1887

Chapter 25 : Lignin and Lignin-Modifying Enzymes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Lignin and Lignin-Modifying Enzymes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap25-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap25-2.gif

Abstract:

There is increasing worldwide interest in the use of ligninolytic fungi for bioremediation purposes and for biopulping applications. Three families of fungal enzymes, designated lignin-modifying enzymes (LMEs), consist of lignin peroxidases (LiPs), manganese peroxidases (MnPs), and laccases (LACs), and these play a key role in lignin biotransformation. Demethoxylation is the most obvious consequence of attack on lignin by these fungi. Other methods such as nuclear magnetic resonance spectroscopy have also been used to study the degradation of polymeric lignin, but these methods are not easily amenable for detailed physiological and biochemical studies on white rot fungi and their enzymes. The disadvantage in the use of dimeric lignin model compounds is the fact that, unlike the lignin polymer, they can be taken up and metabolized intracellularly by microorganisms, which can make it difficult to determine whether the degradation products observed really reflect actual ligninolytic activity. Therefore, ideally, lignin model compounds should be sufficiently macromolecular but at the same time facilitate efficient product analysis. A heme peroxidase different from other microbial, plant, and animal peroxidases, termed versatile peroxidase (VP), was discovered in and species. Hydroxylation of both phenolic and nonphenolic lignin resulting in new phenolic substructures on the lignin polymer may make it susceptible to attack by LAC or MnP.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25

Key Concept Ranking

Nuclear Magnetic Resonance Spectroscopy
0.42614478
0.42614478
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Catalytic cycle of lignin peroxidase (LiP) in the presence (left panel) and absence (right panel) of a mediator, as exemplified by the veratryl alcohol in this figure. Symbols: LiP, native lignin peroxidase; LiP I, compound I; LiP II, compound II; VA, veratryl alcohol; VAD, veratraldehyde; SH, reducing substrate; S•, substrate cation radical.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Oxidation of VA to veratraldehyde by LiP in the presence of HO.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Catalytic cycle of manganese-dependent peroxidase (MnP). See the text for details.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

MnP activity assay scheme.

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap25
1. Ander, P.,, C. Mishra,, R. Farrel,, and K.-E. Eriksson. 1990. Redox interactions in lignin degradation: interaction between laccase, different peroxidases and cellobiose: quinone oxidoreductase. J. Biotechnol. 13:189198.
2. Archibald, F. S. 1992. A new assay for lignin-type peroxidases employing the dye azure B. Appl. Environ. Microbiol. 58:31103116.
3. Aro, N.,, T. Pakula,, and M. Pentilä. 2005. Transcriptional regulation of plant cell wall degradation by filamentous fungi. FEMS. Microbiol. Rev. 29:719739.
4. Baldrian, P. 2006. Fungal laccases—occurrence and properties. FEMS. Microbiol. Rev. 30:215242.
5. Bao, W. L.,, Y. Fukushima,, K. A. Jensen,, M. A Moen,, and K. E. Hammel. 1994. Oxidative-degradation of nonphenolic lignin during lipid-peroxidation by fungal manganese peroxidase. FEBS. Lett. 354:297300.
6. Barr, D. P.,, and S. D. Aust. 1994. Conversion of lignin peroxidase compound III to active enzyme by cation radicals. Arch. Biochem. Biophys. 312:511515.
7. Barr, D. P.,, M. M. Shah,, T. A. Grover,, and S. D. Aust. 1992. Production of hydroxyl radical by lignin peroxidase from Phanerochaete chrysosporium. Arch. Biochem. Biophys. 298:480485.
8. Blanchette, R. A. 1991. Delignification by wood-decay fungi. Annu. Rev. Phytopathol. 29:381398.
9. Blanchette, R. A. 1995. Degradation of the lignocellulose complex in wood. Can. J. Bot. 7351:9991010.
10. Blanchette, R. A. 2000. A review of microbial deterioration found in archaeological wood from different environments. Int. Biodeterior. Biodegrad. 46:189204.
