : 13181322.[PubMed] [CrossRef]
4. Flemming HC,, Wingender J . 2010. The biofilm matrix. Nat Rev 8 : 623633.[PubMed] [CrossRef]
5. Hung C,, Zhou Y,, Pinkner JS,, Dodson KW,, Crowley JR,, Heuser J,, Chapman MR,, Hadjifrangiskou M,, Henderson JP,, Hultgren SJ . 2013. Escherichia coli biofilms have an organized and complex extracellular matrix structure. MBio 4 : e00645-00613. doi:10.1128/mBio.00645-13. [PubMed] [CrossRef]
6. Soto GE,, Hultgren SJ . 1999. Bacterial adhesins: common themes and variations in architecture and assembly. J Bacteriol 181 : 10591071.[PubMed]
7. Fux CA,, Costerton JW,, Stewart PS,, Stoodley P . 2005. Survival strategies of infectious biofilms. Trends Microbiol 13 : 3440.[PubMed] [CrossRef]
8. Singh R,, Ray P,, Das A,, Sharma M . 2009. Role of persisters and small-colony variants in antibiotic resistance of planktonic and biofilm-associated Staphylococcus aureus: an in vitro study. J Med Microbiol 58 : 10671073.[PubMed] [CrossRef]
9. van de Mortel M,, Halverson LJ . 2004. Cell envelope components contributing to biofilm growth and survival of Pseudomonas putida in low-water-content habitats. Mol Microbiol 52 : 735750.[PubMed] [CrossRef]
10. Davies DG,, Parsek MR,, Pearson JP,, Iglewski BH,, Costerton JW,, Greenberg EP . 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280 : 295298.[PubMed] [CrossRef]
11. De Kievit TR,, Iglewski BH . 1999. Quorum sensing, gene expression, and Pseudomonas biofilms. Methods Enzymol 310 : 117128.[PubMed] [CrossRef]
12. Fuqua WC,, Winans SC,, Greenberg EP . 1994. Quorum sensing in bacteria: the LuxR-LuxI family of cell density-responsive transcriptional regulators. J Bacteriol 176 : 269275.[PubMed]
13. Parsek MR,, Greenberg EP . 1999. Quorum sensing signals in development of Pseudomonas aeruginosa biofilms. Methods Enzymol 310 : 4355.[PubMed] [CrossRef]
14. Parsek MR,, Greenberg EP . 2000. Acyl-homoserine lactone quorum sensing in Gram-negative bacteria: a signaling mechanism involved in associations with higher organisms. Proc Natl Acad Sci USA 97 : 87898793.[PubMed] [CrossRef]
15. Passador L,, Iglewski BH, . 1995. Quorum sensing and virulence gene regulation in Pseudomonas aeruginosa , p 6578. In Roth JA , et al (ed), Virulence Mechanisms of Bacterial Pathogens. American Society for Microbiology, Washington D.C.
16. Pesci EC,, Pearson JP,, Seed PC,, Iglewski BH . 1997. Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa . J Bacteriol 179 : 31273132.[PubMed]
17. Ueda A,, Wood TK . 2009. Connecting quorum sensing, c-di-GMP, pel polysaccharide, and biofilm formation in Pseudomonas aeruginosa through tyrosine phosphatase TpbA (PA3885). PLoS Pathog 5 : e1000483. doi:10.1371/journal.ppat.1000483. [PubMed] [CrossRef]
18. Whiteley M,, Lee KM,, Greenberg EP . 1999. Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa . Proc Natl Acad Sci USA 96 : 1390413909.[PubMed] [CrossRef]
19. Zhu J,, Mekalanos JJ . 2003. Quorum sensing-dependent biofilms enhance colonization in Vibrio cholerae . Dev Cell 5 : 647656.[PubMed] [CrossRef]
20. Brint JM,, Ohman DE . 1995. Synthesis of multiple exoproducts in Pseudomonas aeruginosa is under the control of RhlR-RhlI, another set of regulators in strain PAO1 with homology to the autoinducer-responsive LuxR-LuxI family. J Bacteriol 177 : 71557163.[PubMed]
21. Pearson JP,, Pesci EC,, Iglewski BH . 1997. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of elastase and rhamnolipid biosynthesis genes. J Bacteriol 179 : 57565767.[PubMed]
22. Tielen P,, Rosenau F,, Wilhelm S,, Jaeger KE,, Flemming HC,, Wingender J . 2010. Extracellular enzymes affect biofilm formation of mucoid Pseudomonas aeruginosa . Microbiology 156 : 22392252.[PubMed] [CrossRef]
23. Glessner A,, Smith RS,, Iglewski BH,, Robinson JA . 1999. Roles of Pseudomonas aeruginosa las and rhl quorum-sensing systems in control of twitching motility. J Bacteriol 181 : 16231629.[PubMed]
24. Heydorn A,, Ersboll B,, Kato J,, Hentzer M,, Parsek MR,, Tolker-Nielsen T,, Givskov M,, Molin S . 2002. Statistical analysis of Pseudomonas aeruginosa biofilm development: impact of mutations in genes involved in twitching motility, cell-to-cell signaling, and stationary-phase sigma factor expression. Appl Environ Microbiol 68 : 20082017.[PubMed] [CrossRef]
25. Heurlier K,, Williams F,, Heeb S,, Dormond C,, Pessi G,, Singer D,, Camara M,, Williams P,, Haas D . 2004. Positive control of swarming, rhamnolipid synthesis, and lipase production by the posttranscriptional RsmA/RsmZ system in Pseudomonas aeruginosa PAO1. J Bacteriol 186 : 29362945.[PubMed] [CrossRef]
