1887

Chapter 21 : Bacterial Respiration

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Bacterial Respiration, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap21-2.gif

Abstract:

This chapter provides a brief introduction to assay the activity of respiratory enzymes. Spot assays can facilitate the rapid detection of enzyme activities in whole or permeabilized cells, in subcellular samples, or in chromatography fractions to follow protein purification. In-gel activity stains, or zymograms, offer an alternative approach to detect oxidoreductase enzymes, especially when the level of enzyme activity is at or below the sensitivity limit of a standardized quantitative enzyme assay. Conversely, if the cellular location of the enzyme is unknown, it can be determined experimentally. Finally, knowledge of the enzyme location can be useful in understanding the physiological role(s) of the enzyme in cell metabolism and in energy conservation. This section outlines experimental approaches to determine the cellular location of a redox enzyme following cell fractionation. Since succinate dehydrogenase may be partially deactivated by tightly bound oxaloacetate at its active site, the enzyme requires activation prior to enzyme assay by incubation with either malate or succinate. Prokaryotes exhibit considerable enzymatic diversity with respect to the number and types of cytochrome oxidase enzymes present for reduction of molecular oxygen to water. A section of the chapter describes a number of commonly used assays for anaerobic respiratory enzymes that act on terminal electron acceptors, including nitrate, nitrite, nitric oxide, nitrous oxide, fumarate, TMAO, DMSO, and metal oxides. The activity of NADH-dependent NirB-type enzymes is assayed by monitoring the oxidation of NADH.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21

Key Concept Ranking

Bacteria and Archaea
0.43963733
Other Oxidoreductase
0.41191956
0.43963733
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Location of redox respiratory enzymes in the cell. The active site of a membrane-bound oxidoreductase may face the cytoplasm (A) or the periplasm (B). A soluble-type oxidoreductase may be located either in the periplasmic space (C) or in the cytoplasm (D). The electron acceptor substrate (S) is converted to the reduced product (P).

