1887

Chapter 14 : Physicochemical Factors in Growth

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Physicochemical Factors in Growth, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap14-2.gif

Abstract:

Some physicochemical factors affecting microbial growth are controlled by the constituents of the culture medium (hydrogen ion activity, water activity, osmotic pressure, and viscosity). Others are controlled by the external environment (temperature, oxygen, light, hydrostatic pressure, and magnetic-field strength). This chapter addresses practical aspects of application and control of physicochemical factors. Continuous pH control may be achieved by the automatic addition of acid or base. The effects of hydrostatic pressure on the physiology and metabolism of bacteria are discussed. A number of and species also exhibit a microaerophilic phenotype when growing in low-substrate media. The oxidation-reduction (redox) potential (E ) provides a useful scale for measuring the degree of anaerobiosis. Some motile bacteria that possess magnetite- or greigite containing magnetosomes, e.g., (formerly ) , align with the Earth geomagnetic field, which has strength of about 1 G. As a consequence, they show a biased swimming behavior, and both north-seeking and south-seeking forms are known. This behavior has been termed magnetotaxis and is thought, in part, to help these bacteria (many of which are microaerophilic) orient toward aquatic sediments where dissolved-oxygen concentrations are lower than in surface waters.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Effect of temperature on the generation time of as depicted by an arithmetic plot (top) and by a semi-logarithmic Arrhenius plot (bottom). Data from reference 45.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Gassing cannula used for the Hungate technique. At least two are needed: one for the vessel to be inoculated or filled with medium, and one for the vessel containing the inoculum or the medium to be dispensed. After assembly, autoclave the cotton-filled glass syringe and needle, dry in a drying oven at 100°C, allow to cool, and connect to butyl rubber tubing. Thereafter, flame the needle to sterilize it before inserting it into a vessel. This procedure also permits a constant check that gas is flowing through the needle, since the issuing gas should make a visible dent in the flame. Tubes or flasks must be constantly gassed when open.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap14
1. Abe, F.,, and K. Horikoshi. 2001. The biotechnological potential of piezophiles. Trends Biotechnol. 19: 102 108.
2. Aranki, A.,, and R. Freter. 1972. Use of anaerobic glove boxes for the cultivation of strictly anaerobic bacteria. Am. J. Clin. Nutr. 25: 1329 1334.
3. Aranki, A.,, S. A. Syed,, E. B. Kenney,, and R. Freter. 1969. Isolation of anaerobic bacteria from human gingiva and mouse cecum by means of a simplified glove box procedure. Appl. Microbiol. 17: 568 576.
4. Balch, W. E.,, G. E. Fox,, L. J. Magrum,, C. R. Woese,, and R. S. Wolfe. 1979. Methanogens: reevaluation of a unique biological group. Microbiol. Rev. 43: 260 296.
5. Balch, W. E.,, and R. S. Wolfe. 1976. New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl. Environ. Microbiol. 32: 781 791.
6. Baughn, A. D.,, and M. H. Malamy. 2004. The strict anaerobe Bacteroides fragilis grows in and benefits from nanomolar concentrations of oxygen. Nature 427: 441 444.
7. Béjà, O.,, L. Aravind,, E. V. Koonin,, M. T. Suzuki,, A. Hadd,, L. P. Nguyen,, S. B. Jovanovich,, C. M. Gates,, R. A. Feldman,, J. L. Spudich,, E. N. Spudich,, and E. F. DeLong. 2000. Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289: 1902 1906.
8. Béjà, O.,, E. N. Spudich,, J. L. Spudich,, M. Leclerc,, and E. F. DeLong. 2001. Proteorhodopsin phototrophy in the ocean. Nature 411: 786 789.
9. Berg, H. C.,, and L. Turner. 1979. Movement of microorganisms in viscous environments. Nature 278: 349 351.