26. O’Toole GA,, Kolter R . 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol Microbiol 30 : 295304.[PubMed] [CrossRef]
27. Shrout JD,, Chopp DL,, Just CL,, Hentzer M,, Givskov M,, Parsek MR . 2006. The impact of quorum sensing and swarming motility on Pseudomonas aeruginosa biofilm formation is nutritionally conditional. Mol Microbiol 62 : 12641277.[PubMed] [CrossRef]
28. Wang Q,, Frye JG,, McClelland M,, Harshey RM . 2004. Gene expression patterns during swarming in Salmonella typhimurium: genes specific to surface growth and putative new motility and pathogenicity genes. Mol Microbiol 52 : 169187.[PubMed] [CrossRef]
29. Aguilar C,, Vlamakis H,, Losick R,, Kolter R . 2007. Thinking about Bacillus subtilis as a multicellular organism. Curr Opin Microbiol 10 : 638643.[PubMed] [CrossRef]
30. Basler M,, Ho BT,, Mekalanos JJ . 2013. Tit-for-tat: type VI secretion system counterattack during bacterial cell-cell interactions. Cell 152 : 884894.[PubMed] [CrossRef]
31. Basler M,, Pilhofer M,, Henderson GP,, Jensen GJ,, Mekalanos JJ . 2012. Type VI secretion requires a dynamic contractile phage tail-like structure. Nature 483 : 182186.[PubMed] [CrossRef]
32. Gibbs KA,, Urbanowski ML,, Greenberg EP . 2008. Genetic determinants of self identity and social recognition in bacteria. Science 321 : 256259.[PubMed] [CrossRef]
33. Moscoso JA,, Mikkelsen H,, Heeb S,, Williams P,, Filloux A . 2011. The Pseudomonas aeruginosa sensor RetS switches type III and type VI secretion via c-di-GMP signalling. Environ Microbiol 13 : 31283138.[PubMed] [CrossRef]
34. Stewart PS,, Franklin MJ . 2008. Physiological heterogeneity in biofilms. Nat Rev 6 : 199210.[PubMed] [CrossRef]
35. Becraft ED,, Cohan FM,, Kuhl M,, Jensen SI,, Ward DM . 2011. Fine-scale distribution patterns of Synechococcus ecological diversity in microbial mats of Mushroom Spring, Yellowstone National Park. Appl Environ Microbiol 77 : 76897697.[PubMed] [CrossRef]
36. Kim W,, Racimo F,, Schluter J,, Levy SB,, Foster KR . 2014. Importance of positioning for microbial evolution. Proc Natl Acad Sci USA 111 : E1639E1647.[PubMed] [CrossRef]
37. Ramsing NB,, Ferris MJ,, Ward DM . 2000. Highly ordered vertical structure of Synechococcus populations within the one-millimeter-thick photic zone of a hot spring cyanobacterial mat. Appl Environ Microbiol 66 : 10381049.[PubMed] [CrossRef]
38. Rani SA,, Pitts B,, Beyenal H,, Veluchamy RA,, Lewandowski Z,, Davison WM,, Buckingham-Meyer K,, Stewart PS . 2007. Spatial patterns of DNA replication, protein synthesis, and oxygen concentration within bacterial biofilms reveal diverse physiological states. J Bacteriol 189 : 42234233.[PubMed] [CrossRef]
39. Rasmussen K,, Lewandowski Z . 1998. Microelectrode measurements of local mass transport rates in heterogeneous biofilms. Biotechnol Bioeng 59 : 302309.[PubMed] [CrossRef]
40. Werner E,, Roe F,, Bugnicourt A,, Franklin MJ,, Heydorn A,, Molin S,, Pitts B,, Stewart PS . 2004. Stratified growth in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 70 : 61886196.[PubMed] [CrossRef]
41. Boles BR,, Thoendel M,, Singh PK . 2004. Self-generated diversity produces “insurance effects” in biofilm communities. Proc Natl Acad Sci USA 101 : 1663016635.[PubMed] [CrossRef]
42. Hansen SK,, Rainey PB,, Haagensen JA,, Molin S . 2007. Evolution of species interactions in a biofilm community. Nature 445 : 533536.[PubMed] [CrossRef]
43. Allegrucci M,, Sauer K . 2007. Characterization of colony morphology variants isolated from Streptococcus pneumoniae biofilms. J Bacteriol 189 : 20302038.[PubMed] [CrossRef]
44. Hansen SK,, Haagensen JA,, Gjermansen M,, Jorgensen TM,, Tolker-Nielsen T,, Molin S . 2007. Characterization of a Pseudomonas putida rough variant evolved in a mixed-species biofilm with Acinetobacter sp. strain C6. J Bacteriol 189 : 49324943.[PubMed] [CrossRef]
45. Kirisits MJ,, Prost L,, Starkey M,, Parsek MR . 2005. Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71 : 48094821.[PubMed] [CrossRef]
46. McEllistrem MC,, Ransford JV,, Khan SA . 2007. Characterization of in vitro biofilm-associated pneumococcal phase variants of a clinically relevant serotype 3 clone. J Clin Microbiol 45 : 97101.[PubMed] [CrossRef]
47. Valle J,, Vergara-Irigaray M,, Merino N,, Penades JR,, Lasa I . 2007. sigmaB regulates IS256-mediated Staphylococcus aureus biofilm phenotypic variation. J Bacteriol 189 : 28862896.[PubMed] [CrossRef]
