1887

Chapter 12 : Culture Techniques

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Culture Techniques , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap12-2.gif

Abstract:

This chapter talks about the main culture techniques for microbial growth. It first describes the solid, semisolid, biphasic, membrane surface, and immobilized culture techniques. This is followed by laboratory scale liquid culture techniques including specialized liquid cultures such as synchronous and dialysis cultures. Solid media are also used in mass culture, bioautography, and physiological studies of bacterial cells. Solid culture is one of the most useful techniques in the isolation and cultivation from single cells. The solid surface usually is that of an agar or otherwise solidified medium. Semisolid media are also useful in chemotaxis studies. For example, a semisolid medium containing an oxidizable carbon and energy source can be used to investigate positive chemotaxis in , , , and many other species. Laboratory scale liquid cultures provide one of the most common techniques to grow and study the behavior of microorganisms. The section on energetics and stoichiometry describes the theoretical aspects of microbial growth focusing on the electron acceptor and donor and the carbon and nitrogen sources. There are two basic principles underlying dialysis culture. First, it provides a means for achieving substrate limited growth. Second, dialysis culture provides a means for lowering the concentration of a diffusible metabolite product inhibitory to growth; the product in the culture chamber diffuses through the membrane and is diluted in the larger dialysate reservoir, thus relieving the feedback inhibition by the product that normally regulates its production.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12

