1887

Chapter 39 : Cell Identification by Fluorescence In Situ Hybridization

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Cell Identification by Fluorescence In Situ Hybridization, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap39-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap39-2.gif

Abstract:

This chapter presents an updated collection of protocols for the identification of individual microbial cells by fluorescence in situ hybridization (FISH) with rRNA-targeted oligonucleotide probes. FISH of whole cells starts with a fixation of the sample containing the target cell types. Fixation stabilizes macromolecules and cytoskeletal structures, thus preventing lysis of the cells during hybridization, and at the same time permeabilizes the cell walls for fluorescently labeled oligonucleotide probes. The fixed cells are transferred onto gelatin-coated slides and incubated in a buffer containing the specific probe at a temperature near but below the melting point of the probe-rRNA hybrid. The subsequent washing step will remove unbound probe and leave only those probe-rRNA pairs intact that have no mismatches in the hybrid. Consequently, only target cells that contain the full signature sequence on their rRNA will be stained. Finally, hybridized cells can be enumerated by epifluorescence microscopy or by flow cytometry.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39

Key Concept Ranking

Microbial Ecology
0.63851017
Sodium Dodecyl Sulfate
0.44021505
16s rRNA Sequencing
0.42920968
Anaerobic Ammonium Oxidation
0.41661718
0.63851017
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Example of an rRNA alignment showing the probe sequence, the target sequence, and possible false identities.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Theoretical dissociation profiles of a nucleic acid probe from a perfectly matched (bold line) and an imperfectly matched immobilized target nucleic acid (dashed line). The probeconferred signal (axis), which is directly proportional to the sensitivity, is shown over temperature and formamide concentration (axis), which represents the hybridization stringency. Note that the temperature of dissociation of the perfect hybrid is higher than that of the imperfect hybrid. The primary goal of the probe design is to maximize the difference between the temperature of dissociation of a probe from target and nontarget nucleic acid. The bar above the dissociation profiles indicates hybridization stringencies with high and low specific discrimination of target and nontarget nucleic acid, respectively.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap39
1. Amann, R.,, B. M. Fuchs,, and S. Behrens. 2001. The identification of microorganisms by fluorescence in situ hybridisation. Curr. Opin. Biotechnol. 12:231236.
2. Amann, R. I.,, B. J. Binder,, R. J. Olson,, S. W. Chisholm,, R. Devereux,, and D. A. Stahl. 1990. Combination of 16S rRNA-targeted oligonucleotide probes with flow cytometry for analyzing mixed microbial populations. Appl. Environ. Microbiol. 56:19191925.
3. Amann, R. I.,, L. Krumholz,, and D. A. Stahl. 1990. Fluorescent-oligonucleotide probing of whole cells for determinative, phylogenetic, and environmental studies in microbiology. J. Bacteriol. 172:762770.
4. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
5. Amann, R. I.,, and K.-H. Schleifer,. 2001. Nucleic acid probes and their application in environmental microbiology, p. 6782. In G. Garrity,, D. R. Boone,, and R. W. Castenholz (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed, vol. 1. Springer-Verlag, New York, NY.
6. Ban, N.,, P. Nissen,, J. Hansen,, P. B. Moore,, and T. A. Steitz. 2000. The complete atomic structure of the large ribosomal subunit at 2.4 angstrom resolution. Science 289: 905920.