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Anaerobic cuvette gassing arrangement for performing anaerobic dye-dependent enzyme assays.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Reactions of the dissimilatory sulfate reduction pathway.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap21
1. Ackrell, B. A. C.,, E. B. Kearney,, and T. P. Singer. 1978. Mammalian succinate dehydrogenase. Methods Enzymol. 53:466483.
2. Adams, M. W. W. 1990. The structure and mechanism of iron hydrogenases. Biochim. Biophys. Acta 1020:115 145.
3. Adams, M. W. W.,, L. E. Mortenson,, and J. S. Chen. 1981. Hydrogenases. Biochim. Biophys. Acta 594:105176.
4. Anraku, Y.,, and R. B. Gennis. 1987. The aerobic respiratory chains of Escherichia coli. Trends Biochem. Sci. 12: 262266.
5. Antipov, A. N.,, D. Y. Sorkin,, N. P. L’vov,, and H. G. Kuenen. 2003. New enzyme belonging to the family of molybdenum-free nitrate reductases. Biochem. J. 369:185189.
6. Armstrong, F. A.,, and S. P. Albracht. 2005. [NiFe]- hydrogenases: spectroscopic and electrochemical definition of reactions and intermediates. Phil. Trans. R. Soc. 363: 937954.
7. Baker, S. C.,, S. J. Ferguson,, B. Ludwig,, M. D. Page,, O. M. Richer,, and R. J. van Spanning. 1998. Molecular genetics of the genus Paracoccus: metabolically versatile bacteria with bioenergetic flexibility. Microbiol. Mol. Biol. Rev. 62:10461078.
8. Böck, A.,, and G. Sawers,. 1996. Fermentation, p. 262282. In F. C. Neidhardt,, R. CurtissIII, , J. L. Ingraham,, E. C. C. Lin,, K. B. Low,, B. Magasanik,, W. S. Reznikoff,, M. Riley,, M. Schaechter,, and H. E. Umbarger (ed.), Escherichia coli and Salmonella: Cellular and Molecular Biology, 2nd ed. ASM Press, Washington, DC..
8.a. Breznak, J. A.,, and R. N. Costilow,. 1994. Physicochemical factors in growth, p. 135154. In P. Gerhard,, R. G. E. Murray,, W. A. Wood,, and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, DC..
9. Burgdorf, T.,, O. Lenz,, T. Buhrke,, E. van der Linden,, A. K. Jones,, S. P. Albracht,, and B. Friedrich. 2005. [NiFe]-hydrogenases of Ralstonia eutropha H16: modular enzymes for oxygen-tolerant biological hydrogen oxidation. J. Mol. Microbiol. Biotechnol. 10:181196.
10. Burgdorf, T.,, E. van der Linden,, M. Bernhard,, Q. Y. Yin,, J. W. Back,, A. F. Hartog,, A. O. Muijsers,, C. G. de Koster,, S. P. Albracht,, and B. Friedrich. 2005. The soluble NAD+-reducing [NiFe]-hydrogenase from Ralstonia eutropha H16 consists of six subunits and can be specifically activated by NADPH. J. Bacteriol. 187:31223132.
11. Cabello, P.,, M. D. Rolan,, and C. Moreno-Vivian. 2004. Nitrate reduction and the nitrogen cycle in archaea. Microbiology 150:35273546.
12. Castresana, J.,, M. Lubben,, and M. Saraste. 1995. New archaebacterial genes coding for redox proteins: implications for the evolution of aerobic metabolism. J. Mol. Biol. 250:202210.
13. Castresana, J.,, M. Lubben,, M. Saraste,, and D. G. Higgens. 1994. Evolution of cytochrome oxidase, an enzyme older than atmospheric oxygen. EMBO J. 13:25162525.
14. Cecchini, G.,, I. Schröder,, R. P. Gunsalus,, and E. Maklashina. 2002. Succinate dehydrogenase and fumarate reductase from Escherichia coli. Biochim. Biophys. Acta 1553:140157.
15. Chen, P. S.,, T. Y. Toribara,, and H. Warner. 1956. Microdetermination of phosphorus. Anal. Chem. 28: 17561758.
16. Clark, W. M. 1972. Oxidation-Reduction Potentials of Organic Systems. Robert E. Krieger, Huntington, NY..
17. Costa, C.,, M. Teixeira,, J. LeGall,, J. J. G. Moura,, and I. Moura. 1997. Formate dehydrogenase from Desulfovibrio desulfuricans ATCC 27774: isolation and spectroscopic characterization of the active sites (heme, iron-sulfur centers and molybdenum). J. Biol. Inorg. Chem. 2:198208.