11. Boominathan, K.,, and C. A. Reddy,. 1992. Lignin degradation by fungi: biotechnological applications, p. 763822. In D. K. Arora,, K. G. Mukerji,, and R. P. Elander (ed.), Handbook of Applied Mycology, vol.4. Biotechnology. Marcel Dekker Inc, New York, N.Y..
12. Breen, A.,, and F. L. Singleton. 1999. Fungi in lignocellulose breakdown and biopulping. Curr. Opin. Biotechnol. 10:252258.
13. Buswell, J. A.,, and O. Odier. 1987. Lignin biodegradation. CRC Crit. Rev. Biotechnol. 6:160.
14. Cai, D.,, and M. Tien. 1993. Lignin-degrading peroxidases of Phanerochaete chrysosporium. J. Biotechnol. 30:7990.
15. Call, H. P.,, and I. Mucke. 1997. History, overview and applications of mediated lignolytic systems, especially laccase-mediator-systems [Lignozym(R)- process]. J. Biotechnol. 53:163202.
16. Camarero, S.,, S. Sarkar,, F. J. Ruiz-Duenas,, M. J. Martinez,, and A. T. Martinez. 1999. Description of a versatile peroxidase involved in the natural degradation of lignin that has both manganese peroxidase and lignin peroxidase substrate interaction sites. J. Biol. Chem. 274: 1032410330.
17. Candeias, L. P.,, and P. J. Harvey. 1995. Lifetime and reactivity of the veratryl alcohol radical-cation—implications for lignin peroxidase catalysis. J. Biol. Chem. 270:1674516748.
18. Castillo, M. D.,, P. J. Stenstrom,, and P. Ander. 1994. Determination of manganese peroxidase activity with 3- methyl-2-benzothiazolinone hydrazone and 3-(dimethylamino) benzoic acid. Anal. Biochem. 218:399404.
19. Chung, N.,, and S. D. Aust. 1995. Inactivation of lignin peroxidase by hydrogen-peroxide during the oxidation of phenols. Arch. Biochem. Biophys. 316:851855.
20. Crawford, R. L. 1981. Lignin Biodegradation and Transformation. John Wiley & Sons, Inc., New York, N.Y..
21. Crestini, C.,, L. Jurasek,, and D. S. Argyropoulos. 2003. On the mechanism of laccase-mediator system in the oxidation of lignin. Chem. Eur. J. 9:53715378.
22. Cullen, D.,, and P. J. Kersten. 2004. Enzymology and molecular biology of lignin degradation, p. 249273. In R. Brambl and G. A. Marzluf (ed.), The Mycota III. Biochemistry and Molecular Biology, 2nd ed. Springer- Verlag, Berlin, Germany.
23. Davin, L. B.,, and N. G. Lewis. 2006. Lignin primary structures and dirigent sites. Curr. Opin. Biotechnol. 16:407415.
24. D’Souza, T. M.,, C. S. Merritt,, and C. A. Reddy. 1999. Lignin-modifying enzymes of the white rot basidiomycete Ganoderma lucidum. Appl. Environ. Microbiol. 65:5307-–5313.
25. Durán, N.,, M. A. Rosa,, A. Dannibale,, and L. Gianfreda. 2002. Applications of laccases and tyrosinases (phenol oxidases) immobilized on different supports: a review. Enzyme Microb. Technol. 31:907931.
26. Eggert, C.,, U. Temp,, J. F. Dean,, and K.-E. Eriksson. 1997. A fungal metabolite mediates degradation of nonphenolic lignin structures and synthetic lignin by laccase. FEBS Lett. 391:144148.
27. Eggert, C.,, U. Temp,, and K.-E. Eriksson. 1997. Laccase is essential for lignin degradation by the white-rot fungus Pycnoporus cinnabarinus. FEBS Lett. 407:8992.
