1887

Chapter 17 : Physical Analysis and Purification Methods

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Physical Analysis and Purification Methods, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap17-2.gif

Abstract:

This chapter deals with the basic physical analytical methods and separation procedures of spectrophotometry, electrodes, chromatography, radioactivity, and electrophoresis. It talks about the simple procedures which are appropriate for laboratory classes or are routinely used in a research laboratory. Gas chromatography (GC) is used to monitor production of methane gas, an end product of the consortium growing on the phenol. Additional options for filters are offered by scintillation cocktails that dissolve cellulose acetate, nitrocellulose, and other types of filter membranes, aiding reproducibility and counting efficiency. Even though these formulations are classified as biodegradable, nonradioactive aliquots still need to be disposed of as organic hazardous waste by the proper chemical or radiation safety authorities. Gels used for separations of proteins and short oligonucleotides are usually made of polymerized and cross-linked acrylamide. A particularly effective example of the original method is described by O'Farrell, who separated 1,000 proteins from an extract. Chromatographic methods have been successfully used in enzyme purification. The chapter attempts to describe analytical and purification methods most commonly used by the microbiologist. There are many other methods that rely on instrumentation that is too expensive to be found in all but a few individual labs.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17

Key Concept Ranking

Immobilized Metal Affinity Chromatography
0.43989348
0.43989348
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