18. Coyle, C. L.,, W. G. Zumft,, P. M. Kroeneck,, H. Korner,, and W. Jakob. 1985. Nitrous oxide reductase from denitrifying Pseudomonas perfectomarina. Purification and properties of a novel multicopper enzyme. Eur. J. Biochem. 153: 459467.
19. Dahl, C.,, N. Speich,, and H. G. Truper. 1994. Enzymology and molecular biology of sulfate reduction in extremely thermophilic archaeon Archaeoglobus fulgidus. Methods Enzymol. 243:331349.
20. Ding, H.,, C. C. Moser,, D. E. Robertson,, M. K. Tokito,, F. Daldal,, and P. L. Dutton. 1995. Ubiquinone pair in the Qo site central to the primary energy conversion reactions of cytochrome bc1 complex. Biochemistry 34:1597915996.
21. Flores, E.,, J. E. Frias,, L. M. Rubio,, and A. Herrero. 2005. Photosynthetic nitrate assimilation in cyanobacteria. Photosynth. Res. 83:117133.
22. Frederiksen, T. M.,, and K. Finster. 2003. Sulfite-oxidoreductase is involved in the oxidation of sulfite in Desulfocapsa sulfoexigens [sic] during disproportionation of thiosulfate and elemental sulfur. Biodegradation 14:189198.
23. Friedrich, T. 1998. The NADH:ubiquinone oxidoreductase (complex I) from Escherichia coli. Biochim. Biophys. Acta 1364:134146.
24. Gaspard, S.,, F. Vazquez,, and C. Holliger. 1998. Localization and solubilization of the iron(III) reductase of Geobacter sulfurreducens. Appl. Environ. Microbiol. 64: 31883194.
25. Gennis, R. B. 1987. Cytochromes of Escherichia coli. FEMS Microbiol. Rev. 46:387399.
26. Gennis, R. B.,, and V. S. Stewart,. 1996. Respiration, p. 217261. In F. C. Neidhardt et al. (ed.), Escherichia coli and Salmonella typhimurium: Cellular and Molecular Biology, 2nd ed., vol. 1. American Society for Microbiology, Washington, D.C..
27.[Reference deleted.].
28. Girsch, P.,, and S. de Vries. 1997. Purification and initial kinetic and spectroscopic characterization of NO reductase from Paracoccus denitrificans. Biochim. Biophys. Acta 1318:202216.
29. Gong, X.,, T. Xie,, L. Yu,, M. Hesterberg,, D. Scheide,, T. Friedrich,, and C.-A. Yu. 2003. The ubiquinone-binding site in NADH:ubiquinone oxidoreductase from Escherichia coli. J. Biol. Chem. 278:2573125737.
30. Gordon, E. H.,, S. L. Pealing,, S. K. Chapman,, F. B. Ward,, and G. A. Reid. 1998. Physiological function and regulation of flavocytochrome c3, the soluble fumarate reductase from Shewanella putrefaciens NCIMB 400. Microbiology 144:937945.
31. Green, G. N.,, and R. B. Gennis. 1983. Isolation and characterization of an Escherichia coli mutant lacking cytochrome d terminal oxidase. J. Bacteriol. 154:12691275.
32. Greenberg, A. E.,, L. S. Clesceri,, and A. D. Eaton. 1992. Standard Methods for the Examination of Water and Wastewater, 18th ed. American Public Health Association, Washington, D.C..
33. Grivennikova, V. G.,, E. V. Gavrikova,, A. A. Timoshin,, and A. D. Vinogradov. 1993. Fumarate reductase activity of bovine heart succinate-ubiquinone reductase. New assay system and overall properties of the reaction. Biochim. Biophys. Acta 1140:282292.
34. Gunsalus, R. P. 1992. Control of electron flow in Escherichia coli: coordinated transcription of respiratory pathway genes. J. Bacteriol. 174:70697074.
35. Halnon, S. P.,, T. H. Toh,, P. S. Solomon,, R. A. Holt,, and A. G. McEwan. 1996. Dimethylsulfide:acceptor oxidoreductase from Rhodobacter sulfidophilus. The purified enzyme contains b-type haem and a pterin molybdenum cofactor. Eur. J. Biochem. 239:391396.
36. Hauska, G.,, A. Trebst,, and W. Draber. 1973. Lipophilicity and catalysis of photophosphorylation. II. Quinoid compounds as artificial carriers in cyclic photophosphorylation and photoreductions by photosystem I. Biochim. Biophys. Acta 5:222232.
37. Henning, W.,, L. Vo,, V. Albanese,, and B. C. Hill. 1995. High-yield purification of cytochrome aa3 and cytochrome caa3 oxidases from Bacillus subtilis plasma membranes. Biochem. J. 309:279283.