7. Behrens, S.,, B. M. Fuchs,, F. Mueller,, and R. Amann. 2003. Is the in ditu accessibility of the 16S rRNA of Escherichia coli for Cy3-labeled oligonucleotide probes predicted by a three-dimensional structure model of the 30S ribosomal subunit? Appl. Environ. Microbiol. 69:49354941.
8. Behrens, S.,, C. Ruhland,, J. Inacio,, H. Huber,, A. Fonseca,, I. Spencer-Martins,, B. M. Fuchs,, and R. Amann. 2003. In situ accessibility of small-subunit rRNA of members of the domains bacteria, Archaea, and Eucarya to Cy3-labeled oligonucleotide probes. Appl. Environ. Microbiol. 69:17481758.
9. Benson, D. A.,, I. Karsch-Mizrachi,, D. J. Lipman,, J. Ostell,, B. A. Rapp,, and D. L. Wheeler. 2002. GenBank. Nucleic Acids Res. 30:1720.
10. Boetius, A.,, K. Ravenschlag,, C. J. Schubert,, D. Rickert,, F. Widdel,, A. Gieseke,, R. Amann,, B. B. Jorgensen,, U. Witte,, and O. Pfannkuche. 2000. A marine microbial consortium apparently mediating anaerobic oxidation of methane. Nature 407:623626.
11. Cottrell, M. T.,, and D. L. Kirchman. 2000. Community composition of marine bacterioplankton determined by 16S rRNA gene clone libraries and fluorescence in situ hybridization. Appl. Environ. Microbiol. 66:51165122.
12. Crocetti, G. R.,, P. Hugenholtz,, P. L. Bond,, A. Schuler,, J. Keller,, D. Jenkins,, and L. L. Blackall. 2000. Identification of polyphosphate-accumulating organisms and design of 16S rRNA-directed probes for their detection and quantitation. Appl. Environ. Microbiol. 3:11751182.
13. DeLong, E.,, L. Taylor,, T. Marsh,, and C. Preston. 1999. Visualization and enumeration of marine planktonic archaea and bacteria by using polyribonucleotide probes and fluorescent in situ hybridization. Appl. Environ. Microbiol. 65:55545563.
14. DeLong, E. F.,, G. S. Wickham,, and N. R. Pace. 1989. Phylogenetic stains: ribosomal RNA-based probes for the identification of single cells. Science 243:13601363.
15. Eilers, H.,, J. Pernthaler,, F. O. Glockner,, and R. Amann. 2000. Culturability and in situ abundance of pelagic bacteria from the North Sea. Appl. Environ. Microbiol. 66: 30443051.
16. Fuchs, B. M.,, F. O. Glöckner,, J. Wulf,, and R. Amann. 2000. Unlabeled helper oligonucleotides increase the in situ accessibility to 16S rRNA of fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 66:36033607.
17. Fuchs, B. M.,, K. Syutsubo,, W. Ludwig,, and R. Amann. 2001. In situ accessibility of Escherichia coli 23S rRNA to fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 67:961968.
18. Fuchs, B. M.,, G. Wallner,, W. Beisker,, I. Schwippl,, W. Ludwig,, and R. Amann. 1998. Flow cytometric analysis of the in situ accessibility of Escherichia coli 16S rRNA for fluorescently labeled oligonucleotide probes. Appl. Environ. Microbiol. 64:49734982.
19. Fuchs, B. M.,, M. V. Zubkov,, K. Sahm,, P. H. Burkill,, and R. Amann. 2000. Changes in community composition during dilution cultures of marine bacterioplankton as assessed by flow cytometric and molecular biological techniques. Environ. Microbiol. 2:191202.
20. Fuller, N. J.,, D. Marie,, F. Partensky,, D. Vaulot,, A. F. Post,, and D. J. Scanlan. 2003. Clade-specific 16S ribosomal DNA oligonucleotides reveal the predominance of a single marine Synechococcus clade throughout a stratified water column in the Red Sea. Appl. Environ. Microbiol. 69:24302443.
21. Glöckner, F. O.,, B. M. Fuchs,, and R. Amann. 1999. Bacterioplankton composition in lakes and oceans: a first comparison based on fluorescence in situ hybridization. Appl. Environ. Microbiol. 65:37213726.
22. Grossart, H. P.,, and H. Ploug. 2000. Bacterial production and growth efficiencies: direct measurements on riverine aggregates. Limnol. Oceanogr. 45:436445.