(A) Natural bandwidth diagram of NADH; the bandwidth is 58 nm. (B) Spectral bandwidth diagram (schematic) of spectrophotometer exit beam; the spectral bandwidth is 8 nm.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Comparison of absorbance and corrected fluorescence spectra. (A) Absorbance spectrum of the flavin-containing enzyme thioredoxin reductase. (B) Corrected fluorescence spectra: the excitation spectrum (excitation with a scanned spectrum and recorded at 530 nm emission) is on the left (solid line) and the emission spectrum (recorded by exciting at 455 nm and recording the spectrum of emitted light) is on the right (dashed line). Note the similar shapes and peak locations of the absorbance and fluorescence excitation spectra.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Pulse height spectrum showing counts per minute as a function of β-particle energy. Discriminators are set so that channel 1 counts exclusively the higher-energy C and channel 2 counts all of the lower-energy H with a small amount of C overlap. After determining the counting efficiency of each isotope in each channel, the equations in section 17.4.7.4 are used to calculate the disintegrations per minute.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap17
1. Christian, G. D. 1994. Analytical Chemistry, p. 323. John Wiley & Sons, New York, NY.
2. Clark, B. J.,, T. Frost,, and M. A. Russell (ed.). 1993. UV Spectroscopy: Techniques, Instrumentation, Data Handling. Chapman & Hall, London, United Kingdom.
3. Gore, M. (ed.). 2000. Spectrophotometry and Spectrofluorimetry : a Practical Approach. Oxford University Press, Oxford, United Kingdom.
4. Knowles, A.,, and C. Burgess. 1984. Techniques in Visible and Ultraviolet Spectrometry, vol. 3. Practical Absorption Spectrometry. Chapman and Hall, New York, NY.
5. Lakowicz, J. R. 1999. Principles of Fluorescence Spectroscopy. Kluwer Academic/Plenum, New York, NY.
6. Sommer, L. 1989. Analytical Absorption Spectrophotometry in the Visible and Ultraviolet: the Principles. Elsevier, Amsterdam, The Netherlands.
7. Bongaerts, R. J. M.,, I. Hautefort,, J. M. Sidebotham,, and J. C. D. Hinton. 2002. Green fluorescent protein as a marker for conditional gene expression in bacterial cells. Methods Enzymol. 358: 43 66.
8. Eisenthal, R.,, and M. J. Danson (ed.). 1992. Enzyme Assays: a Practical Approach. Oxford University Press, Oxford, United Kingdom.
9. Gil, M.,, D. Escolar,, N. Iza,, and J. L. Montero. 1986. Accuracy and linearity in UV spectrophotometry with a liquid absorbency standard. Appl. Spectrosc. 40: 1156 1161.
10. Mulrooney, S. B.,, and C. H. Williams, Jr. 1997. Evidence for two conformational states of thioredoxin reductase from Escherichia coli: use of intrinsic and extrinsic quenchers of flavin fluorescence as probes to observe domain rotation. Prot. Sci. 6: 2188 2195.
11. Bassey, E. J. S.,, and E. E. Edouk. 2000. Basic Calculations for Chemical and Biological Analysis. A.O.A.C. International, Gaithersburg, MD. 1
12. Fry, C.,, and S. E. M. Langley. 2000. Ion-Selective Electrodes for Biological Systems. Gorden & Breach Publishing Group, New York, NY
13. Glaster, H. 1991. pH Measurement: Fundamentals, Methods, Applications, Instrumentation. John Wiley & Sons, Somerset, NJ.
14. Prichard, E. 2003. Measurement of pH. The Royal Chemical Society, Cambridge, United Kingdom.
15. Weast, R. C. (ed.). 1980. CRC Handbook of Chemistry and Physics, 60th ed. CRC Press, Inc., Boca Raton, FL.
16. Westcott, C. C. 1978. Selection and care of pH electrodes. Am. Lab. 10( 8): 71 73.
17. Bertocchi, P.,, D. Compagnone,, and G. Palleschi. 1996. Amperometric ammonium ion and urea determination with enzyme-based probes. Biosens. Bioelectron. 11: 1 10.
18. Buck, R. P.,, and V. V. Cosofret. 1993. Recommended procedures for calibration of ion-selective electrodes. Pure Appl. Chem. 65: 1849 1858.
19. Cabral, J. P. S. 1994. Comparison of methods to assay ammonia in bacterial suspensions. J. Microbiol. Methods 19: 207 213.