38. Higuchi, Y.,, H. Ogata,, K. Miki,, N. Yasuoka,, and T. Yagi. 1999. Removal of the bridging ligand atom at the Ni- Fe active site of [NiFe] hydrogenase upon reduction with H2, as revealed by X-ray structure analysis at 1.4 A resolution. Structure 7:549556.
39. Hulse, C. L.,, J. M. Tiedje,, and B. A. Averill. 1988. A spectrophotometric assay for dissimilatory nitrite reductases. Anal. Biochem. 172:420426.
40. Ingledew, W. J.,, and R. K. Poole. 1984. The respiratory chains of Escherichia coli. Microbiol. Rev. 48:222271.
41. Iverson, T. M.,, C. Luna-Chavez,, I. Schröder,, G. Cecchini,, and D. C. Rees. 2000. Analyzing your complexes: structure of the quinol-fumarate reductase respiratory complex. Curr. Opin. Struct. Biol. 10:448455.
42. Ji, G.,, and S. Silver. 1995. Bacterial resistance mechanisms for heavy metals of environmental concern. J. Ind. Microbiol. 14:6175.
43. Jones, R. W.,, and P. B. Garland. 1977. Sites and specificity of the reaction of bipyridylium compounds with anaerobic respiratory enzymes of Escherichia coli. Effects of permeability barriers imposed by the cytoplasmic membrane. Biochem. J. 164:199211.
44. Jormakka, M.,, B. Bryne,, and S. Iwata. 2003. Formate dehydrogenase— versatile enzyme in changing environments. Curr. Opin. Struct. Biol. 13:418423.
45. Klonowska, A.,, T. Heulin,, and A. Vermeglio. 2005. Selenite and tellurite reduction by Shewanella oneidensis. Appl. Environ. Microbiol. 71:56075609.
46. Krafft, T.,, A. Bowen,, F. Theis,, and J. M. Macy. 2000. Cloning and sequencing of the genes encoding the periplasmic-cytochrome b-containing selenate reductase of Thauera selenatis. DNA Sequence 10:365377.
47. Krafft, T.,, and J. M. Macy. 1988. Purification and characterization of the respiratory arsenate reductase of Chrysiogenes arsenatis. Eur. J. Biochem. 255:647653.
48. Kramer, M.,, and H. Cypionka. 1989. Sulfate formation via ATP-sulfurylase in thiosulfate-disproportionating and sulfide-disproportionating bacteria. Arch. Microbiol. 151: 232237.
49. Kristjansson, J. K.,, and T. C. Hollocher. 1980. First practical assay for soluble nitrous oxide reductase of denitrifying bacteria and a partial kinetic characterization. J. Biol. Chem. 255:704707.
50. Kröeger, A. 1978. Determination of contents and redox states of ubiquinone and menaquinone. Methods Enzymol. 53:579591.
51. Kröger, A.,, E. Dorrer,, and E. Winkler. 1980. The orientation of the substrate sites of formate dehydrogenase and fumarate reductase in the membrane of Vibrio succinogenes. Biochim. Biophys. Acta 589:118136.
52. Kröger, A.,, E. Winkler,, A. Innerhofer,, H. Hackenberg,, and H. Schagger. 1979. The formate dehydrogenase involved in electron transport from formate to fumarate in Vibrio succinogenes. Eur. J. Biochem. 94:465475.
53. Lamle, S. E.,, S. P. Albracht,, and F. A. Armstrong. 2005. The mechanism of activation of a [NiFe]-hydrogenase by electrons, hydrogen, and carbon monoxide. J. Am. Chem. Soc. 127:65956604.
54. Lascelles, J.,, and K. A. Burke. 1978. Reduction of ferric iron by L-lactate and DL-glycerol-3-phosphate in membrane preparations from Staphylococcus aureus and interactions with the nitrate reductase system. J. Bacteriol. 134:585559.
55. Lovley, D. R.,, D. E. Holmes,, and K. P. Nevin. 2004. Dissimilatory Fe(III) and Mn(IV) reduction. Adv. Microb. Physiol. 49:219286.
56. Lubitz, S. P.,, and J. H. Weiner. 2003. The Escherichia coli ynfEFGHI operon encodes polypeptides which are paralogues of dimethyl sulfoxide reductase (DmsABC). Arch. Biochem. Biophys. 418:205216.
57. Macy, J. M.,, J. E. Snellen,, and R. E. Hungate. 1972. Use of syringe methods for anaerobiosis. Am. J. Clin. Nutr. 25: 13181323.