48. Baty AM 3rd,, Eastburn CC,, Diwu Z,, Techkarnjanaruk S,, Goodman AE,, Geesey GG . 2000. Differentiation of chitinase-active and non-chitinase-active subpopulations of a marine bacterium during chitin degradation. Appl Environ Microbiol 66 : 35663573.[PubMed] [CrossRef]
49. Baty AM 3rd,, Eastburn CC,, Techkarnjanaruk S,, Goodman AE,, Geesey GG . 2000. Spatial and temporal variations in chitinolytic gene expression and bacterial biomass production during chitin degradation. Appl Environ Microbiol 66 : 35743585.[PubMed] [CrossRef]
50. Vlamakis H,, Aguilar C,, Losick R,, Kolter R . 2008. Control of cell fate by the formation of an architecturally complex bacterial community. Genes Dev 22 : 945953.[PubMed] [CrossRef]
51. Gelens L,, Hill L,, Vandervelde A,, Danckaert J,, Loris R . 2013. A general model for toxin-antitoxin module dynamics can explain persister cell formation in E. coli . PLoS Comput Biol 9 : e1003190. doi:10.1371/journal.pcbi.1003190. [PubMed]
52. Koh RS,, Dunlop MJ . 2012. Modeling suggests that gene circuit architecture controls phenotypic variability in a bacterial persistence network. BMC Syst Biol 6 : 47. [PubMed] [CrossRef]
53. Lewis K . 2007. Persister cells, dormancy and infectious disease. Nat Rev 5 : 4856.[PubMed] [CrossRef]
54. Mulcahy LR,, Burns JL,, Lory S,, Lewis K . 2010. Emergence of Pseudomonas aeruginosa strains producing high levels of persister cells in patients with cystic fibrosis. J Bacteriol 192 : 61916199.[PubMed] [CrossRef]
55. Denef VJ,, Mueller RS,, Banfield JF . 2010. AMD biofilms: using model communities to study microbial evolution and ecological complexity in nature. ISME J 4 : 599610.[PubMed] [CrossRef]
56. Grzymski JJ,, Murray AE,, Campbell BJ,, Kaplarevic M,, Gao GR,, Lee C,, Daniel R,, Ghadiri A,, Feldman RA,, Cary SC . 2008. Metagenome analysis of an extreme microbial symbiosis reveals eurythermal adaptation and metabolic flexibility. Proc Natl Acad Sci USA 105 : 1751617521.[PubMed] [CrossRef]
57. Inskeep WP,, Rusch DB,, Jay ZJ,, Herrgard MJ,, Kozubal MA,, Richardson TH,, Macur RE,, Hamamura N,, Jennings R,, Fouke BW,, Reysenbach AL,, Roberto F,, Young M,, Schwartz A,, Boyd ES,, Badger JH,, Mathur EJ,, Ortmann AC,, Bateson M,, Geesey G,, Frazier M . 2010. Metagenomes from high-temperature chemotrophic systems reveal geochemical controls on microbial community structure and function. PLoS One 5 : e9773. doi:10.1371/journal.pone.0009773. [CrossRef]
58. Xu P,, Gunsolley J . 2014. Application of metagenomics in understanding oral health and disease. Virulence 5 : 424432.[PubMed] [CrossRef]
59. Ishii S,, Suzuki S,, Norden-Krichmar TM,, Tenney A,, Chain PS,, Scholz MB,, Nealson KH,, Bretschger O . 2013. A novel metatranscriptomic approach to identify gene expression dynamics during extracellular electron transfer. Nat Commun 4 : 1601. [PubMed] [CrossRef]
60. Folsom JP,, Richards L,, Pitts B,, Roe F,, Ehrlich GD,, Parker A,, Mazurie A,, Stewart PS . 2010. Physiology of Pseudomonas aeruginosa in biofilms as revealed by transcriptome analysis. BMC Microbiol 10 : 294. [PubMed] [CrossRef]
61. Lenz AP,, Williamson KS,, Pitts B,, Stewart PS,, Franklin MJ . 2008. Localized gene expression in Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 74 : 44634471.[PubMed] [CrossRef]
62. Williamson KS,, Richards LA,, Perez-Osorio AC,, Pitts B,, McInnerney K,, Stewart PS,, Franklin MJ . 2012. Heterogeneity in Pseudomonas aeruginosa biofilms includes expression of ribosome hibernation factors in the antibiotic-tolerant subpopulation and hypoxia-induced stress response in the metabolically active population. J Bacteriol 194 : 20622073.[PubMed] [CrossRef]
63. Beale DJ,, Barratt R,, Marlow DR,, Dunn MS,, Palombo EA,, Morrison PD,, Key C . 2013. Application of metabolomics to understanding biofilms in water distribution systems: a pilot study. Biofouling 29 : 283294.[PubMed] [CrossRef]
64. Secor PR,, Jennings LK,, James GA,, Kirker KR,, Pulcini ED,, McInnerney K,, Gerlach R,, Livinghouse T,, Hilmer JK,, Bothner B,, Fleckman P,, Olerud JE,, Stewart PS . 2013. Phevalin (aureusimine B) production by Staphylococcus aureus biofilm and impacts on human keratinocyte gene expression. PLoS One 7 : e40973. doi:10.1371/journal.pone.0040973. [PubMed] [CrossRef]
65. Klayman BJ,, Klapper I,, Stewart PS,, Camper AK . 2008. Measurements of accumulation and displacement at the single cell cluster level in Pseudomonas aeruginosa biofilms. Environ Microbiol 10 : 23442354.[PubMed] [CrossRef]