28. Enoki, M.,, T. Watanabe,, S. Nakagame,, K. Koller,, K. Messner,, Y. Honda,, and M. Kuwahara. 1999. Extracellular lipid peroxidation of selective white-rot fungus, Ceriporiopsis subvermispora. FEMS Microbiol. Lett. 180: 205211.
29. Eriksson, K.-E.,, R. A. Blanchette,, and P. Ander. 1990. Microbial and Enzymatic Degradation of Wood and Wood Components. Springer, New York, N.Y..
30. Flournoy, D. S.,, J. A. Paul,, T. K. Kirk,, and T. L. Highley. 1993. Changes in the size and volume of pores in sweetgum wood during simultaneous rot by Phanerochaete chrysosporium Burds. Holzforschung 47:297301.
31. Forney, L. J.,, C. A. Reddy,, M. Tien,, and S. D. Aust. 1982. The involvement of hydroxyl radical derived from hydrogen peroxide in lignin degradation by the white rot fungus Phanerochaete chrysosporium. J. Biol. Chem. 257: 1145511462.
32. Gadd, G. M. (ed.). 2001. Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
33. Gamble, G. R.,, A. Sethuraman,, D. E. Akin,, and K.-E. Eriksson. 1994. Biodegradation of lignocellulose in Bermuda grass by white-rot fungi analyzed by solid-state C- 13 nuclear magnetic resonance. Appl. Environ. Microbiol. 60:31383144.
34. Geng, X.,, and K. Li. 2002. Degradation of non-phenolic lignin by the white-rot fungus Pycnoporus cinnabarinus. Appl. Microbiol. Biotechnol. 60:342346.
35. Gilbertson, R. L. 1980. Wood-rotting fungi of North America. Mycologia 72:149.
36. Glenn, J. K.,, and M. H. Gold. 1985. Purification and characterization of an extracellular Mn(II)-dependent peroxidase from the lignin-degrading basidiomycete, Phanerochaete chrysosporium. Arch. Biochem. Biophys. 242:329341.
37. Glumoff, T.,, P. J. Harvey,, S. Molinari,, M. Goble,, G. Frank,, J. M. Palmer,, D. G. Smit,, and M. S. A. Leisola. 1990. Lignin peroxidase from Phanerochaete chrysosporium. Molecular and kinetic characterization of isozymes. Eur. J. Biochem. 187:515520.
38. Gold, M. H.,, and M. Alic. 1993. Molecular biology of the lignin-degrading basidiomycete Phanerochaete chrysosporium. Microbiol. Rev. 57:605622.
39. Gold, M. H.,, H. Wariishi,, and K. Valli. 1989. Extracellular peroxidases involved in lignin degradation by the white rot basidiomycete Phanerochaete chrysosporium. ACS Symp. Ser. 389:127140.
40. Gomez-Toribio, V.,, A. T. Martinez,, M. J. Martinez,, and F. Guillen. 2001. Oxidation of hydroquinones by the versatile ligninolytic peroxidase from Pleurotus eryngii. H2O2 generation and the influence of Mn2_. Eur. J. Biochem. 268:47874793.
41. Goodwin, D. C.,, S. D. Aust,, and T. A. Grover. 1995. Evidence for veratryl alcohol as a redox mediator in lignin peroxidase-catalyzed oxidation. Biochemistry 34:50605065.
42. Hammel, K. E.,, K. A. Jensen,, M. D. Mozuch,, L. L. Landucci,, M. Tien,, and E. A. Pease. 1993. Ligninolysis by a purified lignin peroxidase. J. Biol. Chem. 268:1227412281.
43. Hammel, K. E.,, A. N. Kapich,, K. A. Jensen, Jr.,, and Z. C. Ryan. 2002. Reactive oxygen species as agents of wood decay by fungi. Enzyme Microb. Technol. 30:445453.
44. Harkin, M.,, and J. R. Obst. 1973. Syringaldazine, an effective reagent for detecting laccase and peroxidase in fungi. Experientia 29:381387.