20. Wise, R. R.,, and A. W. Naylor. 1985. Calibration and use of a Clark-type oxygen-electrode from 5 to 45-degrees-C. Anal. Biochem. 146: 260 264.
21. Amersham Biosciences. 2003. Affinity Chromatography, Principles and Methods. Amersham Biosciences, Piscataway, NJ.
22. Amersham Biosciences. 2003. Ion Exchange Chromatography, Principles and Methods. Amersham Biosciences, Piscataway, NJ.
23. Bailon, P.,, G. K. Ehrlich,, and W. Fung. 2000. Affinity Chromatography: Methods and Protocols. Humana Press, Totowa, NJ.
24. Gooding, K. E.,, and F. E. Regnier. 2002. HPLC of Biological Macromolecules. Marcel Dekker, New York, NY.
25. Hagel, L., 1998. Gel Filtration, p. 79 143. In J. C. Janson, and L. Ryden (ed.), Protein Purification, Principles, High Resolution Methods, and Applications, John Wiley & Sons, Hoboken, NJ.
26. Hermanson, G. T.,, A. Krishna Mallia,, and P. K. Smith. 1992. Immobilized Affinity Lligand Techniques. Academic Press, San Diego, CA.
27. Kastner, M. (ed). 1999. Protein Liquid Chromatography. Elsevier, New York, NY.
28. Kennedy, R. M. 1990. Hydrophobic chromatography. Methods Enzymol. 182: 339 343.
29. Kline, T. (ed.). 1993. Handbook of Affinity Chromatography. M. Dekker, New York, NY.
30. Lucarelli, C.,, L. Radin,, R. Corlo,, and C. Eftimiadi. 1990. Applications of high-performance chromatography in bacteriology. J. Chromatogr. 515: 415 434.
31. Mori, S.,, and H. G. Barth. 1999. Size Exclusion Chromatography. Springer Verlag, New York, NY.
32. Ostrove, S. 1990. Affinity chromatography: general methods. Methods Enzymol. 182: 357 371.
33. Scott, R. P. W. 1995. Techniques and Practice of Chromatography. M. Dekker, New York, NY.
34. Sheehan, D. 2003. Physical Biochemistry, Principles and Applications. John Wiley & Sons, Hoboken, NJ.
35. Smith, C. 1998. Liquid chromatography: products in the protein chemist’s tool chest. Scientist, 12: 14.
36. Weiss, J. 2003. Handbook of Ion Chromatography. John Wiley & Sons, Hoboken, NJ.
37. Wu, C. 1995. Handbook of Size Exclusion Chromatography. Marcel Dekker, Inc., New York, NY. 17.8.3.2. Specific References
38. Andrea, J. M. 1985. Measurement of protein-ligand interactions by gel chromatography. Methods Enzymol. 117: 346 354.
39. Aronstein, B. N.,, J. R. Paterek,, R. L. Kelley,, and L. E. Rice. 1995. The effect of chemical pretreatment on the aerobic microbial-degradation of PCB congeners in aqueous systems. J. Ind. Microbiol. 15: 55 59.
40. Ausserer, W. A.,, and M. L. Biros. 1995. High-resolution analysis and purification of synthetic oligonucleotides with strong anion-exchange HPLC. BioTechniques 19: 136 139.
41. Bechard, G.,, J.-G. Bisaillon,, and R. Beaudet. 1990. Degradation of phenol by a bacterial consortium under methanogenic conditions. Can. J. Microbiol. 36: 573 578.
42. Beeckmans, S. 1999. Chromatographic methods to study protein-protein interactions. Methods 19: 278 305.
43. Benning, M. 1988. Single ion chromatography. Am. Lab. 20: 74 79.
44. Berezkin, V. G.,, and J. de Zeeuw. 1998. Capillary Gas Adsorption Chromatography. John Wiley & Sons, Hoboken, NJ.
45. Cho, K. S.,, L. Zhang,, M. Harm,, and M. Shoda. 1991. Removal characteristics of hydrogen sulfide, and methanethiol by Thiobacillus sp. isolated from peat in biological deodorization. J. Ferment. Bioeng. 71: 44 49.
46. Christendat. D.,, A. Yee,, A. Dharamsi,, Y. Kluger,, A. Savchenko,, J. R. Cort,, V. Booth,, C. D. Mackereth,, V. Saridakis,, I. Ekiel,, G. Kozlov,, K. L. Maxwell,, N. Wu,, L. P. McIntosh,, K. Gehring,, M. A. Kennedy,, A. R. Davidson,, E. F. Pai,, M. Gerstein,, A. M. Edwards,, and C. H. Arrowsmith. 2000. Structural proteomics of an archaeon. Nat. Struct. Biol. 7: 903 909.
47. Cserháti, T. 2002. Mass spectrometric detection in chromatography. Trends and perspectives. Biomed. Chromatogr. 16: 303 310.
48. Dworzanski, J. P.,, L. Berwald,, and H. L. C. Meuzelaac. 1990. Pyrolytic methylation-gas chromatography of whole bacterial cells for rapid profiling of cellular fatty acids. Appl. Environ. Microbiol. 56: 1717 1724.
49. Eder, K. 1995. Gas chromatographic analysis of fatty acid methyl esters. J. Chromatogr. B 671: 113 131.