66. Lam AJ,, St-Pierre F,, Gong Y,, Marshall JD,, Cranfill PJ,, Baird MA,, McKeown MR,, Wiedenmann J,, Davidson MW,, Schnitzer MJ,, Tsien RY,, Lin MZ . 2012. Improving FRET dynamic range with bright green and red fluorescent proteins. Nat Methods 9 : 10051012.[PubMed] [CrossRef]
67. Shaner NC,, Lin MZ,, McKeown MR,, Steinbach PA,, Hazelwood KL,, Davidson MW,, Tsien RY . 2008. Improving the photostability of bright monomeric orange and red fluorescent proteins. Nat Methods 5 : 545551.[PubMed] [CrossRef]
68. Shaner NC,, Steinbach PA,, Tsien RY . 2005. A guide to choosing fluorescent proteins. Nat Methods 2 : 905909.[PubMed] [CrossRef]
69. McLoon AL,, Kolodkin-Gal I,, Rubinstein SM,, Kolter R,, Losick R . 2011. Spatial regulation of histidine kinases governing biofilm formation in Bacillus subtilis . J Bacteriol 193 : 679685.[PubMed] [CrossRef]
70. Allesen-Holm M,, Barken KB,, Yang L,, Klausen M,, Webb JS,, Kjelleberg S,, Molin S,, Givskov M,, Tolker-Nielsen T . 2006. A characterization of DNA release in Pseudomonas aeruginosa cultures and biofilms. Mol Microbiol 59 : 11141128.[PubMed] [CrossRef]
71. Baird FJ,, Wadsworth MP,, Hill JE . 2012. Evaluation and optimization of multiple fluorophore analysis of a Pseudomonas aeruginosa biofilm. J Microbiol Methods 90 : 192196.[PubMed] [CrossRef]
72. Chen MY,, Lee DJ,, Tay JH,, Show KY . 2007. Staining of extracellular polymeric substances and cells in bioaggregates. Appl Microbiol Biotechnol 75 : 467474.[PubMed] [CrossRef]
73. Gloag ES,, Turnbull L,, Huang A,, Vallotton P,, Wang H,, Nolan LM,, Mililli L,, Hunt C,, Lu J,, Osvath SR,, Monahan LG,, Cavaliere R,, Charles IG,, Wand MP,, Gee ML,, Prabhakar R,, Whitchurch CB . 2013. Self-organization of bacterial biofilms is facilitated by extracellular DNA. Proc Natl Acad Sci USA 110 : 1154111546.[PubMed] [CrossRef]
74. Amann R,, Ludwig W . 2000. Ribosomal RNA-targeted nucleic acid probes for studies in microbial ecology. FEMS Microbiol Rev 24 : 555565.[PubMed] [CrossRef]
75. Brileya KA,, Camilleri LB,, Fields MW . 2014. 3D-fluorescence in situ hybridization of intact, anaerobic biofilm. Methods Mol Biol 1151 : 189197.[PubMed] [CrossRef]
76. DeLong EF,, Wickham GS,, Pace NR . 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243 : 13601363.[PubMed] [CrossRef]
77. Moller S,, Pedersen AR,, Poulsen LK,, Arvin E,, Molin S . 1996. Activity and three-dimensional distribution of toluene-degrading Pseudomonas putida in a multispecies biofilm assessed by quantitative in situ hybridization and scanning confocal laser microscopy. Appl Environ Microbiol 62 : 46324640.[PubMed]
78. Schramm A,, De Beer D,, Wagner M,, Amann R . 1998. Identification and activities in situ of Nitrosospira and Nitrospira spp. as dominant populations in a nitrifying fluidized bed reactor. Appl Environ Microbiol 64 : 34803485.[PubMed]
79. Hornemann JA,, Codd SL,, Fell RJ,, Stewart PS,, Seymour JD . 2009. Secondary flow mixing due to biofilm growth in capillaries of varying dimensions. Biotechnol Bioeng 103 : 353360.[PubMed] [CrossRef]
80. Hornemann JA,, Lysova AA,, Codd SL,, Seymour JD,, Busse SC,, Stewart PS,, Brown JR . 2008. Biopolymer and water dynamics in microbial biofilm extracellular polymeric substance. Biomacromolecules 9 : 23222328.[PubMed] [CrossRef]
81. O’Toole GA,, Kolter R . 1998. Initiation of biofilm formation in Pseudomonas fluorescens WCS365 proceeds via multiple, convergent signalling pathways: a genetic analysis. Mol Microbiol 28 : 449461.[PubMed] [CrossRef]
82. Ceri H,, Olson ME,, Stremick C,, Read RR,, Morck D,, Buret A . 1999. The Calgary biofilm device: new technology for rapid determination of antibiotic susceptibilities of bacterial biofilms. J Clin Microbiol 37 : 17711776.[PubMed]
83. Branda SS,, González-Pastor JE,, Ben-Yehuda S,, Losick R,, Kolter R . 2001. Fruiting body formation by Bacillus subtilis . Proc Natl Acad Sci USA 98 : 1162111626.[PubMed] [CrossRef]
84. Chimileski S,, Franklin MJ,, Papke RT . 2014. Biofilms formed by the archaeon Haloferax volcanii exhibit cellular differentiation and social motility, and facilitate horizontal gene transfer. BMC Biol 12 : 65. [PubMed] [CrossRef]
85. Wentland E,, Stewart PS,, Huang C-T,, McFeters GA . 1996. Spatial variations in growth rate within Klebsiella pneumoniae colonies and biofilm. Biotechnol Prog 12 : 316321.[PubMed] [CrossRef]
86. Huang C,, McFeters G,, Stewart P . 1996. Evaluation of physiological staining, cryoembedding, and autofluorescence quenching techniques on fouling biofilms. Biofouling 9 : 269277.[CrossRef]