45. Harvey, P. J.,, and J. M. Palmer. 1990. Oxidation of phenolic compounds by ligninase. J. Biotechnol. 13:169180.
46. Hatakka, A. 1994. Lignin-modifying enzymes from selected white-rot fungi—production and role in lignin degradation. FEMS Microbiol. Rev. 13:125135.
47. Hatakka, A., 2001. Biodegradation of lignin, p. 129184. In M. Hofrichter, and A. Steinbüchel (ed.), Biopolymers, vol. 1. Lignin, Humic Substances and Coal. Wiley-VCH, Weinheim, Germany.
48. Hatakka, A.,, T. Lundell,, M. Hofrichter,, and P. Maijala,. 2003. Manganese peroxidase and its role in the degradation of wood lignin, p. 230243. In S. D. Mansfield, and J. N. Saddler (ed.), Applications of Enzymes to Lignocellulosics. ACS Symposium Series 855. Oxford University Press, Washington, D.C..
49. Higuchi, T. 1990. Lignin biochemistry: biosynthesis and biodegradation. Wood Sci. Technol. 24:2363.
50. Higuchi, T. 2004. Microbial degradation of lignin: role of lignin peroxidase, manganese peroxidase, and laccase. Jpn. Acad. Ser. B 80:204214.
51. Higuchi, T.,, H.-M. Chang,, and T. K. Kirk (ed.). 1983. Recent Advances in Lignin Biodegradation Research. Unipublishers Co. LTD., Tokyo, Japan..
52. Hofrichter, M. 2002. Review: lignin conversion by manganese peroxidase (MnP). Enzyme Microb. Technol. 30: 454466.
53. Ikehata, K.,, I. D. Buchanan,, and D. W. Smith. 2004. Recent developments in the production of extracellular fungal peroxidases and laccases for waste treatment. J. Environ. Eng. Sci. 3:119.
54. Jensen, K. A.,, W. L. Bao,, S. Kawai,, E. Srebotnik,, and K. E. Hammel. 1996. Manganese-dependent cleavage of nonphenolic lignin structures by Ceriporiopsis subvermispora in the absence of lignin peroxidase. Appl. Environ. Microbiol. 62:36793686.
55. Kapich, A.,, M. Hofrichter,, T. Vares,, and A. Hatakka. 1999. Coupling of manganese peroxidase-mediated lipid peroxidation with destruction of nonphenolic lignin model compounds and C-14-labeled lignins. Biochem. Biophys. Res. Commun. 259:212219.
56. Kapich, A. N.,, K. A. Jensen,, and K. E. Hammel. 1999. Peroxyl radicals are potential agents of lignin biodegradation. FEBS Lett. 461:115119.
57. Kawai, S.,, K. A. Jensen,, W. Bao,, and K. E. Hammel. 1995. New polymeric model substrates for the study of microbial ligninolysis. Appl. Environ. Microbiol. 61:34073414.
58. Kirk, T. K.,, and D. Cullen,. 1998. Enzymology and molecular genetics of wood degradation by white-rot fungi, p. 273307. In A. R. Young, and M. Akhtar (ed.), Environmentally Friendly Technologies for the Pulp and Paper Industry. John Wiley & Sons, Inc., New York, NY..
59. Kirk, T. K.,, and R. L. Farrell. 1987. Enzymatic “combustion”: the microbial degradation of lignin. Annu. Rev. Microbiol. 41:465505.
60. Krause, D. O.,, S. E. Denman,, R. I. Mackie,, M. Morrison,, A. L. Rae,, G. T. Attwood,, and C. S. McSweeney. 2003. Opportunities to improve fiber degradation in the rumen: microbiology, ecology and genomics. FEMS Microbiol. Rev. 27:663693.
61. Leonowicz, A.,, and K. Grzywnowicz. 1981. Quantitative estimation of laccase forms in some white-rot fungi using syringaldazine as a substrate. Enzyme Microb. Technol. 3:5558.