23. Kanagawa, T.,, Y. Kamagata,, S. Aruga,, T. Kohno,, M. Horn,, and M. Wagner. 2000. Phylogenetic analysis of and oligonucleotide probe development for Eikelboom type 021N filamentous bacteria isolated from bulking activated sludge. Appl. Environ. Microbiol. 66:50435052.
24. Karner, M. B.,, E. F. DeLong,, and D. M. Karl. 2001. Archaeal dominance in the mesopelagic zone of the Pacific Ocean. Nature 409:507510.
25. Kuypers, M. M. M.,, A. O. Sliekers,, G. Lavik,, M. Schmid,, B. B. Joergensen,, J. G. Kuenen,, J. S. S. Damste,, M. Strous,, and M. S. M. Jetten. 2003. Anaerobic ammonium oxidation by anammox bacteria in the Black Sea. Nature 422:608611.
26. Lathe, R. 1985. Synthetic oligonucleotide probes deduced from amino acid sequence data: theoretical and practical considerations. J. Mol. Biol. 183:112.
27. Lee, N.,, P. Nielsen,, K. Andreasen,, S. Juretschko,, J. Nielsen,, K. Schleifer,, and M. Wagner. 1999. Combination of fluorescent in situ hybridization and microautoradiography— a new tool for structure-function analyses in microbial ecology. Appl. Environ. Microbiol. 65:12891297.
28. Llobet-Brossa, E.,, R. Rosselló-Mora,, and R. Amann. 1998. Microbial community composition of Wadden Sea sediments as revealed by fluorescence in situ hybridization. Appl. Environ. Microbiol. 64:26912696.
29. Loy, A.,, M. Horn,, and M. Wagner. 2003. probeBase—an online resource for rRNA-targeted oligonucleotide probes. Nucleic Acids Res. 31:514516.
30. Maidak, B. L.,, J. R. Cole,, T. G. Lilburn,, C. T. J. Parker,, P. R. Saxmann,, R. J. Farris,, G. M. Garrity,, G. J. Olsen,, T. M. Schmidt,, and J. M. Tiedje. 2001. The RDP II (Ribosomal Database Project). Nucleic Acids Res. 29:173174.
31. Manz, W.,, R. Amann,, W. Ludwig,, M. Vancanneyt,, and K.-H. Schleifer. 1996. Application of a suite of 16S rRNA-specific oligonucleotide probes designed to investigate bacteria of the phylum Cytophaga-Flavobacter- Bacteroides in the natural environment. Microbiology 142:10971106.
32. Manz, W.,, R. Amann,, W. Ludwig,, M. Wagner,, and K.-H. Schleifer. 1992. Phylogenetic oligodeoxynucleotide probes for the major subclasses of proteobacteria: problems and solutions. Syst. Appl. Microbiol. 15:593600.
33. Manz, W.,, M. Wagner,, R. Amann,, and K.-H. Schleifer. 1994. In situ characterization of the microbial consortia active in two wastewater treatment plants. Water Res. 28:17151723.
34. Meier, H.,, R. Amann,, W. Ludwig,, and K. Schleifer. 1999. Specific oligonucleotide probes for in situ detection of a major group of Gram-positive bacteria with low DNA G+C content. Syst. Appl. Microbiol. 22:186196.
35. Neef, A. 1997. Application of in situ identification of bacteria to population analysis in complex microbial communities. Ph.D. dissertation. Technical University of Munich, Munich, Germany.
36. Neef, A.,, R. Amann,, H. Schlesner,, and K.-H. Schleifer. 1998. Monitoring a widespread bacterial group: in situ detection of planctomycetes with 16S rRNA-targeted probes. Microbiology 144:32573266.
37. Neef, A.,, A. Zaglauer,, H. Meier,, R. Amann,, H. Lemmer,, and K. H. Schleifer. 1996. Population analysis in a denitrifying sand filter: conventional and in situ identification of Paracoccus spp. in methanol-fed biofilms. Appl. Environ. Microbiol. 62:43294339.
38. Olsen, G. J.,, D. J. Lane,, S. J. Giovannoni,, N. R. Pace,, and D. A. Stahl. 1986. Microbial ecology and evolution: a ribosomal rRNA approach. Annu. Rev. Microbiol. 40: 337365.
39. Orphan, V. J.,, C. H. House,, K. U. Hinrichs,, K. D. McKeegan,, and D. F. Delong. 2001. Methane-consuming archaea revealed by directly coupled isotopic and phylogenetic analysis. Science 293:484487.
40. Ouverney, C. C.,, and J. A. Fuhrman. 1999. Combined microautoradiography-16S rRNA probe technique for determination of radioisotope uptake by specific microbial cell types in situ. Appl. Environ. Microbiol. 65:17461752.