Key Concept Ranking

Marine Red Macroalgae
0.4688368
Chemicals
0.4263405
Lactic Acid Bacteria
0.41526365
Acetic Acid Bacteria
0.4120937
0.4688368
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Thick glass culture tube with butyl rubber stoppers and aluminum crimp caps useful in isolation and culturing of anaerobic microorganisms.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic of an anaerobic continuous stirred tank reactor with separate pumps for supplying substrate and nutrients, effluent pump with water seal, and gas collection line. For smaller systems with multiple reactors, syringe pumps with multiple ports can be used.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap12
1. Abe, C. 1997. Rapid diagnosis of tuberculosis. Kekkaku 72:659672. (In Japanese.)
2. Adler, J. 1966. Chemotaxis in bacteria. Science 153:708716.
3. Babbar, S. B.,, and N. Jain. 1998. ‘Isubgol’ as an alternative gelling agent in plant tissue culture media. Plant Cell Rep. 17:318322.
4. Balch, W. E.,, and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32:781791.
5. Banik, R. M.,, B. Kanari,, and S. N. Upadhyay. 2000. Exopolysaccharide of the gellan family: prospects and potential. World J. Microbiol. Biotechnol. 16:407414.
6. Bannur, M.,, R. P. Fule,, A. M. Saoji,, and V. L. Jahagirdar. 1995. Study of bacteraemia using conventional and biphasic culture methods. Indian J. Pathol. Microbiol. 38:147151.
7. Bhattacharya, P.,, S. Dey,, and B. C. Bhattacharyya. 1994. Use of low-cost gelling agents and support matrices for industrial-scale plant-tissue culture. Plant Cell Tissue Organ Cult. 37:1523.
8. Boin, M. A.,, M. J. Austin,, and C. C. Hase. 2004. Chemotaxis in Vibrio cholerae. FEMS Microbiol. Lett. 239: 18.
9. Bridson, E. Y.,, and A. Brecker,. 1970. Design and formulation of culture media, p. 229295. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 3A. Academic Press, Inc., New York, NY.
10. Bromke, B. J.,, and M. Furiga. 1991. Carrageenan is a desirable substitute for agar in media growing Trichomonas vaginalis. J. Microbiol. Methods 13:6165.
11. Bryant, J., 1970. Anti foam agents, p. 187203. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
12. Chan, E. C. S.,, A. DeCiccio,, R. McLaughlin,, A. Klitorinos,, and R. Siboo. 1997. An inexpensive solid medium for obtaining colony-forming units of oral spirochetes. Oral Microbiol. Immunol. 12:372376.
13. Chang, H. N.,, I. K. Yoo,, and B. S. Kim. 1994. Highdensity cell-culture by membrane-based cell recycle. Biotechnol. Adv. 12:467487.
14. Chiovitti, A.,, G. T. Kraft,, A. Bacic,, D. J. Craik,, S. L. A. Munro,, and M. L. Liao. 1998. Carrageenans from Australian representatives of the family Cystocloniaceae (Gigartinales, Rhodophyta), with description of Calliblepharis celatospora sp. nov., and transfer of Austroclonium to the family Areschougiaceae. J. Phycol. 34:515535.
15. Deming, J. W.,, and J. A. Baross. 1986. Solid medium for culturing black smoker bacteria at temperatures to 120°C. Appl. Environ. Microbiol. 51:238243.
16. Diaz, E.,, R. Amils,, and J. Sanz. 2003. Molecular ecology of anaerobic granular sludge grown at different conditions. Water Sci. Technol. 48:5764.
17. Dickson, J. S.,, T. R. Manke,, I. V. Wesley,, and A. L. Baetz. 1996. Biphasic culture of Arcobacter spp. Lett. Appl. Microbiol. 22:195198.
18. Dunn, I. J.,, and J. R. Mor. 1975. Variable volume continuous culture. Biotechnol. Bioeng. 17:18051822.
19. Elsworth, R. 1972. The value and use of dissolved oxygen measurement in deep culture. Chem. Eng. 258:6371.
20. Epifanio, E. C.,, R. L. Veroy,, F. Uyenco,, G. J. B. Cajipe,, and E. C. Laserna. 1981. Carrageenan from Eucheuma striatum (Schmitz) in bacteriological media. Appl. Environ. Microbiol. 41:155158.
21. Evans, J. B. 1975. Preparation of synchronous cultures of Escherichia coli by continuous flow size selection. J. Gen. Microbiol. 91:188190.
22. Fass, R.,, T. R. Clem,, and J. Shiloach. 1989. Use of a novel air separation system in a fed batch fermentative culture of Escherichia coli. Appl. Environ. Microbiol. 55:13051307.
23. Finn, R. K. 1954. Agitation aeration in the laboratory and in industry. Bacteriol. Rev. 18:254274.
24. Freedman, D., 1970. The shaker in bioengineering, p. 175185. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
25. Funk, H. B.,, and T. A. Krulwich. 1964. Preparation of clear silica gels that can be streaked. J. Bacteriol. 88:12001201.