62. Leonowicz, A.,, N. S. Cho,, J. Luterek,, A. Wilkolazka,, M. Wojtaswasilewska,, A. Matuszewska,, M. Hofrichter,, D. Wesenberg,, and J. Rogalski. 2001. Fungal laccases: properties and activity on lignin. J. Basic Microbiol. 41: 185227.
63. Leontievsky, A.,, N. Myasoedova,, N. Pozdnyakova,, and L. Golovleva. 1997. ‘Yellow’ laccase of Pannus tigrinus oxidizes non-phenolic susbstrates without electron-transfer mediators. FEBS. Lett. 413:446448.
64. Lin, Y.,, and S. Tanaka. 2006. Ethanol fermentation from biomass resources. Appl. Microbiol. Biotechnol. 69:627642.
65. Lynd, H. R.,, W. H. VanZyl,, J. E. Mcbride,, and M. Laser. 2005. Consolidated bioprocessing of cellulosic biomass: an update. Curr. Opin. Biotechnol. 16:577583.
66. Mai, C.,, W. Schorman,, O. Milstein,, and A. Hutterman. 2000. Enhanced stability of laccase in the presence of phenolic compounds. Appl. Microbiol. Biotechnol. 54:510514.
67. Makela, M.,, S. Galkin,, A. Hatakka,, and T. Lundell. 2002. Production of organic acid and oxalate decarboxylase in lignin-degrading white rot fungi. Enzyme Microb. Technol. 30:542549.
68. Martinez, A. T. 2002. Molecular biology and structurefunction of lignin-degrading heme peroxidases. Enzyme Microb. Technol. 30:425444.
69. Martinez, A. T.,, M. Speranza,, F. J. Riz-Duenas,, P. Ferreira,, S. Camarero,, F. Guillen,, M. J. Martinez,, A. Gutierrez,, and J. C. del Rio. 2005. Biodegradation of lignocellulosics: microbial, chemical, and enzymatic aspects of the fungal attack of lignin. Int. Microbiol. 8:195204.
70. Mayer, A. M.,, and R. C. Staples. 2002. Laccase: new functions for an old enzyme. Phytochemistry 60:551565.
71. Mester, T.,, and J. A. Field. 1998. Characterization of a novel manganese peroxidase-lignin peroxidase hybrid isozyme produced by Bjerkandera species strain BOS55 in the absence of manganese. J. Biol. Chem. 273:1541215417.
72. Moen, M. A.,, and K. E. Hammel. 1994. Lipid-peroxidation by the manganese peroxidase of Phanerochaete chrysosporium is the basis for phenanthrene oxidation by the intact fungus. Appl. Environ. Microbiol. 60:19561961.
73. Mosier, N.,, C. Wyman,, B. Dale,, R. Elander,, Y. Y. Lee,, M. Holtzapple,, and M. Ladisch. 2005. Features of promising technologies for treatment of lignocellulosic biomass. Bioresour. Technol. 96:673686.
74. Ollikka, P.,, V. M. Leppanen,, T. Anttila,, and I. Suominen. 1995. Purification of major lignin peroxidase isoenzymes from Phanerochaete chrysosporium by chromatofocusing. Protein Expr. Purif. 6:337342.
75. Paszczynski, A.,, R. Crawford,, and V.-B. Huynh. 1986. Manganese peroxidase of Phanerochaete chrysosporium: purification. Methods Enzymol. 161:264270.
76. Pérez-Boada, M.,, F. J. Ruiz-Dvenas,, R. Pogni,, R. Basosi,, T. Choinowski,, M. J. Martínez,, K. Piontek,, and A. T. Martínez. 2005. Versatile peroxidase oxidation of high redox potential aromatic compounds: site-directed mutagenesis, spectroscopic and crystallographic investigations of three long-range electron transfer pathways. J. Mol. Biol. 354:385402.
77. Reddy, C. A.,, and T. M. D’Souza. 1994. Physiology and molecular biology of the lignin peroxidases of Phanerochaete chrysosporium. FEMS Microbiol. Rev. 13:137152.