41. Ouverney, C. C.,, and J. A. Fuhrman. 2000. Marine planktonic Archaea take up amino acids. Appl. Environ. Microbiol. 66:48294833.
42. Pernthaler, A.,, J. Pernthaler,, and R. Amann. 2002. Fluorescence in situ hybridization and catalyzed reporter deposition for the identification of marine bacteria. Appl. Environ. Microbiol. 68:30943101.
43. Pernthaler, A.,, C. M. Preston,, J. Pernthaler,, E. F. DeLong,, and R. Amann. 2002. Comparison of fluorescently labeled oligonucleotide and polynucleotide probes for the detection of pelagic marine Bacteria and Archaea. Appl. Environ. Microbiol. 68:661667.
44. Pernthaler, J.,, A. Alfreider,, T. Posch,, S. Andreatta,, and R. Psenner. 1997. In situ classification and image cytometry of pelagic bacteria from a high mountain lake (Gossenköllesee, Austria). Appl. Environ. Microbiol. 63: 47784783.
45. Pernthaler, J.,, F. O. Glöckner,, S. Unterholzner,, A. Alfreider,, R. Psenner,, and R. Amann. 1998. Seasonal community and population dynamics of pelagic bacteria and archaea in a high mountain lake. Appl. Environ. Microbiol. 64:42994306.
46. Rappe, M. S.,, S. A. Connon,, K. L. Vergin,, and S. J. Giovannoni. 2002. Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 6898:630632.
47. Raskin, L.,, B. E. Rittmann,, and D. A. Stahl. 1996. Competition and coexistence of sulfate-reducing and methanogenic populations in anaerobic biofilms. Appl. Environ. Microbiol. 62:38473857.
48. Ravenschlag, K.,, K. Sahm,, C. Knoblauch,, B. B. Jorgensen,, and R. Amann. 2000. Community structure, cellular rRNA content, and activity of sulfate-reducing bacteria in marine Arctic sediments. Appl. Environ. Microbiol. 66:35923602.
49. Roller, C.,, M. Wagner,, R. Amann,, W. Ludwig,, and K.-H. Schleifer. 1994. In situ probing of Gram-positive bacteria with high DNA G+C content using 23S rRNAtargeted oligonucleotides. Microbiology 140:28492858.
50. Sambrook, J.,, E. F. Fritsch,, and T. Maniatis. 1989. Molecular Cloning: a Laboratory Manual, 2nd ed, vol. 3, p. 11.21. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
51. Schmid, M.,, U. Twachtmann,, M. Klein,, M. Strous,, S. Juretschko,, M. Jetten,, J. W. Metzger,, K. H. Schleifer,, and M. Wagner. 2000. Molecular evidence for genus level diversity of bacteria capable of catalyzing anaerobic ammonium oxidation. Syst. Appl. Microbiol. 23:93106.
52. Schönhuber, W.,, B. Fuchs,, S. Juretschko,, and R. Amann. 1997. Improved sensitivity of whole-cell hybridization by the combination of horseradish peroxidaselabeled oligonucleotides and tyramide signal amplification. Appl. Environ. Microbiol. 63:32683273.
53. Schramm, A.,, D. de Beer,, J. C. van den Heuvel,, S. Ottengraf,, and R. Amann. 1999. Microscale distribution of populations and activities of Nitrosospira and Nitrospira spp. along a macroscale gradient in a nitrifying bioreactor: quantification by in situ hybridization and the use of microsensors. Appl. Environ. Microbiol. 65:36903696.
54. Schramm, A.,, B. M. Fuchs,, J. L. Nielsen,, M. Tonolla,, and D. A. Stahl. 2002. Fluorescence in situ hybridization of 16S rRNA gene clones (Clone-FISH) for probe validation and screening of clone libraries. Environ. Microbiol. 4:713720.
55. Schramm, A.,, L. H. Larsen,, N. P. Revsbech,, N. B. Ramsing,, R. Amann,, and K.-H. Schleifer. 1996. Structure and function of a nitrifying biofilm as determined by in situ hybridization and the use of microelectrodes. Appl. Environ. Microbiol. 62:46414647.
56. Sekar, R.,, A. Pernthaler,, J. Pernthaler,, F. Warnecke,, T. Posch,, and R. Amann. 2003. An improved protocol for quantification of freshwater actinobacteria by fluorescence in situ hybridization. Appl. Environ. Microbiol. 69:29282935.
