1887

Chapter 20 : Permeability and Transport

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Permeability and Transport, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap20-2.gif

Abstract:

Permease systems may be energized by ATP, for example, ATP binding cassette systems, or by the proton motive force across the cell membrane. Techniques that require less biomass and are based on use of membrane filters or a high-speed microcentrifuge are described. Changes in growth medium, growth temperature and pH can also be expected to alter permeability, although alterations will generally be less severe than for energized transport coupled to ATP hydrolysis or ∆p across the cell membrane. Harvested cells need to be centrifuged to obtain a tight pellet, and the details of centrifugation depend on the particular organism. The best candidates are the ones used with suspension cells, small solutes such as sucrose or raffinose for which the cells under study do not have significant permeability or transport systems, or non-transported analogues of known substrates. The membrane continuity of vesicles is best tested by assessing the extent of swelling or shrinking in response to changes in osmolality of the suspending medium. The workings of individual transport components, such as permease proteins, antiporters, symporters, or ion translocating ATPases, can often best be studied by isolating the catalysts from cell membranes and incorporating them into liposomes or proteoliposomes.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20

Key Concept Ranking

Bacteria and Archaea
0.4662727
Confocal Laser Scanning Microscopy
0.4182942
0.4662727
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Typical packing curve for a cell pellet.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Graphic estimation of the diffusion component in the total uptake of a solute by microbial cells. The transport uptake is the total uptake minus the uptake due to passive diffusion. The uptake measure can be either the rate or extent of uptake.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Proton permeability of biofilms of in the presence of 0 (open squares), 0.5 (closed triangles), 1.0 (closed squares), or 5.0 (closed inverted triangles) mM NaF, a weak acid enhancer of proton movements across cell membranes. Butanol was added (5% [vol/vol]) at the indicated time to damage the cell membrane and render it totally permeable to protons.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Osmotic volume changes for microbial cells. The dashed line indicates the ideal behavior predicted by the van't Hoff-Boyle equation. The solid curve indicates the actual behavior.