78. Reddy, C. A.,, and Z. Mathew,. 2001. Bioremediation potential of white-rot fungi, p 52-–78. In G. M. Gadd (ed.), Fungi in Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
79. Renganathan, V.,, and M. H. Gold. 1986. Spectral characterization of the oxidized states of lignin peroxidase, an extracellular heme enzyme from the white rot basidiomycete Phanerochaete chrysosporium. Biochemistry 25:16261631.
80. Rheinhammar, B., 1984. Laccase, p. 410. In R. Lontie (ed.), Copper Proteins and Copper Enzymes. CRC Press, Inc., Boca Raton, FL..
81. Rheinhammar, B.,, and T. K. Kirk. 1990. Comparison of lignin peroxidase, horseradish-peroxidase and laccase in the oxidation of methoxybenzenes. Biochem. J. 268:475480.
82. Rodriguez, C. S.,, and H. J. L. Toca. 2006. Industrial and biotechnological applications of laccases: a review. Biotechnol. Adv. 24:500513.
83. Rothschild, N.,, C. Novotny,, S. Sasek,, and C. G. Dosoretz. 2002. Ligninolytic enzymes of the fungus Irpex lacteus (Polyporus tulipiferae): isolation and characterization of lignin peroxidase. Enzyme Microb. Technol. 31: 627633.
84. Roy, B. P.,, M. G. Paice,, F. S. Archibald,, S. K. Misra,, and L. E. Misiak. 1994. Creation of metal-complexing agents, reduction of manganese-dioxide, and promotion of manganese peroxidase-mediated Mn(III) production by cellobiose- quinone oxidoreductase from Trametes versicolor. J. Biol. Chem. 269:1974519750.
85. Ruiz-Duenas, F. J.,, S. Camarero,, M. Perez-Boada,, M. J. Martinez,, and A. T. Martinez. 2001. A new versatile peroxidase from Pleurotus. Biochem. Soc. Trans. 29:116122.
86. Rypacek, V. 1977. Chemical composition of hemicelluloses as a factor participating in the substrate specificity of wood-destroying fungi. Wood Sci. Technol. 11:5967.
87. Scott, G. M.,, M. Akhtar,, M. J. Lentz,, T. K. Kirk,, and R. Swaney. 1998. New technology for papermaking: commercializing biopulping. Tappi J. 81:220225.
88. Shimada, M.,, D. B. Ma,, Y. Akamatsu,, and T. Hattori. 1994. A proposed role of oxalic acid in wood decay systems of wood-rotting basidiomycetes. FEMS Microbiol. Rev. 13: 285296.
89. Solomon, E. I.,, U. M. Sundaram,, and T. E. Machonkin. 1996. Multicopper oxidases and oxygenases. Chem. Rev. 96:25632605.
90. Srebotnik, E.,, K. A. Jensen, Jr.,, and K. E. Hammel. 1994. Fungal degradation of recalcitrant nonphenolic lignin structures without lignin peroxidase. Proc. Natl. Acad. Sci. USA 91:1279412797.
91. Srebotnik, E.,, and K. Messner. 1994. A simple method that uses differential staining and light microscopy to assess the selectivity of wood delignification by white-rot fungi. Appl. Environ. Microbiol. 60:13831386.
92. Srebotnik, E.,, and K. Messner. 2001. Oxidative mechanisms involved in lignin degradation by white-rot fungi. Chem. Rev. 101:33973413.
93. Tanaka, H.,, S. Itakura,, and A. Enoki. 1999. Hydroxyl radical generation by an extracellular low-molecularweight substance and phenol oxidase activity during wood degradation by the white-rot basidiomycete Trametes versicolor. J. Biotechnol. 75:5770.
94. Teunissen, P. J.,, and J. A. Field. 1998. 2-Chloro-1,4- dimethoxybenzene as a mediator of lignin peroxidase catalyzed oxidations. FEBS Lett. 439:219223.