87. Anderl JN,, Franklin MJ,, Stewart PS . 2000. Role of antibiotic penetration limitation in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob Agents Chemother 44 : 18181824.[PubMed] [CrossRef]
88. Goeres DM,, Loetterle LR,, Hamilton MA,, Murga R,, Kirby DW,, Donlan RM . 2005. Statistical assessment of a laboratory method for growing biofilms. Microbiology 151 : 757762.[PubMed] [CrossRef]
89. Goeres DM,, Hamilton MA,, Beck NA,, Buckingham-Meyer K,, Hilyard JD,, Loetterle LR,, Lorenz LA,, Walker DK,, Stewart PS . 2009. A method for growing a biofilm under low shear at the air-liquid interface using the drip flow biofilm reactor. Nat Protoc 4 : 783788.[PubMed] [CrossRef]
90. Lawrence JR,, Korber DR,, Hoyle BD,, Costerton JW,, Caldwell DE . 1991. Optical sectioning of microbial biofilms. J Bacteriol 173 : 65586567.[PubMed]
91. Nivens DE,, Ohman DE,, Williams J,, Franklin MJ . 2001. Role of alginate and its O acetylation in formation of Pseudomonas aeruginosa microcolonies and biofilms. J Bacteriol 183 : 10471057.[PubMed] [CrossRef]
92. Stapper AP,, Narasimhan G,, Ohman DE,, Barakat J,, Hentzer M,, Molin S,, Kharazmi A,, Hoiby N,, Mathee K . 2004. Alginate production affects Pseudomonas aeruginosa biofilm development and architecture, but is not essential for biofilm formation. J Med Microbiol 53 : 679690.[PubMed] [CrossRef]
93. Xu KD,, Franklin MJ,, Park CH,, McFeters GA,, Stewart PS . 2001. Gene expression and protein levels of the stationary phase sigma factor, RpoS, in continuously-fed Pseudomonas aeruginosa biofilms. FEMS Microbiol Lett 199 : 6771.[PubMed] [CrossRef]
94. Lewandowski Z,, Beyenal H . 2001. Limiting-current-type microelectrodes for quantifying mass transport dynamics in biofilms. Methods Enzymol 337 : 339359.[PubMed] [CrossRef]
95. Dunsmore BC,, Jacobsen A,, Hall-Stoodley L,, Bass CJ,, Lappin-Scott HM,, Stoodley P . 2002. The influence of fluid shear on the structure and material properties of sulphate-reducing bacterial biofilms. J Ind Microbiol Biotechnol 29 : 347353.[PubMed] [CrossRef]
96. Rani SA,, Pitts B,, Stewart PS . 2005. Rapid diffusion of fluorescent tracers into Staphylococcus epidermidis biofilms visualized by time lapse microscopy. Antimicrob Agents Chemother 49 : 728732.[PubMed] [CrossRef]
97. Xi C,, Marks D,, Schlachter S,, Luo W,, Boppart SA . 2006. High-resolution three-dimensional imaging of biofilm development using optical coherence tomography. J Biomed Opt 11 : 34001. [PubMed] [CrossRef]
98. Sackmann EK,, Fulton AL,, Beebe DJ . 2014. The present and future role of microfluidics in biomedical research. Nature 507 : 181189.[PubMed] [CrossRef]
99. Groisman A,, Lobo C,, Cho H,, Campbell JK,, Dufour YS,, Stevens AM,, Levchenko A . 2005. A microfluidic chemostat for experiments with bacterial and yeast cells. Nature Methods 2 : 685689.[PubMed] [CrossRef]
100. Leung K,, Zahn H,, Leaver T,, Konwar KM,, Hanson NW,, Pagé AP,, Lo C-C,, Chain PS,, Hallam SJ,, Hansen CL . 2012. A programmable droplet-based microfluidic device applied to multiparameter analysis of single microbes and microbial communities. Proc Natl Acad Sci USA 109 : 76657670.[PubMed] [CrossRef]
101. Locke JC,, Elowitz MB . 2009. Using movies to analyse gene circuit dynamics in single cells. Nat Rev Microbiol 7 : 383392.[PubMed] [CrossRef]
102. Nichols D,, Cahoon N,, Trakhtenberg E,, Pham L,, Mehta A,, Belanger A,, Kanigan T,, Lewis K,, Epstein S . 2010. Use of ichip for high-throughput in situ cultivation of “uncultivable” microbial species. Appl Environ Microbiol 76 : 24452450.[PubMed] [CrossRef]
103. Weibel DB,, DiLuzio WR,, Whitesides GM . 2007. Microfabrication meets microbiology. Nat Rev Microbiol 5 : 209218.[PubMed] [CrossRef]
104. Wessel AK,, Hmelo L,, Parsek MR,, Whiteley M . 2013. Going local: technologies for exploring bacterial microenvironments. Nat Rev Microbiol 11 : 337348.[PubMed] [CrossRef]
105. Boedicker JQ,, Li L,, Kline TR,, Ismagilov RF . 2008. Detecting bacteria and determining their susceptibility to antibiotics by stochastic confinement in nanoliter droplets using plug-based microfluidics. Lab Chip 8 : 12651272.[PubMed] [CrossRef]
106. Zhang Q,, Lambert G,, Liao D,, Kim H,, Robin K,, Tung C-K,, Pourmand N,, Austin RH . 2011. Acceleration of emergence of bacterial antibiotic resistance in connected microenvironments. Science 333 : 17641767.[PubMed] [CrossRef]
107. Balaban NQ,, Merrin J,, Chait R,, Kowalik L,, Leibler S . 2004. Bacterial persistence as a phenotypic switch. Science 305 : 16221625.[PubMed] [CrossRef]