50. Fox, A. 1999. Carbohydrate profiling of bacteria by gas chromatography-mass spectrometry and their trace detection in complex matrices by gas chromatography-tandem mass spectrometry. J. Chromatogr. A 843: 287 300.
51. Fritz, J. S.,, and D. T. Gjerde. 2000. Ion Chromatography. John Wiley & Sons, Hoboken, NJ.
52. Giri, L. 1990. Chromatofocusing. Methods Enzymol. 182: 380 392.
53. Gorbunoff, M. J. 1990. Protein chromatography on hydroxyapatite columns. Methods Enzymol. 182: 329 339.
54. Heckenberg, A. L.,, and P R. Haddad. 1984. Determination of inorganic ions at parts per billion levels using single column ion chromatography without preconcentration. J. Chromatogr. 299: 301 305.
55. Hordijk, C. A.,, C. P C,. M. Hagenaars,, and T. E. Cappenberg. 1984. Analysis of sulfate at the mud-water interface of freshwater lake sediments using indirect photometric chromatography. J. Microbiol. Methods 2: 49 56.
56. Hsueh, P. R.,, T. L. Jene,, P. H. Ju,, C. Y. Chi,, S. C. Chuan,, and H. S. Wu. 1998. Outbreak of Pseudomonas fluorescens bacteremia among oncology patients. J. Clin. Microbiol. 36: 2914 2917.
57. Hubschmann, H.-J. 2001. Handbook of GC/MS: Fundamentals and Applications. John Wiley & Sons, Hoboken, NJ.
58. James, A. T.,, and A. J. P Martin. 1952. Gas-liquid partition chromatography: the separation and microestimation of volatile fatty acids from formic to dodecanoic acid. Biochem. J. 50: 679 690.
59. Janak, J. 1990. The role of adsorption in gas-liquid systems and its use for enrichment of trace amounts. Chromatographia 30: 489 492.
60. Jensen, T. S.,, E. Arvin,, B. Svensmark,, and P. Wrang. 2000. Quantification of compositional changes of petroleum hydrocarbons by GC/FID and CC/MS during a longterm bioremediation experiment. Soil Sediment Contam. 9: 549 577.
61. Katayama-Fujimura, Y.,, Y. Komatsu,, H. Kuraishi,, and T. Kanerko. 1984. Estimation of DNA base composition by high performance liquid chromatography of its nuclease PI hydrolysate. Agric. Biol. Chem. 48: 3169 3172.
62. Kido, H.,, A. Vita,, and B. L. Horecker. 1985. Ligand binding to proteins by equilibrium gel penetration. Methods Enzymol. 117: 342 346.
63. Kim, J. S.,, J. B. Joo,, H. Y. Weon,, C. S. Kang,, S. K. Lee,, and C. S. Yahng. 2002. FAME analysis to monitor impact of organic matter on soil bacterial populations. J. Microbiol. Biotechnol. 12: 382 388.
64. Korthals, H. J.,, and C. L. M. Steenbergen. 1985. Separation and quantification of pigments from natural phototrophic microbial populations. FEMS Microbiol. Ecol. 31: 177 185.
65. Le Bris, S.,, M. R. Plante-Cuny,, and E. Vacelet. 1998. Characterisation of bacterial and algal pigments and breakdown products by HPLC in mixed freshwater planktonic populations. Arch. Hydrobiol. 143: 409 434.
66. Levin, O. 1962. Column chromatography of proteins: calcium phosphate. Methods Enzymol. 5: 27 33.
67. Linhardt, R. J.,, K. N. Gu,, D. Loganathan,, and S. R. Carter. 1989. Analysis of glycosaminoglycan-derived oligosaccharides using reversed-phase ion-pairing and ion- exchange chromatography with suppressed conductivity detection. Anal. Biochem. 181: 288 296.
68. López-Ruiz, B. 2000. Advances in the determination of inorganic anions by ion chromatography. J. Chromatogr. A 881: 607 627.
69. Mackey, B. M.,, S. E. Parsons,, C. A. Miles,, and R. J. Owen. 1988. The relationship between the base composition of bacterial DNA and its intracellular melting temperature as determined by differential scanning calorimetry. J. Gen. Microbiol. 134: 1185 1195.
70. Mancuso, C. A., P D. Nichols, and D. C. White. 1986. A method for the separation and characterization of archaebacterial signature ether lipids. J. Lipid Res. 27: 49 56.
71. Marmur, J.,, and P. Doty. 1962. Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J. Mol. Biol. 5: 109 118.
72. Mesbah, M.,, and W. B. Whitman. 1989. Measurement of deoxyguanosine/thymidine ratios in complex mixtures by high-performance liquid chromatography for determination of the mole percentage guanine + cytosine of DNA. J. Chromatogr. 479: 297 306.