26. Gallup, D. M.,, and P. Gerhardt. 1963. Dialysis fermentor systems for concentrated culture of microorganisms. Appl. Microbiol. 11:506512.
27. Gardener, S.,, and J. G. Jones. 1984. A new solidifying agent for culture media which liquefies on cooling. J. Gen. Microbiol. 130:731733.
28. Gerhardt, P.,, and C. G. Hedn. 1960. Concentrated culture of gonococci in clear liquid medium. Proc. Soc. Exp. Biol. Med. 105:4951.
29. Gerhardt, P.,, J. M. Quarles,, T. C. Beaman,, and R. C. Belding. 1977. Ex vivo hemodialysis culture of microbial and mammalian cells. J. Infect. Dis. 135:4250.
30. Giavasis, I.,, L. M. Harvey,, and B. McNeil. 2000. Gellan gum. Crit. Rev. Biotechnol. 20:177211.
31. Gibb, A. P.,, and S. Wong. 1998. Inhibition of PCR by agar from bacteriological transport media. J. Clin. Microbiol. 36:275276.
32. Harshey, R. M. 2003. Bacterial motility on a surface: many ways to a common goal. Annu. Rev. Microbiol. 57:249273.
33. Hongo, M.,, Y. Nomura,, and M. Iwahara. 1986. Novel method of lactic acid production by electrodialysis fermentation. Appl. Environ. Microbiol. 52:314319.
34. Hoshino, K.,, M. Yuzuriha,, S. Morohashi,, S. Kagaya,, and M. Taniguchi. 2002. Production of laccase by membranesurface liquid culture with nonwoven fabric of Coriolus versicolor. Biol. Syst. Eng. 830:108120.
35. Ishizaki, A. 2003. Advanced continuous fermentation for anaerobic microorganism. Ferment. Biotechnol. 862:2135.
36. Jain, N.,, S. Gupta,, and S. B. Babbar. 1997. Isubgol as an alternative gelling agent for microbial culture media. J. Plant Biochem. Biotechnol. 6:129131.
37. Jenkins, J. A.,, and P. W. Taylor. 1995. An alternative bacteriological medium for the isolation of Aeromonas spp. J. Wildl. Dis. 31:272275.
38. Jin, H.,, N. K. Lee,, M. K. Shin,, S. K. Kim,, D. L. Kaplan,, and J. W. Lee. 2003. Production of gellan gum by Sphingomonas paucimobilis NK2000 with soybean pomace. Biochem. Eng. J. 16:357360.
39. Kelly, D. J. 2001. The physiology and metabolism of Campylobacter jejuni and Helicobacter pylori. J. Appl. Microbiol. 90:16S24S.
40. Krieg, N. R.,, and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40:107130.
41. Kriukov, V. R. 1981. Development of hydrogen bacteria on hard surfaces. Mikrobiologiia 50:299304.
42. Kubitschek, H. E. 1987. Buoyant density variation during the cell cycle in microorganisms. Crit. Rev. Microbiol. 14:7397.
43. Landwall, P.,, and T. Holme. 1977. Removal of inhibitors of bacterial growth by dialysis culture. J. Gen. Microbiol. 103:345352.
44. Laserna, E. C.,, F. Uyenco,, E. Epifanio,, R. L. Veroy,, and G. J. B. Cajipe. 1981. Carrageenan from Eucheuma striatum (Schmitz) in media for fungal and yeast cultures. Appl. Environ. Microbiol. 42:174175.
45. Lim, H. C.,, B. J. Chen,, and C. C. Creagan. 1977. An analysis of extended and exponentially fed batch cultures. Biotechnol. Bioeng. 19:425433.
46. Lin, C. C.,, and J. L. E. Casida. 1984. Gelrite as a gelling agent in media for growth of thermophilic microorganisms. Appl. Environ. Microbiol. 47:427429.
47. Lines, A. D. 1977. Value of the K+ salt of carrageenan as an agar substitute in routine bacteriological media. Appl. Environ. Microbiol. 34:637639.
48. Lloyd, D. L.,, J. C. Edwards,, and A. H. Chagla. 1975. Synchronous cultures of micro organisms: large scale preparation by continuous flow size selection. J. Gen. Microbiol. 88:153158.
49. Lux, R.,, and W. Shi. 2004. Chemotaxis-guided movements in bacteria. Crit. Rev. Oral. Biol. Med. 15:207220.
50. Markx, G. H.,, C. L. Davey,, and D. B. Kell. 1991. The permittistat: a novel type of turbidostat. J. Gen. Microbiol. 137:735743.
51. Mattiasson, B.,, and O. Holst (ed.). 1991. Extractive Bioconversions. Marcel Dekker, Inc., New York, NY.
52. McBride, M. J. 2004. Cytophaga flavobacterium gliding motility. J. Mol. Microbiol. Biotechnol. 7:6371.
53. Miller, C. W.,, M. H. Nguyen,, M. Rooney,, and K. Kailasapathy. 2003. Novel apparatus to measure diffusion in gel type foods. Food Australia 9:432435.
54. Mitchison, J. W.,, and W. S. Vincent. 1965. Preparation of synchronous cell cultures by sedimentation. Nature 205:987989.
55. Munson, R. J., 1970. Turbidostats, p. 349376. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
56. Nipkow, A.,, J. G. Zeikus,, and P. Gerhardt. 1989. Microfiltration cell recycle pilot system for continuous thermoanaerobic production of exoamylase. Biotechnol. Bioeng. 34:10751084.