10. Blakemore, R. P. 1981. Magnetic navigation in bacteria. Sci. Am. 245: 58 65.
11. Blakemore, R. P. 1982. Magnetotactic bacteria. Annu. Rev. Microbiol. 36: 217 238.
12. Bremer, E.,, and R. Krämer,. 2000. Coping with osmotic challenges: osmoregulation through accumulation and release of compatible solutes in bacteria, p. 79 97. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, DC.
13. Brock, T. D.,, and K. O’Dea. 1977. Amorphous ferrous sulfide as a reducing agent for culture of anaerobes. Appl. Environ. Microbiol. 33: 254 256.
14. Brown, A. D. 1990. Microbial Water Stress Physiology. John Wiley & Sons, Inc., New York, NY.
15. Brown, D. E., 1970. Aeration in the submerged culture of microorganisms, p. 127 174. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
16. Bryant, M. P. 1972. Commentary on the Hungate technique for culture of anaerobic bacteria. Am. J. Clin. Nutr. 25: 1324 1328.
17. Bryant, M. P.,, and L. A. Burkey. 1953. Cultural methods and some characteristics of some of the more numerous groups of bacteria in the bovine rumen. J. Dairy Sci. 36: 205 217.
18. Carr, N. G., 1970. Production and measurement of photosynthetically useable light, p. 205 212. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
19. Cleland, W. W. 1964. Dithiothreitol, a new protective reagent for SH groups. Biochemistry 3: 480 482.
20. Corman, J.,, H. M. Tsuchlya,, H. J. Koepsell,, R. G. Benedict,, S. E. Kelley,, V. H. Feger,, R. G. Dworschak,, and R. W. Jackson. 1957. Oxygen absorption rates in laboratory and pilot plant equipment. Appl. Microbiol. 5: 313 318.
21. Curcio, J. A.,, and C. C. Petty. 1951. The near infrared absorption spectrum of liquid water. J. Opt. Soc. Am. 41: 302 304.
22. Datta, S. P.,, and A. K. Grzybowski,. 1961. pH and acidbase equilibria, p. 19 58. In C. Long,, E. J. King,, and W. M. Speery (ed.), Biochemists’ Handbook. D. Van Nostrand Co., Inc., New York, NY.
23. Dean, J. A. 1979. Lange’s Handbook of Chemistry, 12th ed. McGraw-Hill Book Co., New York, NY.
24. DeLong, E. F.,, D. G. Franks,, and A. A. Yayanos. 1997. Evolutionary relationships of cultivated psychrophilic and barophilic deep-sea bacteria. Appl. Environ. Microbiol. 63: 2105 2108.
25. Distel, D. L.,, W. Morrill,, N. MacLaren-Toussaint,, D. Franks, and John Waterbury. 2002. Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic γ-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). Int. J. Syst. Evol. Microbiol. 52: 2261 2269.
26. Edwards, T.,, and B. C. McBride. 1975. New method for the isolation and identification of methanogenic bacteria. Appl. Microbiol. 29: 540 545.
27. Elsgaard, L.,, and L. W. Jørgensen. 2002. A sandwichdesigned temperature-gradient incubator for studies of microbial temperature responses. J. Microbiol. Methods 49: 19 29.
28. Emerson, D.,, S. Chauhan,, P. Oriel,, and J. A. Breznak. 1994. Haloferax sp. D1227, a halophilic Archaeon capable of growth on aromatic compounds. Arch. Microbiol. 161: 445 452.
29. Emerson, D.,, and C. Moyer. 1997. Isolation and characterization of novel iron-oxidizing bacteria that grow at circumneutral pH. Appl. Environ. Microbiol. 63: 4784 4792.
30. Emerson, D.,, R. M. Worden,, and J. A. Breznak. 1994. A diffusion gradient chamber for studying microbial behavior and separating microorganisms. Appl. Environ. Microbiol. 60: 1269 1278.
31. Galster, H. 1991. pH Measurement: Fundamentals, Methods, Applications, Instrumentation. Weinheim, New York, NY.
32. Gomori, G. 1955. Preparation of buffers for use in enzyme studies. Methods Enzymol. 1: 138 146.
33. Good, N. E.,, G. D. Winget,, W. Winter,, T. N. Connolly,, S. Izawa,, and R. M. M. Singh. 1966. Hydrogen ion buffers for biological research. Biochemistry 5: 467 477.
34. Gordon, J.,, R. A. Holman,, and J. W. McLeod. 1953. Further observations on production of hydrogen peroxide by anaerobic bacteria. J. Pathol. Bacteriol. 66: 527 537.