73. Mesbah, M.,, U. Premachandran,, and W. B. Whitman. 1989. Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int. J. Syst. Bacteriol. 39: 159 167.
74. Miller, L.,, and T. Berger. 1985. Bacterial Identification by Gas Chromatography of Whole Cell Fatty Acids. Application note 228-41. Hewlett-Packard Co., Palo Alto, CA.
75. Odumeru, J. A.,, M. Steele,, L. Fruhner,, C. Larkin,, J. Jiang,, E. Mann,, and W. B. McNab. 1999. Evaluation of accuracy and repeatability of identification of food-borne pathogens by automated bacterial identification systems. J. Clin. Microbiol. 37: 944 949.
76. Ostrove, S.,, and S. Weiss. 1990. Affinity chromatography: specialized techniques. Methods Enzymol. 182: 371 379.
77. Peltroche-Llacsahuanga, H.,, S. Schmidt,, R. Lutticken,, and G. Haase. 2000. Discriminative power of fatty acid methyl ester (FAME) analysis using the Microbial Identification System (MIS) for Candida (Torulopsis) glabrata and Saccharomyces cerevisiae. Diagn. Microbiol. Infect. Dis. 38: 213 221.
78. Scott, R. P. W. 1998. Introduction to Analytical Gas Chromatography. Marcel Dekker, New York, NY.
79. Shan, L.,, and D. J. Anderson. 2002. Gradient chromatofocusing. Versatile pH gradient separation of proteins in ion-exchange HPLC: characterization studies. Anal. Chem. 74: 5641 5649.
80. Small, H.,, and T. E. Miller. 1982. Indirect photometric chromatography. Anal. Chem. 54: 262 269.
81. Stellwagen, E. 1990. Gel filtration. Methods Enzymol. 182: 317 328.
82. Teunissen, M. J.,, S. A. E. Marras,, H. J. M. Op denCamp,, and G. D. Vogels. 1989. Improved method for simultaneous determination of alcohols, volatile fatty acids, lactic acid or 2,3-butanediol in biological samples. J. Microbiol. Methods 10: 247 254.
83. Tunlid, A.,, D. Ringelberg,, T. J. Phelps,, C. Low,, and D. C. White. 1989. Measurement of phospholipid fatty acids at picomolar concentrations in biofilms and deep subsurface sediments using gas chromatography and chemical ionization mass spectrometry. J. Microbiol. Methods 10: 139 153.
84. Ulrich, S. 2000. Solid-phase microextraction in biomedical analysis. J. Chromatogr. A 902: 167 194.
85. Villegas, S.,, and L. L. Brunton. 1996. Separation of cyclic GMP and cyclic AMP. Anal. Biochem. 235: 102 103.
86. Yacobi, Y. Z.,, W. Eckert,, H. G. Truper,, and T. Berman. 1990. High performance liquid chromatography detection of phototrophic bacterial pigments in aquatic environments. Microb. Ecol. 19: 127 136.
87. Zelles, L. 1999. Fatty acid patterns of phospholipids and lipopolysaccharides in the characterisation of microbial communities in soil: a review. Biol. Fert. Soils 29: 111 129.
88. Zou, H.,, Q. Luo,, and D. Zhou. 2001. Affinity membrane chromatography for the analysis and purification of proteins. J. Biochem. Biophys. Methods 49: 199 240.
89. Klein, R. C.,, and E. L. Gershey. 1990. Biodegradable liquid scintillation-counting cocktails. Health Phys. 59: 461 470.
90. Ross, H. (ed.). 1991. Liquid Scintillation Counting and Organic Scintillators. CRC Press, Boca Raton, FL.
91. Wang, C.,, D. L. Willis,, and W. D. Loveland. 1975. Radiotracer Methodology in the Biological, Environmental, and Physical Sciences. Prentice-Hall, Inc., Englewood Cliffs, NJ. 17.8.4.2. Specific References
92. Anderson, L. E.,, and W. O. McClure. 1973. An improved scintillation cocktail of high solubilizing power. Anal. Biochem. 51: 173 179.
93. Bonner, W. M. 1983. Use of fluorography for sensitive isotope detection in polyacrylamide-gel electrophoresis and related techniques. Methods Enzymol. 96: 215 222.
94. Thomson, J. 2002. Use and Preparation of Quench Curves. Liquid Scintillation Application Note P11399. PerkinElmer Lifesciences, Boston, MA.
95. Thomson, J.,, and D. A Burns. 1995. Radio-Carbon Dioxide (14CO2) Trapping and Counting. Liquid Scintillation Application Note CS-001. PerkinElmer Lifesciences, Boston, MA.
96. Thomson, J.,, and D. A. Burns. 1996. LSC Sample Preparation by Solubilization. Liquid Scintillation Application Note CS-003. PerkinElmer Lifesciences, Boston, MA.