57. Nordbring Hertz, B.,, M. Veenhuis,, and W. Harder. 1984. Dialysis membrane technique for ultrastructural studies of microbial interactions. Appl. Environ. Microbiol. 47:195197.
58. Norton, S.,, and J. C. Vuillemard. 1994. Food bioconversions and metabolite production using immobilized cell technology. Crit. Rev. Biotechnol. 14:193224.
59. Okon, Y.,, S. L. Albrecht,, and R. H. Burris. 1976. Carbon and ammonia metabolism of Spirillum lipoferum. J. Bacteriol. 128:592597.
60. Olson, M. S.,, R. M. Ford,, J. A. Smith,, and E. J. Fernandez. 2004. Quantification of bacterial chemotaxis in porous media using magnetic resonance imaging. Environ. Sci. Technol. 38:38643870.
61. Papapetropoulou, M.,, G. Rodopoulou,, and E. Giannoulaki. 1995. Improved glutaminate-starch-penicillin agar for the isolation and enumeration of Aeromonas hydrophila from seawater by membrane filtration. Pathol. Biol. (Paris) 43:622627.
62. Parkinson, S. M.,, M. Wainwright,, and K. Killham. 1989. Observations on oligotrophic growth of fungi on silica-gel. Mycol. Res. 93:529534.
63. Pirt, J. S. 1975. Principles of Microbe and Cell Cultivation. John Wiley & Sons, Inc., New York, NY.
64. Pol, L. W. H.,, S. I. D. Lopes,, G. Lettinga,, and P. N. L. Lens. 2004. Anaerobic sludge granulation. Water Res. 38:13761389.
65. Poole, R. K. 1977. Fluctuations in buoyant density during the cell cycle of Escherichia coli K12: significance for the preparation of synchronous cultures by age selection. J. Gen. Microbiol. 98:177186.
66. Portner, R.,, and I. H. Mark. 1998. Dialysis cultures. Appl. Microbiol. Biotechnol. 50:403414.
67. Quarles, J. M.,, R. C. Belding,, T. C. Beaman,, and P. Gerhardt. 1974. Hemodialysis culture of Serratia marcescens in a goat artificial kidney fermentor system. Infect. Immun. 9:550558.
68. Rabe, L. K.,, and S. L. Hillier. 2003. Optimization of media for detection of hydrogen peroxide production by Lactobacillus species. J. Clin. Microbiol. 41:32603264.
69. Ramirez, A.,, R. Gutierrez,, G. Diaz,, C. Gonzalez,, N. Perez,, S. Vega,, and M. Noa. 2003. High-performance thin-layer chromatography-bioautography for multiple antibiotic residues in cow’s milk. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 784:315322.
70. Rath, P. M.,, and D. Schmidt. 2001. Gellan gum as a suitable gelling agent in microbiological media for PCR applications. J. Med. Microbiol. 50:108109.
71. Reeslev, M.,, and A. Kjoller. 1995. Comparison of biomass dry weights and radial growth-rates of fungal colonies on media solidified with different gelling compounds. Appl. Environ. Microbiol. 61:42364239.
72. Roehrig, K. L. 1984. Carbohydrate Biochemistry and Metabolism. The AVI Publishing Company, Westport, CT.
73. Rule, P. L.,, and A. D. Alexander. 1986. Gellan gum as a substitute for agar in leptospiral media. J. Clin. Microbiol. 23:500504.
74. Sahay, S. 1999. The use of psyllium (isubgol) as an alternative gelling agent for microbial culture media. World J. Microbiol. Biotechnol. 15:733735.
75. Schiraldi, C.,, V. Adduci,, V. Valli,, C. Maresca,, M. Giuliano,, M. Lamberti,, M. Carteni,, and M. De Rosa. 2003. High cell density cultivation of probiotics and lactic acid production. Biotechnol. Bioeng. 82:213222.
76. Schmidt, D.,, and P. M. Rath. 2003. Faster genetic identification of medically important aspergilli by using gellan gum as gelling agent in mycological media. J. Med. Microbiol. 52:653655.
77. Schultz, J. S.,, and P. Gerhardt. 1969. Dialysis culture of microorganisms: design, theory, and results. Bacteriol. Rev. 33:147.
78. Segerer, A. H.,, and K. O. Stetter,. 1992. The genus Thermoplasma, p. 712718. In A. Balows,, H. G. Thiper,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer Verlag KG, Berlin, Germany.
79. Segerer, A. H.,, and K. O. Stetter,. 1992. The order Sulfolobales, p. 684701. In A. Balows,, H. G. Thiper,, M. Dworkin,, W. Harder,, and K. H. Schleifer (ed.), The Prokaryotes. A Handbook on the Biology of Bacteria: Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer Verlag KG, Berlin, Germany.
80. Shadowen, R. D.,, and C. V. Sciortino. 1989. Improved growth of Campylobacter pylori in a biphasic system. J. Clin. Microbiol. 27:17441747.
81. Shiloach, J.,, and S. Bauer. 1975. High yield growth of E. coli at different temperatures in a bench scale fermentor. Biotechnol. Bioeng. 17:227239.