95. Thurston, C. F. 1994. The structure and function of fungal laccases. Microbiology 140:1926.
96. Tien, M.,, and K. Kirk. 1984. Lignin degrading enzyme from Phanerochaete chrysosporium: purification, characterization, and catalytic properties of a unique H2O2-requiring oxygenase. Proc. Natl. Acad. Sci. USA 81:22802284.
97. Tsukihara, T.,, Y. Honda,, T. Watanabe,, and T. Watanabe. 2006. Molecular breeding of white rot fungus Pleurotus ostreatus by homologous expression of its versatile peroxidase MnP2. Appl. Microbiol. Biotechnol. 71:114120.
98. Urzua, U.,, P. J. Kersten,, and R. Vicuna. 1998. Manganese peroxidase-dependent oxidation of glyoxylic and oxalic acids synthesized by Ceriporiopsis subvermispora produces extracellular hydrogen peroxide. Appl. Environ. Microbiol. 64:6873.
99. Verdin, J.,, R. Pogni,, A. Baeza,, M. C. Baratto,, R. Basosi,, and R. Vazquez-Duhalt. 2006. Mechanism of versatile peroxidase inactivation by Ca(2_) depletion. Biophys. Chem. 121:163170.
100. Ward, G.,, P. Belinky,, Y. Hadar,, I. Bilkis,, and C. G. Dosoretz. 2002. The influence of non-phenolic mediators and phenolic co-substrates on the oxidation of 4-bromophenol by lignin peroxidase. Enzyme Microb. Technol. 30:490498.
101. Ward, G.,, Y. Hadar,, I. Bilkis,, and C. G. Dosoretz. 2003. Mechanistic features of lignin peroxidase catalyzed oxidation of substituted phenols and 1,2-dimethoxyarenes. J. Biol. Chem. 278:3972639734.
102. Wariishi, H.,, K. Valli,, and M. H. Gold. 1992. Manganese II oxidation by manganese peroxidase from the basidiomycete Phanerochaete chrysosporium. Kinetic mechanism and role of chelators. J. Biol. Chem. 267: 2368823695.
103. Wood, P. M. 1994. Pathways of production of Fenton reagent by wood-rotting fungi. FEMS Microbiol. Rev. 13:313320.
104. Wood, W. A.,, and S. T. Kellogg. 1988. Lignin, Pectin, and Chitin. Methods in Enzymology, vol. 161. Academic Press, Inc., San Diego, C.A..
105. Wymelenberg, A. V.,, P. Minges,, G. Sabat,, D. Martinez,, A. Aerts,, A. Salamov,, I. Grigoriev,, H. Shapiro,, N. Putnam,, P. Belinky,, C. Dosoretz,, J. Gaskell,, P. Kersten,, and D. Cullen. 2006. Computational analysis of the Phanerochaete chrysosporium v2.0 genome database and mass spectrometry identification of peptides in ligninolytic cultures reveal complex mixtures of secreted proteins. Fungal Genet. Biol. 43:343356.
106. Yaver, D. S.,, F. Xu,, E. J. Golightly,, K. M. Brown,, S. H. Brown,, M. W. Rey,, P. Schneider,, T. Halkier,, K. Mondorf,, and H. Dalbøge. 1996. Purification, characterization, molecular cloning, and expression of two laccase genes from the white-rot basidiomycete Trametes villosa. Appl. Environ. Microbiol. 62:834841.
107. Yoshida, S.,, A. Chatani,, Y. Honda,, T. Watanabe,, and M. Kuwahara. 1998. Reaction of manganese peroxidase of Bjerkandera adusta with synthetic lignin in acetone solution. J. Wood Sci. 44:486490.
108. Zadrazil, F.,, and P. Reinger (ed.). 1988. Treatment of Lignocellulosics with White-Rot Fungi. Elsevier Applied Science, London, United Kingdom.

Tables

Generic image for table
TABLE 1

Key features of LMEs

Citation: Dosoretz C, Reddy C. 2007. Lignin and Lignin-Modifying Enzymes, p 611-620. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch25

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error