97. Turner, J. C. 1967. Sample Preparation for Liquid Scintillation Counting. The Radiochemical Centre, Amersham, England.
98. Woo, H. J.,, S. K. Chun,, S. Y. Cho,, Y. S. Kim,, D. W. Kang,, and E. H. Kim. 1999. Optimization of liquid scintillation counting techniques for the determination of carbon-14 in environmental samples. J. Radioanal. Nucl. Chem. 239: 649 655.
99. Allen, R. C. 1994. Gel Electrophoresis of Proteins and Nucleic Acids. Walter DeGruyter, New York, NY.
100. Bravo, R. 1984. Two-Dimensional Gel Electrophoresis of Proteins. Academic Press, Inc., New York, NY.
101. Davis, M. B. J. 1964. Disc electrophoresis. II. Method and application to human serum proteins. Ann. N. Y. Acad. Sci. 121: 404 427.
102. Garfin, D. E. 1990. Isoelectric focusing. Methods Enzymol. 182: 459 477.
103. Hames, B. D. 1998. Gel Electrophoresis of Proteins: A Practical Approach. Oxford University Press, New York, NY.
104. Ornstein, L. 1964. Disc electrophoresis. I. Background and theory. Ann. N. Y. Acad. Sci. 121: 321 403.
105. Richetti, P. G. 1984. Isoelectric Focusing Theory, Methodology and Applications. Elsevier Biochemical Press, New York, NY.
106. Weinberg, R. 2000. Practical Capillary Electrophoresis. Academic Press, San Diego, CA. 17.8.5.2. Specific References
107. Anderson, D.,, and C. Peterson,. 1981. High resolution electrophoresis of proteins in SDS polyacrylamide gels, p. 41. In R. C. Allen, and P. Arnaud (ed.), Electrophoresis. Walter deGruyter, Berlin, Germany.
108. Blackshear, P. J. 1984. Systems for polyacrylamide gel electrophoresis. Methods Enzymol. 104: 237 255.
109. Bollag, D. M.,, M. D. Rozyski,, and S. J. Edelstein. 1996. Protein Methods. John Wiley & Sons, Hoboken, NJ.
110. Castellanos-Serra, L.,, and E. Hardy. 2001. Detection of biomolecules in electrophoresis gels with salts of imidazole and zinc II: a decade of research. Electrophoresis 22: 864 873.
111. Dunbar, B. S.,, H. Kimura,, and T. M. Timmons. 1990. Protein analysis using high-resolution two-dimensional polyacrylamide gel electrophoresis. Methods Enzymol. 182: 441 459.
112. Görg, A.,, C. Obermaier,, G. Boguth,, A. Harder,, B. Scheibe,, R. Wildgruber,, and W. Weiss. 2000. The current state of two-dimensional electrophoresis with immobilized pH gradients. Electrophoresis 21: 1037 1053.
113. Hendrick, J. L.,, and A. J. Smith. 1968. Size and charge isomer separation and estimation of molecular weight of proteins by disc gel electrophoresis. Arch. Biochem. Biophys. 126: 155 164.
114. Laemmli, U. K. 1970. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227: 680 685.
115. Linhardt, R. J.,, and T. Toida. 2002. Ultra-high resolution separation comes of age. Science 298: 1441 1442.
116. Manchenko, G. P. 2002. Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press, Boca Raton, FL.
117. Merril, C. R.,, and M. E. Pratt. 1986. A silver stain for the rapid quantitative detection of proteins or nucleicacids on membranes or thin-layer plates. Anal. Biochem. 156: 96 110.
118. O’Farrell, P. 1975. High resolution two-dimensional electrophoresis of proteins. J. Biol. Chem. 250: 4007 4021.
119. Rabilloud, T. 1999. Proteome Research: Two-Dimensional Gel Electrophoresis and Identification Methods. Springer- Verlag, New York, NY.
120. Wirth, P. J.,, and A. Romano. 1995. Staining methods in gel-electrophoresis, including the use of multiple detection methods. J. Chromatogr. A 698: 123 143.
121. Yamaoka, T. 1998. Pore gradient gel electrophoresis: theory, practice, and applications. Anal. Chim. Acta 372: 91 98.
122. Yan, J. X.,, R. A. Harry,, C. Spibey,, and M. J. Dunn. 2000. Postelectrophoretic staining of proteins separated by two-dimensional gel electrophoresis using SYPRO dyes. Electrophoresis 21: 3657 3665.
123. Amicon Corp. 1990. Dye-Ligand Chromatography. Amicon Corp, Danvers, MA.
124. Deutscher, M. P. (ed.). 1990. Guide to protein purification. Methods Enzymol. 182: 1 894.
125. Jakoby, W. (ed.). 1984. Enzyme purification and related techniques, part C. Methods Enzymol. 104: 1 528.