108. Gefen O,, Gabay C,, Mumcuoglu M,, Engel G,, Balaban NQ . 2008. Single-cell protein induction dynamics reveals a period of vulnerability to antibiotics in persister bacteria. Proc Natl Acad Sci USA 105 : 61456149.[PubMed] [CrossRef]
109. Boedicker JQ,, Vincent ME,, Ismagilov RF . 2009. Microfluidic confinement of single cells of bacteria in small volumes initiates high-density behavior of quorum sensing and growth and reveals Its variability. Angew Chem Int Ed Engl 48 : 59085911.[PubMed] [CrossRef]
110. Balagaddé FK,, You L,, Hansen CL,, Arnold FH,, Quake SR . 2005. Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309 : 137140.[PubMed] [CrossRef]
111. Rowat AC,, Bird JC,, Agresti JJ,, Rando OJ,, Weitz DA . 2009. Tracking lineages of single cells in lines using a microfluidic device. Proc Natl Acad Sci USA 106 : 1814918154.[PubMed] [CrossRef]
112. Wang P,, Robert L,, Pelletier J,, Dang WL,, Taddei F,, Wright A,, Jun S . 2010. Robust growth of Escherichia coli . Curr Biol 20 : 10991103.[PubMed] [CrossRef]
113. Ottesen EA,, Hong JW,, Quake SR,, Leadbetter JR . 2006. Microfluidic digital PCR enables multigene analysis of individual environmental bacteria. Science 314 : 14641467.[PubMed] [CrossRef]
114. Baret J-C,, Miller OJ,, Taly V,, Ryckelynck M,, El-Harrak A,, Frenz L,, Rick C,, Samuels ML,, Hutchison JB,, Agresti JJ . 2009. Fluorescence-activated droplet sorting (FADS): efficient microfluidic cell sorting based on enzymatic activity. Lab Chip 9 : 18501858.[PubMed] [CrossRef]
115. Gomez-Sjoberg R,, Morisette DT,, Bashir R . 2005. Impedance microbiology-on-a-chip: microfluidic bioprocessor for rapid detection of bacterial metabolism. J Microelectromechanic Syst 14 : 829838.[CrossRef]
116. Mach AJ,, Di Carlo D . 2010. Continuous scalable blood filtration device using inertial microfluidics. Biotechnol Bioeng 107 : 302311.[PubMed] [CrossRef]
117. Wu Z,, Willing B,, Bjerketorp J,, Jansson JK,, Hjort K . 2009. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells. Lab Chip 9 : 11931199.[PubMed] [CrossRef]
118. Mao H,, Cremer PS,, Manson MD . 2003. A sensitive, versatile microfluidic assay for bacterial chemotaxis. Proc Natl Acad Sci USA 100 : 54495454.[PubMed] [CrossRef]
119. Stocker R,, Seymour JR,, Samadani A,, Hunt DE,, Polz MF . 2008. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. Proc Natl Acad Sci USA 105 : 42094214.[PubMed] [CrossRef]
120. Connell JL,, Wessel AK,, Parsek MR,, Ellington AD,, Whiteley M,, Shear JB . 2010. Probing prokaryotic social behaviors with bacterial “lobster traps.” MBio 1 : e00202-00210. doi:10.1128/mBio.00202-10. [PubMed] [CrossRef]
121. Eun Y-J,, Weibel DB . 2009. Fabrication of microbial biofilm arrays by geometric control of cell adhesion. Langmuir 25 : 46434654.[PubMed] [CrossRef]
122. Kim KP,, Kim Y-G,, Choi C-H,, Kim H-E,, Lee S-H,, Chang W-S,, Lee C-S . 2010. In situ monitoring of antibiotic susceptibility of bacterial biofilms in a microfluidic device. Lab Chip 10 : 32963299.[PubMed] [CrossRef]
123. Kim J,, Hegde M,, Kim SH,, Wood TK,, Jayaraman A . 2012. A microfluidic device for high throughput bacterial biofilm studies. Lab Chip 12 : 11571163.[PubMed] [CrossRef]
124. Skolimowski M,, Nielsen MW,, Emnéus J,, Molin S,, Taboryski R,, Sternberg C,, Dufva M,, Geschke O . 2010. Microfluidic dissolved oxygen gradient generator biochip as a useful tool in bacterial biofilm studies. Lab Chip 10 : 21622169.[PubMed] [CrossRef]
125. Lee J-H,, Kaplan J,, Lee W . 2008. Microfluidic devices for studying growth and detachment of Staphylococcus epidermidis biofilms. Biomed Microdevices 10 : 489498.[PubMed] [CrossRef]
126. Rusconi R,, Lecuyer S,, Guglielmini L,, Stone HA . 2010. Laminar flow around corners triggers the formation of biofilm streamers. J R Soc Interface 7 : 12931299.[PubMed] [CrossRef]
127. Drescher K,, Shen Y,, Bassler BL,, Stone HA . 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. Proc Natl Acad Sci USA 110 : 43454350.[PubMed] [CrossRef]
128. Seminara A,, Angelini TE,, Wilking JN,, Vlamakis H,, Ebrahim S,, Kolter R,, Weitz DA,, Brenner MP . 2011. Osmotic spreading of Bacillus subtilis biofilms driven by an extracellular matrix. Proc Natl Acad Sci USA 109 : 11161121.[PubMed] [CrossRef]
129. Wilking JN,, Angelini TE,, Seminara A,, Brenner MP,, Weitz DA . 2011. Biofilms as complex fluids. MRS Bull 36 : 385391.[CrossRef]
130. Hohne DN,, Younger JG,, Solomon MJ . 2009. Flexible microfluidic device for mechanical property characterization of soft viscoelastic solids such as bacterial biofilms. Langmuir 25 : 77437751.[PubMed] [CrossRef]