35. Greenberg, E. P.,, and E. Canale-Parola. 1977. Relationship between cell coiling and motility of spirochetes in viscous environments. J. Bacteriol. 131: 960 969.
36. Griffin, D. M. 1981. Water and microbial stress. Adv. Microb. Ecol. 5: 91 136.
37. Hartmann, A.,, and J. I. Baldani. 2003. The genus Azospirillum. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.12. Springer-Verlag, New York, NY.
38. Harwood, C. S.,, and E. Canale-Parola. 1984. Ecology of spirochetes. Annu. Rev. Microbiol. 38: 161 192.
39. Hermann, M.,, K. M. Noll,, and R. S. Wolfe. 1986. Improved agar bottle plate for isolation of methanogens or other anaerobes in a defined gas atmosphere. Appl. Environ. Microbiol. 51: 1124 1126.
40. Hitchman, M. L. 1978. Measurement of Dissolved Oxygen. Chemical Analysis, vol. 49. John Wiley & Sons, Inc., New York, NY.
41.. Holdeman, L. V.,, E. P. Cato,, and W. E. C. Moore. 1977. Anaerobe Laboratory Manual, 4th ed. Virginia Polytechnic Institute and State University, Blacksburg.
42. Horikoshi, K. 1998. Barophiles: deep-sea microorganisms adapted to an extreme environment. Curr. Opin. Microbiol. 1: 291 295.
43. Hungate, R. E. 1950. The anaerobic mesophilic cellulolytic bacteria. Bacteriol. Rev. 14: 1 49.
44. Hungate, R. E., 1969. A roll tube method for cultivation of strict anaerobes, p. 117 132. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 3B. Academic Press, Inc., New York, NY.
45. Ingraham, J. L. 1958. Growth of psychrophilic bacteria. J. Bacteriol. 76: 75 80.
46. Ingraham, J. L.,, and A. G. Marr,. 1996. Effect of temperature, pressure, pH and osmotic stress on growth, p. 1570 1578. In F. C. Neidhardt,, R. Curtis III,, J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, vol. 2. ASM Press, Washington, DC.
47. Jacob, H. E., 1970. Redox potential, p. 92 123. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
48. Jannasch, H. W.,, and C. D. Taylor. 1984. Deep-sea microbiology. Annu. Rev. Microbiol. 38: 487 514.
49. Jannasch, H. W.,, C. O. Wirsen,, and C. D. Taylor. 1982. Deep-sea bacteria: isolation in the absence of decompression. Science 216: 1315 1317.
50. Jones, G. A.,, and M. D. Pickard. 1980. Effect of titanium( III) citrate as a reducing agent on growth of rumen bacteria. Appl. Environ. Microbiol. 39: 1144 1147.
51. Jones, W. J.,, W. B. Whitman,, R. D. Fields,, and R. S. Wolfe. 1983. Growth and plating efficiency of methanococci on agar media. Appl. Environ. Microbiol. 46: 220 226.
52. Krieg, N. R., 1984. The genus Spirillum Ehrenberg 1832, 38AL, p. 90 93. In N. R. Krieg, and J. G. Holt (ed.), Bergey’s Manual of Systematic Bacteriology, vol. 1. The Williams & Wilkins Co., Baltimore, MD.
53. Krieg, N. R.,, and P. S. Hoffman. 1986. Microaerophily and oxygen toxicity. Annu. Rev. Microbiol. 40: 107 130.
54. Labuza, T. P.,, K. Acott,, S. R. Tatini,, R. Y. Lee,, J. Fink,, and W. McCall. 1976. Water activity determination: a collaborative study of different methods. J. Food Sci. 41: 910 917.
55. Lange, N. A. 1961. Handbook of Chemistry, 10th ed. McGraw-Hill Book Company, Inc., New York, NY.
56. Leadbetter, E. R.,, S. C. Holt,, and S. S. Socransky. 1979. Capnocytophaga: new genus of gram-negative gliding bacteria. I. General characteristics, taxonomic considerations and significance. Arch. Microbiol. 122: 9 16.
57. Ljungdahl, L. G.,, and J. Wiegel,. 1986. Working with anaerobic bacteria, p. 84 96. In A. L. Demain, and N. A. Solomon (ed.), Manual of Industrial Microbiology and Biotechnology. American Society for Microbiology, Washington, DC.
58. Macy, J. M.,, J. E. Snellen,, and R. E. Hungate. 1972. Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 25: 1318 1323.
59. Maratea, D.,, and R. P. Blakemore. 1981. Aquaspirillum magnetotacticum sp. nov., a magnetic spirillum. Int. J. Syst. Bacteriol. 31: 452 455.
60. Marquis, R. E. 1976. High-pressure microbial physiology. Adv. Microb. Physiol. 14: 159 241.