126. Roe, S. 2001. Protein Purification: A Practical Approach. Oxford University Press, New York, NY.
127. Scopes, R. P. 1994. Protein Purification: Principles and Practice. Springer-Verlag, New York, NY. 17.8.6.2. Specific References
128. Cumming, R. H.,, and G. Iseton,. 2001. Cell disintegration and extraction techniques, p. 111 155. In S. Roe (ed.), Protein Purification Techniques: A Practical Approach. Oxford University Press, New York, NY.
129. England, S.,, and S. Seifter. 1990. Precipitation techniques. Methods Enzymol. 182: 295 300.
130. Hammerstedt, R. H.,, H. Mohler,, K. A. Decker,, and W. A. Wood. 1971. Structure of 2-keto-3-deoxy-6-phosphogluconate aldolase. I. Evidence for a three-subunit molecule. J. Biol. Chem. 246: 2069 2074.
131. Muh, U.,, V. Massey,, and C. H. Williams. 1994. Lactate monooxygenase. 1. Expression of the mycobacterial gene in Escherichia coli and site-directed mutagenesis of lysine- 266. J. Biol. Chem. 269: 7982 7988.
132. Wood, W. I. 1976. Tables for the preparation of ammonium sulfate solutions. Anal. Biochem. 73: 250 257.
133. Jelesarov, I.,, and H. R. Bosshard. 1999. Isothermal titration calorimetry and differential scanning calorimetry as complementary tools to investigate the energetics of biomolecular recognition. J. Mol. Recognit. 12: 3 18.
134. Ladbury, J. E.,, and B. Z. Chowdhry (ed.). 1998. Biocalorimetry: Applications of Calorimetry in the Biological Sciences. John Wiley & Sons, Hoboken, NJ.
135. Rieseberg, M.,, C. Kasper,, K. F. Reardon,, and T. Scheper. 2001. Flow cytometry in biotechnology. Appl. Microbiol. Biotechnol. 56: 350 360.
136. Todd, M. J.,, and J. Gomez. 2001. Enzyme kinetics determined using calorimetry: a general assay for enzyme activity? Anal. Chem. 296: 179 187.
137. Watson, J. T. 1997. Introduction to Mass Spectrometry. Lippincott Williams & Wilkins, Philadelphia, PA. 17.8.7.2. Specific References
138. Dalluge, J. J. 2000. Mass spectrometry for direct determination of proteins in cells: applications in biotechnology and microbiology. Fresenius J. Anal. Chem. 366: 701 711.
139. Fenselau, C.,, and P. A. Demirev. 2001. Characterization of intact microorganisms by MALDI mass spectrometry. Mass Spectrom. Rev. 20: 157 171.
140. Katsuragi, T.,, and Y. Tani. 2000. Screening for microorganisms with specific characteristics by flow cytometry and single-cell sorting. J. Biosci. Bioeng. 89: 217 222.
141. Lay, J. O. 2001. MALDI-TOF mass spectrometry of bacteria. Mass Spectrom. Rev. 20: 172 194.
142. Lebaron, P.,, P. Servais,, A. C. Baudoux,, M. Bourrain,, C. Courties,, and N. Parthuisot. 2002. Variations of bacterial- specific activity with cell size and nucleic acid content assessed by flow cytometry. Aquat. Microb. Ecol. 28: 131 140.
143. Roth, B. L.,, M. Poot,, S. T. Yue,, and P. J. Millard. 1997. Bacterial viability and antibiotic susceptibility testing with SYTOX Green nucleic acid stain. Appl. Environ. Microbiol. 63: 2421 2431.
144. Vives-Rego, J.,, P. Lebaron,, and G. Nebe-von Caron. 2000. Current and future applications of flow cytometry in aquatic microbiology. FEMS Microbiol. Rev. 24: 429 448.

Tables

Generic image for table
TABLE 1

Standard buffers for calibration of pH meters at 25°C

Data from reference .

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Generic image for table
TABLE 2

Ion-selective electrodes

Data compiled from manufacturers' specifications.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Generic image for table
TABLE 3

Chemical groups used in ion-exchange chromatography

Data from various manufacturers' specifications.

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Generic image for table
TABLE 4

Affinity tags used for purification of recombinant proteins

Data from reference .

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17
Generic image for table
TABLE 5

Physical properties of selected radionuclides

Data from reference .

Citation: Mulrooney S, Wood W, Paterek J. 2007. Physical Analysis and Purification Methods, p 424-461. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error