57. Simek, K.,, P. Hartman,, J. Nedoma,, J. Pernthaler,, D. Springmann,, J. Vrba,, and R. Psenner. 1997. Community structure, picoplankton grazing and zooplankton control of heterotrophic nanoflagellates in a eutrophic reservoir during the summer phytoplankton maximum. Aquat. Microb. Ecol. 12:4963.
58. Stahl, D. A.,, and R. Amann,. 1991. Development and application of nucleic acid probes, p. 205248. In E. Stackebrandt, and M. Goodfellow (ed.), Nucleic Acid Techniques in Bacterial Systematics. John Wiley & Sons Ltd., Chichester, United Kingdom.
59. Stoesser, G.,, W. Baker,, A. van den Broek,, E. Camon,, M. Garcia-Pastor,, C. Kanz,, T. Kulikova,, R. Leinonen,, Q. Lin,, V. Lombard,, R. Lopez,, N. Redaschi,, P. Stoehr,, M. A. Tuli,, K. Tzouvara,, and R. Vaughan. 2002. The EMBL Nucleotide Sequence Database. Nucleic Acids Res. 30:2126.
60. Strunk, O.,, R. Westram,, H. Meier,, G. Jobb,, L. Richter,, M. May,, S. Hermann,, N. Stuckmann,, O. Gross,, B. Nonhoff,, M. Lenke,, R. Jost,, B. Reichel,, W. Foerster,, T. Ginhart,, A. Vilbig,, S. Gerbers,, and W. Ludwig. 2002. ARB: a software environment for sequence data. [Online.] www.arb-home.de.
61. Tonolla, M.,, A. Demarta,, S. Peduzzi,, D. Hahn,, and R. Peduzzi. 2000. In situ analysis of sulfate-reducing bacteria related to Desulfocapsa thiozymogenes in the chemocline of meromictic Lake Cadagno (Switzerland). Appl. Environ. Microbiol. 66:820824.
62. Trebesius, K.,, R. Amann,, W. Ludwig,, K. Mühlegger,, and K.-H. Schleifer. 1994. Identification of whole fixed bacterial cells with nonradioactive 23S rRNA-targeted polynucleotide probes. Appl. Environ. Microbiol. 60:32283235.
63. Wagner, M.,, R. Amann,, H. Lemmer,, and K.-H. Schleifer. 1993. Probing activated sludge with oligonucleotides specific for proteobacteria: inadequacy of culturedependent methods for describing microbial community structure. Appl. Environ. Microbiol. 59:15201525.
64. Wallner, G.,, R. Erhart,, and R. Amann. 1995. Flow cytometric analysis of activated sludge with rRNA-targeted probes. Appl. Environ. Microbiol. 61:18591866.
65. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.

Tables

Generic image for table
TABLE 1

Dye labels frequently used for oligonucleotide probes and their characteristics

Fluorescein and derivatives are pH sensitive and exhibit maximum fluorescence at pH ≥9.

ε, molar extinction coefficient.

Data compiled from Amersham Biosciences, San Francisco, CA.

Data compiled from reference 50 and Invitrogen, Carlsbad, CA.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 2

Standard hybridization buffer

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 3

Formamide concentration of some frequently applied probes

For horseradish-labeled probes, use 20% more formamide in hybridization buffer. See text for details.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 4

Standard washing buffer

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 5

Corresponding NaCl concentration in 50 ml of washing buffer

Calculated using the formula from Lathe ( ). Note that the addition of EDTA contributes to the Na_ concentration. Therefore the required volume of 5 M NaCl solution in the washing buffer is reduced by 100 μl.

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 6

Hybridization buffer for CARD-FISH

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 7

Washing buffer for CARD-FISH

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39
Generic image for table
TABLE 8

Common failure symptoms during FISH, their possible causes, and suggestions for improvements

Citation: Fuchs B, Pernthaler J, Amann R. 2007. Cell Identification by Fluorescence In Situ Hybridization, p 886-896. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch39

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error