61.. Marquis, R. E.,, and P. Matsamura,. 1978. Microbial life under pressure, p. 105 158. In D. J. Kushner (ed.), Microbial Life in Extreme Environments. Academic Press, Inc., New York, NY.
62. Mazumder, R.,, H. C. Pinkart,, P. S. Alban,, T. J. Phelps,, and R. E. Benoit. 2000. Low-substrate regulated microaerophilic behavior as a stress response of aquatic and soil bacteria. Curr. Microbiol. 41: 79 83.
63. Metcalf, W. W.,, J. K. Zhang,, and R. S. Wolfe. 1998. An anaerobic, intrachamber incubator for growth of Methanosarcina spp. on methanol-containing solid media. Appl. Environ. Microbiol. 64: 768 770.
64. Miguel, A. H.,, D. F. S. Natusch,, and R. L. Tanner. 1976. Adsorption and catalytic conversion of thiol vapors by activated carbon and manganese dioxide. Atmos. Environ. 10: 145 150.
65. Miller, T. L.,, and M. J. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27: 985 987.
66. Moore, R. L. 1979. Biological effects of magnetic fields: studies with microorganisms. Can. J. Microbiol. 25: 1145 1151.
67. Morris, J. G. 1975. The physiology of obligate anaerobiosis. Adv. Microb. Physiol. 12: 169 246.
68. Munro, A. L. S., 1970. Measurement and control of pH values, p. 39 89. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
69. Nauhaus, K.,, A. Boetius,, M. Krüger,, and F. Widdel. 2002. In vitro demonstration of anaerobic oxidation of methane coupled to sulphate reduction in sediment from a marine gas hydrate area. Environ. Microbiol. 4: 296 305.
70. Nelson, D. C., 1989. Physiology and biochemistry of filamentous sulfur bacteria, p. 219 238. In H. G. Schlegel, and B. Bowien (ed.), Autotrophic Bacteria. Science Tech Pub., Madison, WI.
71. Onderdonk, A. B.,, J. Johnston,, J. W. Mayhew,, and S. L. Gorbach. 1976. Effect of dissolved oxygen and Eh on Bacteroides fragilis during continuous culture. Appl. Environ. Microbiol. 31: 168 172.
72. Overmann, J.,, and F. Garcia-Pichel,. 2000. The phototrophic way of life. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.2. Springer-Verlag, New York, NY.
73. Padgett, P. J.,, W. H. Cover,, and N. R. Krieg. 1982. The microaerophile Spirillum volutans: cultivation on complex liquid and solid media. Appl. Environ. Microbiol. 43: 469 477.
74. Patching, J. W.,, and A. H. Rose,. 1970. The effects and control of temperature, p. 23 38. In J. R. Norris, and D. W. Ribbons (ed.), Methods in Microbiology, vol. 2. Academic Press, Inc., New York, NY.
75. Pirt, S. J. 1975. Principles of Microbe and Cell Cultivation. John Wiley & Sons, Inc., New York, NY.
76. Prior, B. A. 1979. Measurement of water activity in foods: a review. J. Food Prot. 42: 668 674.
77. Reichenbach, H., 1999. The order Cytophagales. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.0. Springer-Verlag, New York, NY.
78. Rothschild, L. J.,, and R. L. Mancinelli. 2001. Life in extreme environments. Nature 409: 1092 1101.
79. Schlegel, H. G.,, and H. W. Jannasch,. 1992. Prokaryotes and their habits, p. 75 125. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes, vol. 1, 2nd ed. Springer-Verlag, New York, NY.
80. Scott, W. J. 1957. Water relations of food spoilage microorganisms. Adv. Food Res. 3: 84 123.
81. Smith, C. J.,, E. R. Rocha,, and B. J. Paster,. 2003. The medically important Bacteroides spp. in health and disease. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.12. Springer-Verlag, New York, NY.
82. Smith, M. V.,, and M. D. Pierson. 1979. Effect of reducing agents on oxidation-reduction potential and the outgrowth of Clostridium botulinum type E spores. Appl. Environ. Microbiol. 37: 978 984.
83. Smith, P. H.,, and R. E. Hungate. 1958. Isolation and characterization of Methanobacterium ruminantium n. sp. J. Bacteriol. 75: 713 718.
84. Solnick, J. V.,, J. L. O’Rourke,, P. Vandamme,, and A. Lee,. 2003. The genus Helicobacter. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.13. Springer- Verlag, New York, NY.