82. Shiloach, J.,, M. V. d. Walle,, J. B. Kaufman,, and R. Fass,. 1991. High density growth of microorganisms for protein production, p. 3346. In M. D. White,, S. Reuveny,, and A. Shafferman (ed.), Biologicals from Recombinant Microorganisms and Animal Cells. VCH Publishers, New York, NY.
83. Shungu, D.,, M. Valiant,, V. Tutlane,, E. Weinberg,, B. Weissberger,, L. Koupal,, H. Gadebusch,, and E. Stapley. 1983. Gelrite as an agar substitute in bacteriological media. Appl. Environ. Microbiol. 46:840845.
84. Sirotnak, F. M.,, G. J. Donati,, and D. J. Hutchison. 1963. Folic acid derivatives synthesized during growth of Diplococcus pneumoniae. J. Bacteriol. 85:658665.
85. Sneath, P. H. A. 1955. Failure of Chromobacterium violaceum to grow on nutrient agar, attributed to hydrogen peroxide. J. Gen. Microbiol. 13:i.
86. Sommers, L. E.,, and R. F. Harris. 1968. Routine preparation of silica gel media using silicate solutions of varying pH. J.Bacteriol. 95:1174.
87. Stecher, B.,, S. Hapfelmeier,, C. Muller,, M. Kremer,, T. Stallmach,, and W. D. Hardt. 2004. Flagella and chemotaxis are required for efficient induction of Salmonella enterica serovar Typhimurium colitis in streptomycinpretreated mice. Infect. Immun. 72:41384150.
88. Stelling, J. 2004. Mathematical models in microbial systems biology. Curr. Opin. Microbiol. 7:513518.
89. Stieber, R. W. 1979. Dialysis Continuous Processes for Microbial Fermentations: Mathematical Models, Computer Simulations, and Experimental Tests. Ph.D. thesis. Michigan State University, East Lansing.
90. Stieber, R. W.,, and P. Gerhardt. 1979. Dialysis continuous process for ammonium lactate fermentation: improved mathematical model and use of deproteinized whey. Appl. Environ. Microbiol. 37:487495.
91. Sutherland, I. W. 1999. Microbial polysaccharide products. Biotechnol. Genet. Eng. Rev. 16:217229.
92. Sworn, G.,, G. R. Sanderson,, and W. Gibson. 1995. Gellan gum fluid gels. Food Hydrocolloids 9:265271.
93. Szurmant, H.,, and G. W. Ordal. 2004. Diversity in chemotaxis mechanisms among the bacteria and archaea. Microbiol. Mol. Biol. Rev. 68:301319.
94. Towle, G. A.,, and R. L. Whistler,. 1973. Hemicellulose and gums, p. 198248. In L. R. Miller (ed.), Phytochemistry, vol. 1. Van Nostrand Reinhold Co., New York, NY.
95. Tso, W.,, and J. Adler. 1974. Negative chemotaxis in Escherichia coli. J. Bacteriol. 118:560576.
96. Tyrrell, E. A.,, R. E. MacDonald,, and P. Gerhardt. 1958. Biphasic system for growing bacteria in concentrated culture. J. Bacteriol. 75:14.
97. VanElsas, J. D.,, J. M. Govaert,, and J. A. v. Veen. 1987. Transfer of plasmid pFT30 between bacilli in soil as influenced by bacteria population dynamics and soil conditions. Soil Biol. Biochem. 19:639647.
98. Wainwright, M.,, and A. Al-Talhi. 1999. Selective isolation and oligotrophic growth of Candida on nutrient-free silica gel medium. J. Med. Microbiol. 48:1130.
99. Wakisaka, Y.,, T. Segawa,, K. Imamura,, T. Sakiyama,, and K. Nakanishi. 1998. Development of a cylindrical apparatus for membrane-surface liquid culture and production of kojic acid using Aspergillus oryzae NRRL484. J. Ferment. Bioeng. 85:488494.
100. Waterworth, P. M. 1969. The action of light on culture media. J. Clin. Pathol. 22:273277.
101. Watson, N.,, and D. Apirion. 1976. Substitute for agar in solid media for common usages in microbiology. Appl. Environ. Microbiol. 31:509513.
102. Weinstein, M. J.,, and G. H. Wagman (ed.). 1978. Antibiotics. Isolation, Separation and Purification. Elsevier Scientific Publishing Co., New York, NY.
103. Yamaguchi, Y.,, S. Nimbari,, H. Obata,, T. Ookawara,, H. Eguchi,, T. Kurotsu,, and K. Suzuki. 2002. Effects of agarose and LB medium on dye-terminator DNA sequencing. Yakugaku Zasshi-J. Pharm. Soc. Jpn. 122:495498.
104. Yamaguchi, Y.,, S. Nimbari,, T. Ookawara,, K. Oishi,, H. Eguchi,, and K. Suzuki. 2002. Inhibitory effects of agarose gel and LB medium on DNA sequencing. BioTechniques 33:282.

Tables

Generic image for table
TABLE 1

Electron acceptors and donors and carbon sources for selected microorganisms

TCE, trichloroethene.

PCE, tetrachloroethene.

Citation: Hashsham S. 2007. Culture Techniques , p 270-285. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch12

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error