1887

Chapter 20 : Permeability and Transport

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Permeability and Transport, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap20-2.gif

Abstract:

Permease systems may be energized by ATP, for example, ATP binding cassette systems, or by the proton motive force across the cell membrane. Techniques that require less biomass and are based on use of membrane filters or a high-speed microcentrifuge are described. Changes in growth medium, growth temperature and pH can also be expected to alter permeability, although alterations will generally be less severe than for energized transport coupled to ATP hydrolysis or ∆p across the cell membrane. Harvested cells need to be centrifuged to obtain a tight pellet, and the details of centrifugation depend on the particular organism. The best candidates are the ones used with suspension cells, small solutes such as sucrose or raffinose for which the cells under study do not have significant permeability or transport systems, or non-transported analogues of known substrates. The membrane continuity of vesicles is best tested by assessing the extent of swelling or shrinking in response to changes in osmolality of the suspending medium. The workings of individual transport components, such as permease proteins, antiporters, symporters, or ion translocating ATPases, can often best be studied by isolating the catalysts from cell membranes and incorporating them into liposomes or proteoliposomes.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20

Key Concept Ranking

Bacteria and Archaea
0.4662727
Confocal Laser Scanning Microscopy
0.4182942
0.4662727
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Typical packing curve for a cell pellet.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Graphic estimation of the diffusion component in the total uptake of a solute by microbial cells. The transport uptake is the total uptake minus the uptake due to passive diffusion. The uptake measure can be either the rate or extent of uptake.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Proton permeability of biofilms of in the presence of 0 (open squares), 0.5 (closed triangles), 1.0 (closed squares), or 5.0 (closed inverted triangles) mM NaF, a weak acid enhancer of proton movements across cell membranes. Butanol was added (5% [vol/vol]) at the indicated time to damage the cell membrane and render it totally permeable to protons.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Osmotic volume changes for microbial cells. The dashed line indicates the ideal behavior predicted by the van't Hoff-Boyle equation. The solid curve indicates the actual behavior.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap20
1. Altendorf, K. H.,, and L. A. Staehelin. 1974. Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J. Bacteriol. 117: 888 899.
2. Ames, G. F.-L. 1974. Two methods for the assay of amino acid transport in bacteria. Methods Enzymol. 32: 843 849.
3. Avison, M. J.,, H. P. Hetherington,, and R. G. Shulman. 1984. Applications of NMR to studies of tissue metabolism. Annu. Rev. Biophys. Biophys. Chem. 15: 377 402.
4. Belli, W. A.,, and R. E. Marquis. 1991. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl. Environ. Microbiol. 57: 1134 1138.
5. Bender, G. R.,, S. V. W. Sutton,, and R. E. Marquis. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53: 331 338.
6. Bradshaw, D. J.,, P. D. Marsh,, K. M. Schilling,, and D. Cummins. 1996. A modified chemostat system to study the ecology of oral biofilms. J. Appl. Bacteriol. 80: 124 130.
7. Burne, R. A.,, and R. E. Marquis. 2001. Biofilm acid/base physiology and gene expression in oral bacteria. Methods Enzymol. 337: 403 415.
8. Burne, R. A.,, R. G. Quivey, Jr., and R. E. Marquis. 1999. Physiologic homeostasis and stress response in oral biofilms. Methods Enzymol. 310: 441 460.
9. Chung, H-J.,, T. J. Montville,, and M. L. Chikindas. 2000. Nisin depletes ATP and proton motive force in mycobacteria. Lett. Appl. Microbiol. 31: 416 420.