58. Maklashina, E.,, and G. Cecchini. 1999. Comparison of catalytic activity and inhibitors of quinone reactions of succinate dehydrogenase (succinate-ubiquinone oxidoreductase) and fumarate reductase (menaquinol-fumarate oxidoreductase) from Escherichia coli. Arch. Biochem. Biophys. 369:223232.
59. Manchenko, G. P. 1994. Handbook of Detection of Enzymes on Electrophoretic Gels. CRC Press, Boca Raton, FL..
60. Matsushita, K.,, T. Ohnishi,, and H. R. Kaback. 1987. NADH:ubiquinone oxidoreductases of the Escherichia coli aerobic respiratory chain. Biochemistry 26:77327737.
61. McCrindle, S. L.,, U. Kappler,, and A. G. McEwan. 2005. Microbial dimethylsulfoxide and trimethylamine-N-oxide respiration. Adv. Microb. Physiol. 50:147198.
62. McEwan, A. G.,, S. J. Ferguson,, and J. B. Jackson. 1991. Purification and properties of dimethyl sulphoxide reductase from Rhodobacter capsulatus. A periplasmic molybdoenzyme. Biochem. J. 274:305307.
63. Miller, T. L.,, and M. J. Wolin. 1974. A serum bottle modification of the Hungate technique for cultivating obligate anaerobes. Appl. Microbiol. 27:985987.
64. Moreno-Vivian, C.,, and S. J. Ferguson. 1998. Definition and distinction between assimilatory, dissimilatory and respiratory pathways. Mol. Microbiol. 29:664666.
65. Moscoso, H.,, C. Saavedra,, C. Loyola,, S. Pichuantes,, and C. Vasquez. 1998. Biochemical characterization of the tellurite-reducing activities of Bacillus stearothermophilus V. Res. Microbiol. 149:389397.
66. Newman, D. K.,, E. K. Kenney,, J. D. Coates,, D. Ahmann,, D. J. Ellis,, D. R. Lovely,, and F. M. M. Morel. 1977. Dissimilatory arsenate and sulfate reduction in Desulfotomaculum auripigmentum sp. nov. Arch. Microbiol. 168:380388.
67. Pawate, A. S.,, J. Morgan,, A. Namslauer,, D. Mills,, P. Brzezinski,, S. Ferguson-Miller,, and R. B. Gennis. 2002. A mutation in subunit I of cytochrome oxidase from Rhodobacter sphaeroides results in an increase in steadystate activity but completely eliminates proton pumping. Biochemistry 41:1341713423.
68. Pereira, M. M.,, M. Santana,, and M. Teixeira. 2001. A novel scenario for the evolution of haem-copper oxygen reductases. Biochim. Biophys. Acta 1505:185208.
69. Phillips, A. T., 1994. Enzymatic activity, p. 555586. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood,, and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C..
70. Poole, R. K.,, and G. M. Cook. 2000. Redundancy of aerobic respiratory chains in bacteria? Routes, reasons and regulation. Adv. Microb. Physiol. 43:165224.
71. Prince, R. C.,, S. J. Linkletter,, and P. L. Dutton. 1981. The thermodynamic properties of some commonly used oxidation-reduction mediators, inhibitors and dyes, as determined by polarography. Biochim. Biophys. Acta 635: 132148.
72. Richardson, D. J.,, B. C. Berks,, D. A. Russell,, S. Sprio,, and C. J. Taylor. 2001. Functional, biochemical and genetic diversity of prokaryotic nitrate reductases. Cell. Mol. Life Sci. 58:165178.
73. Riistama, S.,, A. Puustinen,, M. I. Verkhovsky,, J. E. Morgan,, and M. Wikstrom. 2000. Binding of O2 and its reduction are both retarded by replacement of valine 279 by isoleucine in cytochrome c oxidase from Paracoccus denitrificans. Biochemistry 39:63656372.
74. Robinson, M. K.,, K. Martinkus,, P. J. Kennelly,, and R. Timkovich. 1979. Implications of the integrated rate law for the reactions of Paracoccus denitrificans nitrite reductase. Biochemistry 18:39213926.
75. Rosen, B. P.,, H. Bhattacharjee,, and W. Shi. 1995. Mechanisms of metalloregulation of anion-translocating ATPase. J. Bioenerg. Biomembr. 27:8591.
76. Rothery, R. A.,, I. Chatterjee,, G. Kiema,, M. T. McDermott,, and J. H. Weiner. 1998. Hydroxylated naphthoquinones as substrates for Escherichia coli anaerobic reductases. Biochem. J. 332:3541.