85. Spring, S.,, and D. A. Bazylinski,. 2000. Magnetotactic bacteria. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.4. Springer-Verlag, New York, NY.
86. Stoeckenius, W.,, and R. A. Bogomolni. 1982. Bacteriorhodopsin and related pigments of halobacteria. Annu. Rev. Biochem. 52: 587 616.
87. Stumm, W.,, and J. J. Morgan. 1996. Aquatic Chemistry, 3rd ed. John Wiley & Sons, Inc., New York, NY.
88. Sutter, V. L.,, D. M. Citron,, and S. M. Finegold. 1980. Wadsworth Anaerobic Bacteriology Manual, 3rd ed. C. V. Mosby Co., St. Louis, MO.
89. Taylor, C. D.,, and H. W. Jannasch. 1976. A subsampling technique for measuring growth of bacterial cultures under high hydrostatic pressure. Appl. Environ. Microbiol. 32: 355 359.
90. Thauer, R. K.,, K. Jungermann,, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41: 100 180.
91. Troller, J. A. 1977. Statistical analysis of aw measurements obtained with the Sina scope. J. Food Sci. 42: 86 90.
92. Troller, J. A.,, and J. H. B. Christian. 1978. Water Activity and Food, Academic Press, Inc., New York, NY.
93. Uffen, R. L.,, and R. S. Wolfe. 1970. Anaerobic growth of purple nonsulfur bacteria under dark conditions. J. Bacteriol. 104: 462 472.
94. Umbreit, W. W.,, R. H. Burris,, and J. F. Stauffer. 1964. Manometric Techniques, 4th ed. Burgess Publishing Co., Minneapolis, MN.
95. Walden, W. C.,, and D. J. Hentges. 1975. Differential effects of oxygen and oxidation-reduction potential on the multiplication of three species of anaerobic intestinal bacteria. Appl. Microbiol. 30: 781 785.
96. Wang, D. L C.,, C. L. Cooney,, A. L. Demain,, P. Durmill,, A. E. Humphrey,, and M. D. Lilly. 1979. Fermentation and Enzyme Technology, p. 157 193. John Wiley & Sons, Inc., New York, NY.
97. Wang, W.-L. L.,, N. W. Luechtefeld,, M. J. Blaser,, and B. Reller. 1982. Comparison of CampyPak II with standard 5% oxygen and candle jars for growth of Campylobacter jejuni from human feces. J. Clin. Microbiol. 16: 291 294.
98. Wassenaar, T. M.,, and D. G. Newell,. 2001. The genus Campylobacter. In M. Dworkin (ed.), The Prokaryotes, electronic version, release 3.5. Springer-Verlag, New York, NY.
99. Weast, R. C. (ed.). 1989. CRC Handbook of Chemistry and Physics, 70th ed., p. D-144 D-150 and D-161 D-165. CRC Press, Inc., Boca Raton, FL.
100. Westcott, C. C. 1978. pH Measurements. Academic Press, Inc., New York, NY.
101. Widdel, F.,, and F. Bak,. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3352 3378. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes, 2nd ed. Springer-Verlag, New York, NY.
102. Widdel, F.,, G.-W. Kohring,, and F. Mayer. 1983. Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov. sp. nov., and Desulfonema magnum sp. nov. Arch. Microbiol. 134: 286 294.
103. Wilhelm, E.,, R. Battino,, and R. J. Wilcock. 1977. Lowpressure solubility of gases in liquid water. Chem. Rev. 77: 219 262.
104. Wimpenny, J. W. T.,, and D. E. Jones,. 1988. Onedimensional gel-stabilized model systems, p. 1 30. In J. W. T. Wimpenny (ed.), CRC Handbook of Laboratory Model Systems for Microbial Ecosystems, vol. II. CRC Press, Inc., Boca Raton, FL.
105. Wimpenny, J. W. T.,, P. Waters,, and A. Peters,. 1988. Gel-plate methods in microbiology, p. 229 251. In J. W. T. Wimpenny (ed.), CRC Handbook of Laboratory Model Systems for Microbial Ecosystems, vol. 1. CRC Press, Inc., Boca Raton, FL.
106. Wolfe, R. S. 1971. Microbial formation of methane. Adv. Microb. Physiol. 6: 107 146.
107. Yayanos, A. A. 1986. Evolutional and ecological implications of the properties of deep-sea barophilic bacteria. Proc. Natl. Acad. Sci. USA 83: 9542 9546.
108. Yayanos, A. A.,, A. S. Dietz,, and R. Van Boxtel. 1981. Obligately barophilic bacterium from the Mariana Trench. Proc. Natl. Acad. Sci. USA 78: 5212 5215.
109. Zehnder, A. J. B.,, and K. Wuhrmann. 1976. Titanium (III) citrate as a nontoxic oxidation-reduction buffering system for the culture of obligate anaerobes. Science 194: 1165 1166.