Citation: Marquis R. 2007. Permeability and Transport, p 527-538. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap20
1. Altendorf, K. H.,, and L. A. Staehelin. 1974. Orientation of membrane vesicles from Escherichia coli as detected by freeze-cleave electron microscopy. J. Bacteriol. 117:888899.
2. Ames, G. F.-L. 1974. Two methods for the assay of amino acid transport in bacteria. Methods Enzymol. 32:843849.
3. Avison, M. J.,, H. P. Hetherington,, and R. G. Shulman. 1984. Applications of NMR to studies of tissue metabolism. Annu. Rev. Biophys. Biophys. Chem. 15:377402.
4. Belli, W. A.,, and R. E. Marquis. 1991. Adaptation of Streptococcus mutans and Enterococcus hirae to acid stress in continuous culture. Appl. Environ. Microbiol. 57:11341138.
5. Bender, G. R.,, S. V. W. Sutton,, and R. E. Marquis. 1986. Acid tolerance, proton permeabilities, and membrane ATPases of oral streptococci. Infect. Immun. 53:331338.
6. Bradshaw, D. J.,, P. D. Marsh,, K. M. Schilling,, and D. Cummins. 1996. A modified chemostat system to study the ecology of oral biofilms. J. Appl. Bacteriol. 80:124 130.
7. Burne, R. A.,, and R. E. Marquis. 2001. Biofilm acid/base physiology and gene expression in oral bacteria. Methods Enzymol. 337:403415.
8. Burne, R. A.,, R. G. Quivey, Jr., and R. E. Marquis. 1999. Physiologic homeostasis and stress response in oral biofilms. Methods Enzymol. 310:441460.
9. Chung, H-J.,, T. J. Montville,, and M. L. Chikindas. 2000. Nisin depletes ATP and proton motive force in mycobacteria. Lett. Appl. Microbiol. 31:416420.
10. Conway, E. J.,, and M. Downey. 1950. An outer metabolic region of the yeast cell. Biochem. J. 47:347355.
11. de Poorter, L. M. I.,, and J. T. Keltjens. 2001. Convenient fluorescence-based methods to measure membrane potential and intracellular pH in the Archaeon Methanobacterium thermoautotrophicum. J. Microbiol. Methods 47:233241.
12. Doyle, R. J. (ed.). 1999. Methods in Enzymology, vol. 310. Biofilms. Academic Press, Inc., San Diego, CA..
13. Doyle, R. J. (ed.). 2001. Methods in Enzymology, vol. 336/337. Microbial Growth in Biofilms. Part A, Developmental and Molecular Aspects. Part B, Special Environments and Physicochemical Aspects. Academic Press, Inc., San Diego, CA..
14. Doyle, R. J.,, and R. E. Marquis. 1994. Elastic, flexible peptidoglycan and bacterial cell wall properties. Trends Microbiol. 2:5760.
15. Driessen, A. J. M.,, and W. N. Konings. 1993. Insertion of lipids and proteins into bacterial membranes by fusion with liposomes. Methods Enzymol. 221:394408.
16. Driessen, A. J. M.,, D. Molenaar,, and W. N. Konings. 1989. Kinetic mechanism and specificity of the arginineornithine antiporter of Lactococcus lactis. J. Biol. Chem. 264:1036110370.
17. Driessen, A. J. M.,, B. P. Rosen,, and W. N. Konings. 2000. Diversity of transport mechanisms: common structural principles. Trends Biochem. Sci. 25:397401.
18. Dubois, M.,, K. A. Gilles,, J. K. Hamilton,, P. A. Rebers,, and F. Smith. 1956. Colorimetric method for determination of sugars and related substances. Anal. Chem. 28:350356.
19. Felle, H.,, J. S. Porter,, C. L. Slayman,, and H. R. Kaback. 1980. Quantitative measurements of membrane potential in Escherichia coli. Biochemistry 19:35853590.
20. Fristedt, U.,, M. van der Rest,, B. Poolman,, W. N. Konings,, and B. L. Persson. 1999. Studies of cytochrome c oxidase-driven H_-coupled phosphate transport catalyzed by the Saccharomyces cerevisiae Pho84 permease in coreconstituted vesicles. Biochemistry 38:1601016015.>
21. Harold, F. M.,, and K. Altendorf. 1974. Cation transport in bacteria: K+, Na+, and H_. Curr. Top. Membr. Transp. 5:150.
22. Hurwitz, C.,, C. B. Braun,, and R. A. Peabody. 1965. Washing bacteria by centrifugation through a water-immiscible layer of silicone. J. Bacteriol. 90:16921695.
23. Iwami, Y.,, S. Hata,, C. F. Schachtele,, and T. Yamada. 1995. Simultaneous monitoring of intracellular pH and proton excretion during glycolysis by Streptococcus mutans and Streptococcus sanguis: effect of low pH and fluoride. Oral Microbiol. Immunol. 10:355359.
24. Kaback, H. R. 1971. Bacterial membranes. Methods Enzymol. 22:99120.
25. Kaback, H. R.,, and E. R. Stadtman. 1966. Proline uptake by an isolated cytoplasmic membrane preparation of Escherichia coli. Proc. Natl. Acad. Sci. USA 55:920927.
26. Kashket, E. R. 1985. The proton motive force in bacteria: a critical assessment of methods. Annu. Rev. Microbiol. 39:219242.
27. Kobayashi, H.,, J. Van Brunt,, and F. M. Harold. 1978. ATP-linked calcium transport in cells and membrane vesicles of Streptococcus faecalis. J. Biol. Chem. 253:20852092.
28. Koch, A. L., 1994. Growth measurement, p. 248277. In P. Gerhardt (ed.), Methods for General and Molecular Bacteriology. ASM Press, Washington, DC..
29. Konings, W. N. 1977. Active transport of solutes in bacterial membrane vesicles. Adv. Microb. Physiol. 15:175251.
30. Konings, W. N.,, A. Bisschop,, M. Veenhuis,, and C. A. Vermeulen. 1973. New procedure for the isolation of membrane vesicles of Bacillus subtilis and an electron microscopic study of their ultrastructure. J. Bacteriol. 116: 14561465.
31. Krulwich, T. A.,, R. Agus,, M. Schneier,, and A. A. Guffanti. 1985. Buffering capacity of bacilli that grow at different pH ranges. J. Bacteriol. 162:768772.