77. Sabaty, M.,, C. Avazeri,, D. Pignol,, and A. Vermglio. 2001. Characterization of the reduction of selenate and tellurite by nitrate reductases. Appl. Environ. Microbiol. 67:51225126.
78. Sato, K.,, A. Okubo,, and S. Yamazaki. 1999. Anaerobic purification and characterization of nitrous oxide reductase from Rhodobacter sphaeroides f. sp. denitrificans IL106. J. Biochem. (Tokyo) 125:864868.
79. Sawers, G. 1994. The hydrogenases and formate dehydrogenases of Escherichia coli. Antonie Leeuwenhoek 66:5788.
80. Sazanov, L. A.,, J. Carroll,, P. Holt,, L. Toime,, and I. M. Fearnley. 2003. A role for native lipids in the stabilization and two-dimensional crystallization of the Escherichia coli NADH-ubiquinone oxidoreductase (complex I). J. Biol. Chem. 278:1948319491.
81. Schneider, K.,, H. G. Schlegel,, and K. Jochim. 1984. Effect of nickel on activity and subunit composition of purified hydrogenase from Nocardia opaca 1b. Eur. J. Biochem. 138:533541.
82. Schröder, I.,, S. Rech,, T. Krafft,, and J. M. Macy. 1997. Purification and characterization of the selenate reductase from Thauera selenatis. J. Biol. Chem. 272:2376523768.
83. Schroeder, I.,, E. Johnson,, and S. DeVries. 2003. Microbial ferric iron reductases. FEMS Microbiol. Rev. 27:427447.
84. Schwartz, E.,, and B. Friedrich,. 2006. The H2-metabolizing prokaryotes. In M. Dworkin,, S. Falkow,, E. Rosenberg,, K.-H. Schleifer,, and E. Stackebrandt (ed.), The Prokaryotes, 3rd ed., vol. 3. Springer, New York, NY..
85. Sebban, C.,, L. Blanchard,, M. Bruschi,, and F. Guerlesquin. 1995. Purification and characterization of the formate dehydrogenase from Desulfovibrio vulgaris Hildenborough. FEMS Microbiol. Lett. 133:143149.
86. Soboh, B.,, D. Linder,, and R. Hedderich. 2004. A multisubunit membrane-bound [NiFe] hydrogenase and an NADH-dependent Fe-only hydrogenase in the fermenting bacterium Thermoanaerobacter tengcongensis. Microbiology 150:24512463.
87. Sprott, G. D.,, S. F. Koval,, and C. A. Schnaitman,. 1994. Cell fractionation, p. 72103. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood,, and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C..
88. Stookey, L. L. 1970. Ferrozine: a new spectrophotometric reagent for iron. Anal. Chem. 42:779781.
89. Suharti, S.,, M. J. Strampraad,, I. Schröder,, and S. de Vries. 2001. A novel copper A containing menaquinol NO reductase from Bacillus azotoformans. Biochemistry 40: 26322639.
90. Takaya, N. 2002. Dissimilatory nitrate reduction metabolisms and their control in fungi. J. Biosci. Bioeng. 94: 506510.
91. Thauer, R. K.,, K. Jungermann,, and K. Decker. 1977. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol. Rev. 41:100180.
92. Toptchieva, A.,, G. Sisson,, L. J. Bryden,, D. E. Taylor,, and P. S. Hoffman. 2003. An inducible tellurite-resistance operon in Proteus mirabilis. Microbiology 149:12851295.
93. Unden, G.,, and J. Bongaerts. 1997. Alternative respiratory pathways of Escherichia coli: energetics and transcriptional regulation in response to electron acceptors. Biochim. Biophys. Acta 1320:217234.
94. Vadas, A.,, H. G. Monboquette,, E. Johnson,, and I. Schröder. 1999. Identification and characterization of a novel ferric reductase from the hyperthermophilic archaeon Archaeoglobus fulgidus. J. Biol. Chem. 274:3671536721.
95. van der Linden, E.,, T. Burgdorf,, A. L. de Lacey,, T. Buhrke,, M. Scholte,, V. M. Fernandez,, B. Friedrich,, and S. P. J. Albracht. 2006. An improved purification procedure for the soluble [NiFe]-hydrogenase of Ralstonia eutropha: new insights into its (in)stability and spectroscopic properties. J. Biol. Inorg. Chem. 11:247260.
96. Vignais, P. M.,, and A. Colbeau. 2004. Molecular biology of microbial hydrogenases. Curr. Issues Mol. Biol. 6:159188.