10. Conway, E. J.,, and M. Downey. 1950. An outer metabolic region of the yeast cell. Biochem. J. 47: 347 355.
11. de Poorter, L. M. I.,, and J. T. Keltjens. 2001. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum. J. Microbiol. Methods 47: 233 241.
12. Doyle, R. J. (ed.). 1999. Methods in Enzymology, vol. 310. Biofilms. Academic Press, Inc., San Diego, CA..
13. Doyle, R. J. (ed.). 2001. Methods in Enzymology, vol. 336/337. Microbial Growth in Biofilms. Part A, Developmental and Molecular Aspects. Part B, Special Environments and Physicochemical Aspects. Academic Press, Inc., San Diego, CA..
14. Doyle, R. J.,, and R. E. Marquis. 1994. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol. 2: 57 60.
15. Driessen, A. J. M.,, and W. N. Konings. 1993. Insertion of lipids and proteins into bacterial membranes by fusion with liposomes. Methods Enzymol. 221: 394 408.
16. Driessen, A. J. M.,, D. Molenaar,, and W. N. Konings. 1989. Kinetic mechanism and specificity of the arginineornithine antiporter of Lactococcus lactis. J. Biol. Chem. 264: 10361 10370.
17. Driessen, A. J. M.,, B. P. Rosen,, and W. N. Konings. 2000. Diversity of transport mechanisms: common structural principles. Trends Biochem. Sci. 25: 397 401.
18. Dubois, M.,, K. A. Gilles,, J. K. Hamilton,, P. A. Rebers,, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28: 350 356.
19. Felle, H.,, J. S. Porter,, C. L. Slayman,, and H. R. Kaback. 1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19: 3585 3590.
20. Fristedt, U.,, M. van der Rest,, B. Poolman,, W. N. Konings,, and B. L. Persson. 1999. Studies of cytochrome c oxidase-driven H_-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles. Biochemistry 38: 16010 16015.>
21. Harold, F. M.,, and K. Altendorf. 1974. Cation transport in bacteria: K +, Na +, and H_. Curr. Top. Membr. Transp. 5: 1 50.
22. Hurwitz, C.,, C. B. Braun,, and R. A. Peabody. 1965. Washing bacteria by centrifugation through a water-immiscible layer of silicone. J. Bacteriol. 90: 1692 1695.
23. Iwami, Y.,, S. Hata,, C. F. Schachtele,, and T. Yamada. 1995. Simultaneous monitoring of intracellular pH and proton excretion during glycolysis by Streptococcus mutans and Streptococcus sanguis: effect of low pH and fluoride. Oral Microbiol. Immunol. 10: 355 359.
24. Kaback, H. R. 1971. Bacterial membranes. Methods Enzymol. 22: 99 120.
25. Kaback, H. R.,, and E. R. Stadtman. 1966. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. Natl. Acad. Sci. USA 55: 920 927.
26. Kashket, E. R. 1985. The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol. 39: 219 242.
27. Kobayashi, H.,, J. Van Brunt,, and F. M. Harold. 1978. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J. Biol. Chem. 253: 2085 2092.
28. Koch, A. L., 1994. Growth measurement, p. 248 277. In P. Gerhardt (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, DC..
29. Konings, W. N. 1977. Active transport of solutes in bacterial membrane vesicles. Adv. Microb. Physiol. 15: 175 251.
30. Konings, W. N.,, A. Bisschop,, M. Veenhuis,, and C. A. Vermeulen. 1973. New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopic study of their ultrastructure. J. Bacteriol. 116: 1456 1465.
31. Krulwich, T. A.,, R. Agus,, M. Schneier,, and A. A. Guffanti. 1985. Buffering capacity of bacilli that grow at different pH ranges. J. Bacteriol. 162: 768 772.
32. Ma, Y.,, T. M. Curran,, and R. E. Marquis. 1997. Rapid procedures for acid adaptation of oral lactic-acid bacteria and further characterization of the response. Can. J. Microbiol. 43: 143 148.
33. MacDonald, R. E.,, and P. Gerhardt. 1958. Bacterial permeability: the uptake and oxidation of citrate by Escherichia coli. Can. J. Microbiol. 4: 109 124.
34. Maloney, P. C. 1979. Membrane H + conductance of Streptococcus lactis. J. Bacteriol. 140: 197 205.
35. Maloney, P. C.,, E. R. Kashket,, and T. H. Wilson. 1975. Methods for studying transport in bacteria. Methods Membr. Biol. 5: 1 49.