131. De La Fuente L,, Montanes E,, Meng Y,, Li Y,, Burr TJ,, Hoch H,, Wu M . 2007. Assessing adhesion forces of type I and type IV pili of Xylella fastidiosa bacteria by use of a microfluidic flow chamber. Appl Environ Microbiol 73 : 26902696.[PubMed] [CrossRef]
132. Nadell CD,, Bassler BL . 2011. A fitness trade-off between local competition and dispersal in Vibrio cholerae biofilms. Proc Natl Acad Sci USA 108 : 1418114185.[PubMed] [CrossRef]
133. Hong SH,, Hegde M,, Kim J,, Wang X,, Jayaraman A,, Wood TK . 2012. Synthetic quorum-sensing circuit to control consortial biofilm formation and dispersal in a microfluidic device. Nat Commun 3 : 613. [PubMed] [CrossRef]
134. Metzker ML . 2010. Sequencing technologies: the next generation. Nat Rev Genet 11 : 3146.[PubMed] [CrossRef]
135. Flusberg BA,, Webster DR,, Lee JH,, Travers KJ,, Olivares EC,, Clark TA,, Korlach J,, Turner SW . 2010. Direct detection of DNA methylation during single-molecule, real-time sequencing. Nat Methods 7 : 461465.[PubMed] [CrossRef]
136. Goddard AF,, Staudinger BJ,, Dowd SE,, Joshi-Datar A,, Wolcott RD,, Aitken ML,, Fligner CL,, Singh PK . 2012. Direct sampling of cystic fibrosis lungs indicates that DNA-based analyses of upper-airway specimens can misrepresent lung microbiota. Proc Natl Acad Sci USA 109 : 1376913774.[PubMed] [CrossRef]
137. Chivian D,, Brodie EL,, Alm EJ,, Culley DE,, Dehal PS,, DeSantis TZ,, Gihring TM,, Lapidus A,, Lin LH,, Lowry SR,, Moser DP,, Richardson PM,, Southam G,, Wanger G,, Pratt LM,, Andersen GL,, Hazen TC,, Brockman FJ,, Arkin AP,, Onstott TC . 2008. Environmental genomics reveals a single-species ecosystem deep within Earth. Science 322 : 275278.[PubMed] [CrossRef]
138. Dick GJ,, Andersson AF,, Baker BJ,, Simmons SL,, Thomas BC,, Yelton AP,, Banfield JF . 2009. Community-wide analysis of microbial genome sequence signatures. Genome Biol 10 : R85. [PubMed] [CrossRef]
139. Goltsman DS,, Dasari M,, Thomas BC,, Shah MB,, VerBerkmoes NC,, Hettich RL,, Banfield JF . 2013. New group in the Leptospirillum clade: cultivation-independent community genomics, proteomics, and transcriptomics of the new species “Leptospirillum group IV UBA BS.” Appl Environ Microbiol 79 : 53845393.[PubMed] [CrossRef]
140. Yelton AP,, Comolli LR,, Justice NB,, Castelle C,, Denef VJ,, Thomas BC,, Banfield JF . 2013. Comparative genomics in acid mine drainage biofilm communities reveals metabolic and structural differentiation of co-occurring archaea. BMC Genomics 14 : 485. [PubMed] [CrossRef]
141. Inskeep WP,, Jay ZJ,, Herrgard MJ,, Kozubal MA,, Rusch DB,, Tringe SG,, Macur RE,, Jennings R,, Boyd ES,, Spear JR,, Roberto FF . 2013. Phylogenetic and functional analysis of metagenome sequence from high-temperature archaeal habitats demonstrate linkages between metabolic potential and geochemistry. Front Microbiol 4 : 95. [PubMed] [CrossRef]
142. Klatt CG,, Wood JM,, Rusch DB,, Bateson MM,, Hamamura N,, Heidelberg JF,, Grossman AR,, Bhaya D,, Cohan FM,, Kuhl M,, Bryant DA,, Ward DM . 2011. Community ecology of hot spring cyanobacterial mats: predominant populations and their functional potential. ISME J 5 : 12621278.[PubMed] [CrossRef]
143. Klatt CG,, Inskeep WP,, Herrgard MJ,, Jay ZJ,, Rusch DB,, Tringe SG,, Niki Parenteau M,, Ward DM,, Boomer SM,, Bryant DA,, Miller SR . 2013. Community structure and function of high-temperature chlorophototrophic microbial mats inhabiting diverse geothermal environments. Front Microbiol 4 : 106. [PubMed] [CrossRef]
144. Hasan NA,, Young BA,, Minard-Smith AT,, Saeed K,, Li H,, Heizer EM,, McMillan NJ,, Isom R,, Abdullah AS,, Bornman DM,, Faith SA,, Choi SY,, Dickens ML,, Cebula TA,, Colwell RR . 2014. Microbial community profiling of human saliva using shotgun metagenomic sequencing. PLoS One 9 : e97699. doi:10.1371/journal.pone.0097699. [PubMed] [CrossRef]
145. Wang J,, Qi J,, Zhao H,, He S,, Zhang Y,, Wei S,, Zhao F . 2013. Metagenomic sequencing reveals microbiota and its functional potential associated with periodontal disease. Sci Rep 3 : 1843. [PubMed] [CrossRef]
146. Lozupone CA,, Stombaugh J,, Gonzalez A,, Ackermann G,, Wendel D,, Vazquez-Baeza Y,, Jansson JK,, Gordon JI,, Knight R . 2013. Meta-analyses of studies of the human microbiota. Genome Res 23 : 17041714.[PubMed] [CrossRef]
147. Turnbaugh PJ,, Ley RE,, Hamady M,, Fraser-Liggett CM,, Knight R,, Gordon JI . 2007. The human microbiome project. Nature 449 : 804810.[PubMed] [CrossRef]