32. Ma, Y.,, T. M. Curran,, and R. E. Marquis. 1997. Rapid procedures for acid adaptation of oral lactic-acid bacteria and further characterization of the response. Can. J. Microbiol. 43:143148.
33. MacDonald, R. E.,, and P. Gerhardt. 1958. Bacterial permeability: the uptake and oxidation of citrate by Escherichia coli. Can. J. Microbiol. 4:109124.
34. Maloney, P. C. 1979. Membrane H+ conductance of Streptococcus lactis. J. Bacteriol. 140:197205.
35. Maloney, P. C.,, E. R. Kashket,, and T. H. Wilson. 1975. Methods for studying transport in bacteria. Methods Membr. Biol. 5:149.
36. Marquis, R. E. 1967. Osmotic sensitivity of bacterial protoplasts and the response of their limiting membrane to stretching. Arch. Biochem. Biophys. 118:323331.
37. Marquis, R. E.,, and P. Gerhardt. 1964. Respirationcoupled and passive uptake of α-aminoisobutyric acid, a metabolically inert transport analogue, by Bacillus megaterium. J. Biol. Chem. 239:33613371.
38. Matts, T. C.,, and C. J. Knowles. 1971. Stopped-flow studies of salt-induced turbidity changes of Escherichia coli. Biochim. Biophys. Acta 249:583587.
39. Midgley, M. 1987. An efflux system for cationic dyes and related compounds in Escherichia coli. Microbiol. Sci. 4: 125127.
40. Mitchell, P.,, and J. Moyle. 1959. Permeability of the envelopes of Staphylococcus aureus to some salts, amino acids, and non-electrolytes. J. Gen. Microbiol. 20:434441.
41. Morbach, S.,, and R. Krämer. 2002. Body shaping under water stress: osmosensing and osmoregulation of solute transport in bacteria. ChemBioChemistry 3:384397.
42. Phan, T.-N.,, J. S. Reidmiller,, and R. E. Marquis. 2000. Sensitization of Actinomyces naeslundii and Streptococcus sanguis in biofilms and suspensions to acid damage by fluoride and other weak acids. Arch. Microbiol. 174:248255.
43. Poolman, B. 2002. Transporters and their roles in LAB cell physiology. Antonie Leeuwenhoek 82:147164.
44. Poolman, B.,, P. Blout,, J. H. A. Folgering,, R. H. E. Friesen,, P. Moe,, and T. der Heide. 2002. How do membrane proteins sense water stress? Mol. Microbiol. 44:889902.
45. Ramos, S.,, and H. R. Kaback. 1977. The electrochemical proton gradient in Escherichia coli membrane vesicles. Biochemistry 16:848854.
46. Ramos, S.,, S. Schuldiner,, and H. R. Kaback. 1976. The electrochemical gradient of protons and its relationship to active transport in Escherichia coli membrane vesicles. Proc. Natl. Acad. Sci. USA 73:18921896.
47. Reed, R. H.,, and A. E. Walsby. 1985. Changes in turgor pressure in response to increases in external NaCl concentration in the gas-vacuolate cyanobacterium Microcystis sp. Arch. Microbiol. 143:290296.
48. Robinson, C.,, J. Kirkham,, R. Percival,, R. C. Shore,, W. A. Bonass,, S. J. Brookes,, L. Kusa,, H. Nakagaki,, K. Kato,, and B. Nattress. 1997. A method for the quantitative, site-specific study of the biochemistry within dental plaque biofilms in vivo. Caries Res. 31:194200.
49. Roessler, M.,, and V. Müller. 2001. Osmoadaptation in bacteria and archaea: common principles and differences. Environ. Microbiol. 3:743754.
50. Russell, J. B.,, and F. Diez-Gonzales. 1998. The effects of fermentation acids on bacterial growth. Adv. Microb. Physiol. 39:205234.
51. Scherrer, R.,, and P. Gerhardt. 1971. Molecular sieving by the Bacillus megaterium cell wall and protoplast. J. Bacteriol. 107:718735.
52. Scholes, P.,, and P. Mitchell. 1970. Acid-base titration across the plasma membrane of Micrococcus denitrificans: factors affecting the effective proton conductance and the respiratory rate. J. Bioenerg. 1:6172.
53. Siebold, C.,, K. Flükiger,, R. Beutler,, and B. Erni. 2001. Carbohydrate transporters of the bacterial phosphoenolpyruvate: sugar phosphotransferase system (PTS). FEBS Lett. 504:104111.
54. Stadelmann, E. J. 1966. Evaluation of turgidity, plasmolysis and deplasmolysis of plant cells. Methods Cell Physiol. 2:143216.
55. Stewart, P. S. 2003. Diffusion in biofilms. J. Bacteriol. 185:14851491.
56. Tran, Q. H.,, and G. Unden. 1998. Changes in the proton potential and the cellular energetics of Escherichia coli during growth by aerobic and anaerobic respiration or by fermentation. Eur. J. Biochem. 251:538543.
57. Viitanen, P. M.,, J. Newman,, D. L. Foster,, T. H. Wilson,, and H. R. Kaback. 1986. Purification, reconstitution, and characterization of the lac permease of Escherichia coli. Methods Enzymol. 125:429452.
58. Vroom, J. M.,, K. J. de Grauw,, H. C. Gerritsen,, D. J. Bradshaw,, P. D. Marsh,, G. K. Watson,, J. J. Birmingham,, and C. Allison. 1999. Depth penetration and detection of pH gradients in biofilms by two-photon excitation microscopy. Appl. Environ. Microbiol. 65:35023511.
59. Whatmore, A. M.,, and R. H. Reed. 1990. Determination of turgor pressure in Bacillus subtilis: a possible role for K_ in turgor regulation. J. Gen. Microbiol. 136:25212526.
60. White, N. S., 1995. Visualization systems for multidimensional CLSM images, p. 211254. In J. B. Pawley (ed.), Handbook of Biological Confocal Microscopy. Plenum Press, New York, NY..
61. Wood, J. M. 1999. Osmosensing by bacteria. Signals and membrane-based sensors. Microbiol. Mol. Biol. Rev. 63: 230262.
62. Wood, S. R.,, J. Kirkham,, P. D. Marsh,, R. C. Shore,, B. Nattress,, and C. Robinson. 2000. Architecture of intact natural human plaque biofilms studied by confocal laser scanning microscopy. J. Dent. Res. 79:2127.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error