Tables

Generic image for table
TABLE 1

pH indicators and their useful pH range

Prepare 0.04% solutions by solubilizing 0.1 g in the smallest possible volume (10 to 30 ml) of 0.01 N NaOH, and then dilute to 250 ml.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 2

pKvalues of chemical compounds used in buffers

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 3

Formulas for buffers frequently used in microbiological media

Data adapted from reference .

Formula: ml of 0.2 M acetic acid + (50 - ) ml of 0.2 M sodium acetate, diluted to 100 ml.

Formula: ml of 0.1 M citric acid + (50 - ) ml of 0.2 M NaHPO, diluted to 100 ml.

Formula: ml of 0.2 M NaHPO + (50 - ) ml of 0.2 M NaHPO, diluted to 100 ml.

Formula: 50 ml of 0.2 M Tris + ml of 0.2 M HCl, diluted to 100 ml.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 4

Values of α (COsolubility) and p at various temperatures

Milliliters of CO (reduced to 0°C and 760 mm Hg) that will dissolve in 1 ml of pure water at a gas pressure of 1 atm (760 mm Hg) at the stated temperature. The values for α in column A do not consider the contribution of water vapor pressure to the total gas pressure ( ). The values in column B have been recalculated from values in references and and do consider the contribution of water vapor pressure to the total gas pressure.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 5

Ostwald coefficients for various gases

Values are in milliliters per milliliter of HO at a partial pressure of 1 atm of the pure gas and at the specified temperature.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 6

Standard redox potentials of various dyes at pH 7.0 and 30°C

Data from reference , where a more complete list is to be found.

Formed from resazurin by reduction.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 7

Chemical reducing agents for anoxic media

Stock solutions may be autoclaved and stored under O-free gas.

At pH 7, about one-half the added sulfide exists as gaseous HS and one-half exists as HS.

Insoluble PdCl powder is included in the medium at ca. 330 µg/ml and acts as a catalyst for reduction of the medium by H, which can be included in the gas phase. For H-consuming bacteria such as methanogens, which are usually grown under a gas phase of H/CO (80/20, vol/vol), the H thereby acts both as a substrate and as a medium-reducing agent.

Prepared from commercial 20% solutions of TiCl as described in reference . Purchase TiC1 in small volumes under N, and prepare stock solutions of the citrate salt as needed.

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14
Generic image for table
TABLE 8

Absorption coefficients (α) for water at 20°C

Data from reference .

Citation: Breznak J, Costilow R. 2007. Physicochemical Factors in Growth, p 309-329. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch14

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error