148. Turnbaugh PJ,, Hamady M,, Yatsunenko T,, Cantarel BL,, Duncan A,, Ley RE,, Sogin ML,, Jones WJ,, Roe BA,, Affourtit JP,, Egholm M,, Henrissat B,, Heath AC,, Knight R,, Gordon JI . 2009. A core gut microbiome in obese and lean twins. Nature 457 : 480484.[PubMed] [CrossRef]
149. Fullwood MJ,, Wei CL,, Liu ET,, Ruan Y . 2009. Next-generation DNA sequencing of paired-end tags (PET) for transcriptome and genome analyses. Genome Res 19 : 521532.[PubMed] [CrossRef]
150. Bankevich A,, Nurk S,, Antipov D,, Gurevich AA,, Dvorkin M,, Kulikov AS,, Lesin VM,, Nikolenko SI,, Pham S,, Prjibelski AD,, Pyshkin AV,, Sirotkin AV,, Vyahhi N,, Tesler G,, Alekseyev MA,, Pevzner PA . 2012. SPAdes: a new genome assembly algorithm and its applications to single-cell sequencing. J Comput Biol 19 : 455477.[PubMed] [CrossRef]
151. Huson DH,, Auch AF,, Qi J,, Schuster SC . 2007. MEGAN analysis of metagenomic data. Genome Res 17 : 377386.[PubMed] [CrossRef]
152. Huson DH,, Richter DC,, Mitra S,, Auch AF,, Schuster SC . 2009. Methods for comparative metagenomics. BMC Bioinformatics 10(Suppl 1): S12. [PubMed] [CrossRef]
153. Namiki T,, Hachiya T,, Tanaka H,, Sakakibara Y . 2012. MetaVelvet: an extension of Velvet assembler to de novo metagenome assembly from short sequence reads. Nucleic Acids Res 40 : e155. [PubMed] [CrossRef]
154. Zerbino DR,, Birney E . 2008. Velvet: algorithms for de novo short read assembly using de Bruijn graphs. Genome Res 18 : 821829.[PubMed] [CrossRef]
155. McLean RJ,, Kakirde KS . 2013. Enhancing metagenomics investigations of microbial interactions with biofilm technology. Int J Mol Sci 14 : 2224622257.[PubMed] [CrossRef]
156. Blainey PC . 2013. The future is now: single-cell genomics of bacteria and archaea. FEMS Microbiol Rev 37 : 407427.[PubMed] [CrossRef]
157. Landry ZC,, Giovanonni SJ,, Quake SR,, Blainey PC . 2013. Optofluidic cell selection from complex microbial communities for single-genome analysis. Methods Enzymol 531 : 6190.[PubMed] [CrossRef]
158. McLean JS,, Lombardo MJ,, Badger JH,, Edlund A,, Novotny M,, Yee-Greenbaum J,, Vyahhi N,, Hall AP,, Yang Y,, Dupont CL,, Ziegler MG,, Chitsaz H,, Allen AE,, Yooseph S,, Tesler G,, Pevzner PA,, Friedman RM,, Nealson KH,, Venter JC,, Lasken RS . 2013. Candidate phylum TM6 genome recovered from a hospital sink biofilm provides genomic insights into this uncultivated phylum. Proc Natl Acad Sci USA 110 : E2390E2399.[PubMed] [CrossRef]
159. Dean FB,, Hosono S,, Fang L,, Wu X,, Faruqi AF,, Bray-Ward P,, Sun Z,, Zong Q,, Du Y,, Du J,, Driscoll M,, Song W,, Kingsmore SF,, Egholm M,, Lasken RS . 2002. Comprehensive human genome amplification using multiple displacement amplification. Proc Natl Acad Sci USA 99 : 52615266.[PubMed] [CrossRef]
160. Hentzer M,, Eberl L,, Givskov M . 2005. Transcriptome analysis of Pseudomonas aeruginosa biofilm development: anaerobic respiration and iron limitation. Biofilms 2 : 3762.[CrossRef]
161. Mikkelsen H,, Duck Z,, Lilley KS,, Welch M . 2007. Interrelationships between colonies, biofilms, and planktonic cells of Pseudomonas aeruginosa . J Bacteriol 189 : 24112416.[PubMed] [CrossRef]
162. Schoolnik GK,, Voskuil MI,, Schnappinger D,, Yildiz FH,, Meibom K,, Dolganov NA,, Wilson MA,, Chong KH . 2001. Whole genome DNA microarray expression analysis of biofilm development by Vibrio cholerae O1 E1 Tor. Methods Enzymol 336 : 318.[PubMed] [CrossRef]
163. Waite RD,, Paccanaro A,, Papakonstantinopoulou A,, Hurst JM,, Saqi M,, Littler E,, Curtis MA . 2006. Clustering of Pseudomonas aeruginosa transcriptomes from planktonic cultures, developing and mature biofilms reveals distinct expression profiles. BMC Genomics 7 : 162. [PubMed] [CrossRef]
164. Whiteley M,, Bangera MG,, Bumgarner RE,, Parsek MR,, Teitzel GM,, Lory S,, Greenberg EP . 2001. Gene expression in Pseudomonas aeruginosa biofilms. Nature 413 : 860864.[PubMed] [CrossRef]
165. Barrett T,, Wilhite SE,, Ledoux P,, Evangelista C,, Kim IF,, Tomashevsky M,, Marshall KA,, Phillippy KH,, Sherman PM,, Holko M,, Yefanov A,, Lee H,, Zhang N,, Robertson CL,, Serova N,, Davis S,, Soboleva A . 2013. NCBI GEO: archive for functional genomics data sets: update. Nucleic Acids Res 41 : D991D995.[PubMed] [CrossRef]
166. Edgar R,, Domrachev M,, Lash AE . 2002. Gene Expression Omnibus: NCBI gene expression and hybridization array data repository. Nucleic Acids Res 30 : 207210.[PubMed] [CrossRef]
167. Stead MB,, Marshburn S,, Mohanty BK,, Mitra J,, Pena Castillo L,, Ray D,, van Bakel H,, Hughes TR,, Kushner SR . 2011. Analysis of Escherichia coli RNase E and RNase III activity in vivo using tiling microarrays. Nucleic Acids Res 39 : 31883203.[PubMed] [CrossRef]