36. Marquis, R. E. 1967. Osmotic sensitivity of bacterial protoplasts and the response of their limiting membrane to stretching. Arch. Biochem. Biophys. 118: 323 331.
37. Marquis, R. E.,, and P. Gerhardt. 1964. Respirationcoupled and passive uptake of α-aminoisobutyric acid, a metabolically inert transport analogue, by Bacillus megaterium. J. Biol. Chem. 239: 3361 3371.
38. Matts, T. C.,, and C. J. Knowles. 1971. Stopped-flow studies of salt-induced turbidity changes of Escherichia coli. Biochim. Biophys. Acta 249: 583 587.
39. Midgley, M. 1987. An efflux system for cationic dyes and related compounds in Escherichia coli. Microbiol. Sci. 4: 125 127.
40. Mitchell, P.,, and J. Moyle. 1959. Permeability of the envelopes of Staphylococcus aureus to some salts, amino acids, and non-electrolytes. J. Gen. Microbiol. 20: 434 441.
41. Morbach, S.,, and R. Krämer. 2002. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. ChemBioChemistry 3: 384 397.
42. Phan, T.-N.,, J. S. Reidmiller,, and R. E. Marquis. 2000. Sensitization of Actinomyces naeslundii and Streptococcus sanguis in biofilms and suspensions to acid damage by fluoride and other weak acids. Arch. Microbiol. 174: 248 255.
43. Poolman, B. 2002. Transporters and their roles in LAB cell physiology. Antonie Leeuwenhoek 82: 147 164.
44. Poolman, B.,, P. Blout,, J. H. A. Folgering,, R. H. E. Friesen,, P. Moe,, and T. der Heide. 2002. How do membrane proteins sense water stress? Mol. Microbiol. 44: 889 902.
45. Ramos, S.,, and H. R. Kaback. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16: 848 854.
46. Ramos, S.,, S. Schuldiner,, and H. R. Kaback. 1976. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 73: 1892 1896.
47. Reed, R. H.,, and A. E. Walsby. 1985. Changes in turgor pressure in response to increases in external NaCl concentration in the gas-vacuolate cyanobacterium Microcystis sp. Arch. Microbiol. 143: 290 296.
48. Robinson, C.,, J. Kirkham,, R. Percival,, R. C. Shore,, W. A. Bonass,, S. J. Brookes,, L. Kusa,, H. Nakagaki,, K. Kato,, and B. Nattress. 1997. A method for the quantitative, site-specific study of the biochemistry within dental plaque biofilms in vivo. Caries Res. 31: 194 200.
49. Roessler, M.,, and V. Müller. 2001. Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3: 743 754.
50. Russell, J. B.,, and F. Diez-Gonzales. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39: 205 234.
51. Scherrer, R.,, and P. Gerhardt. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107: 718 735.
52. Scholes, P.,, and P. Mitchell. 1970. Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate. J. Bioenerg. 1: 61 72.
53. Siebold, C.,, K. Flükiger,, R. Beutler,, and B. Erni. 2001. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett. 504: 104 111.
54. Stadelmann, E. J. 1966. Evaluation of turgidity, plasmolysis and deplasmolysis of plant cells. Methods Cell Physiol. 2: 143 216.
55. Stewart, P. S. 2003. Diffusion in biofilms. J. Bacteriol. 185: 1485 1491.
56. Tran, Q. H.,, and G. Unden. 1998. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur. J. Biochem. 251: 538 543.
57. Viitanen, P. M.,, J. Newman,, D. L. Foster,, T. H. Wilson,, and H. R. Kaback. 1986. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 125: 429 452.
58. Vroom, J. M.,, K. J. de Grauw,, H. C. Gerritsen,, D. J. Bradshaw,, P. D. Marsh,, G. K. Watson,, J. J. Birmingham,, and C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65: 3502 3511.
59. Whatmore, A. M.,, and R. H. Reed. 1990. Determination of turgor pressure in Bacillus subtilis: a possible role for K_ in turgor regulation. J. Gen. Microbiol. 136: 2521 2526.
60. White, N. S., 1995. Visualization systems for multidimensional CLSM images, p. 211 254. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, NY..
61. Wood, J. M. 1999. Osmosensing by bacteria. Signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 230 262.
62. Wood, S. R.,, J. Kirkham,, P. D. Marsh,, R. C. Shore,, B. Nattress,, and C. Robinson. 2000. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79: 21 27.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error