97. Vik, S. B.,, and Y. Hatefi. 1981. Possible occurrence and role of an essential histidyl residue in succinate dehydrogenase. Proc. Natl. Acad. Sci. USA 78:67496753.
98. Vinogradov, A. D. 1998. Catalytic properties of the mitochondrial NADH-ubiquinone oxidoreductase (complex I) and the pseudo-reversible active/inactive enzyme transition. Biochim. Biophys. Acta 1364:169185.
99. Von Jagow, G.,, and H. Schäger. 1994. A Practical Guide to Membrane Protein Purification, 2nd ed. Academic Press, San Diego, CA..
100. Wasser, I. M.,, S. de Vries,, P. Moenne-Loccoz,, I. Schröder,, and K. D. Karlin. 2002. Nitric oxide in biological denitrification: Fe/Cu metalloenzyme and metal complex NO(x) redox chemistry. Chem. Rev. 102:12011234.
101. Watanabe, T.,, and K. Honda. 1982. Measurement of extension coefficient of the methyl viologen cation radical and the efficiency of its formation by semiconductor photocatalysis. J. Phys. Chem. 86:26172619.
102. Watts, C. A.,, H. Ridley,, K. L. Condie,, J. T. Leaver,, D. J. Richardson,, and C. S. Butler. 2003. Selenate reduction by Enterobacter cloacae SLD1a-1 is catalysed by a molybdenum-dependent membrane-bound enzyme that is distinct from the membrane-bound nitrate reductase. FEMS Microbiol. Lett. 228:273379.
103. Watts, C. A.,, H. Ridley,, E. J. Dridge,, J. T. Leaver,, A. J. Reilly,, D. J. Richardson,, and C. S. Butler. 2005. Microbial reduction of selenate and nitrate: common themes and variations. Biochem. Soc. Trans. 33:173175.
104. Weiner, J. H.,, D. P. Maclsaac,, R. E. Bishop,, and P. T. Bilous. 1988. Purification and properties of Escherichia coli dimethyl sulfoxide reductase, an iron-sulfur molybdoenzyme with broad substrate specificity. J. Bacteriol. 170:15051511.
105. Wikström, M. 2004. Cytochrome c oxidase: 25 years of the elusive proton pump. Biochim. Biophys. Acta 1655:241247.
106. Wilson, G. S. 1978. Determination of oxidationreduction potentials. Methods Enzymol. 54:396410.
107. Wood, W. A.,, and J. R. Paterek,. 1994. Physical analysis, p. 465511. In P. Gerhardt,, R. G. E. Murray,, W. A. Wood,, and N. R. Krieg (ed.), Methods for General and Molecular Bacteriology. American Society for Microbiology, Washington, D.C..
108. Yamamoto, I.,, N. Okubo,, and M. Ishimoto. 1986. Further characterization of trimethylamine N-oxide reductase from Escherichia coli, a molybdoprotein. J. Biochem. 99:17731779.
109. Zhang, J.,, P. Hellwig,, J. P. Osborne,, H. W. Huang,, P. Moenne-Loccoz,, A. A. Konstantinov,, and R. B. Gennis. 2001. Site-directed mutation of the highly conserved region near the Q-loop of the cytochrome bd quinol oxidase from Escherichia coli specifically perturbs heme b595. Biochemistry 40:85488556.
110. Zumft, W. G. 1997. Cell biology and molecular basis of denitrification. Microbiol. Mol. Biol. Rev. 61:533616.

Tables

Generic image for table
TABLE 1

Standard redox potentials of selected electron donors and acceptors involved in bacterial oxidation-reduction reactions

Values derived from reference 91.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Generic image for table
TABLE 2

Standard redox potentials of artificial and physiologicial redox substrates commonly used to assay respiratory enzymes

Extinction coefficient expressed at the indicated wavelength.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Generic image for table
TABLE 3

Artificial redox dye substrates that are able to permeate to the cytoplasmic membrane

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21
Generic image for table
TABLE 4

Artificial redox dye substrates that are unable to permeate to the cytoplasmic membrane.

Citation: Gunsalus R, Cecchini G, Schröder I. 2007. Bacterial Respiration, p 539-557. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error