1887

Chapter 44 : Microbiological and Genetic Methods for Filamentous Fungi

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $30.00

Preview this chapter:
Zoom in
Zoomout

Microbiological and Genetic Methods for Filamentous Fungi, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap44-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap44-2.gif

Abstract:

The study of filamentous fungi has a long history, covering investigations of their taxonomy, life cycles, physiology, and nutrition. These studies led to the genetic, biochemical, and molecular investigations. The filamentous growth habit of the fungi and their conspicuous, differentiated sexual structures set them apart from other microbial taxa. Methods for cultivating filamentous fungi and for study of their classical molecular genetic mechanisms have also developed in distinct ways from those used for bacteria and yeast. This chapter describes methods drawn largely from the study of the ascomycetes and . Certain features of filamentous fungi require special technical attention in any methodological treatment. These are (i) a filamentous habit, restricting studies of steady-state liquid cultures; (ii) a tough cell wall, requiring harsh cell disruption methods for biochemical and molecular work; (iii) the use of heterokaryons, mycelia having genetically different nuclei in the same cell; and (iv) in many cases, the lack of a natural diploid vegetative phase, for which heterokaryons, partial diploids, or artificial diploids may often substitute.

Citation: Davis R, Clutterbuck A. 2007. Microbiological and Genetic Methods for Filamentous Fungi, p 965-977. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch44

Key Concept Ranking

Restriction Fragment Length Polymorphism
0.40713418
Aspergillus nidulans
0.4069148
0.40713418
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Life cycles. (Left) ; (right) . For scale, note that the ascus of is about 150 μm long, and ascospores are about 20 μm long. By contrast, asci are only 15 μm in diameter, and the ascospores are correspondingly smaller.

Citation: Davis R, Clutterbuck A. 2007. Microbiological and Genetic Methods for Filamentous Fungi, p 965-977. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

“race tube.” The tube (300 to 500 mm long) is supported on a rack in the position shown and is inoculated at one end. The position of the mycelial frontier is marked at intervals and distances are recorded thereafter.

Citation: Davis R, Clutterbuck A. 2007. Microbiological and Genetic Methods for Filamentous Fungi, p 965-977. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Meiotic tetrads of various types. In first-division segregation, no crossover occurs between the gene and the centromere of the chromosome. Segregation of centromeres (arrows) places all copies of the allele in one half and all copies of the allele in the other half. In second-division segregation, crossing over exchanges the distal parts of the two central chromatids; segregation of and alleles is delayed until the chromatids (lines) separate at the second meiotic division. The patterns shown are all equally probable, but in all cases, both alleles of the gene are found in both halves of the ascus. In gene conversion, molecular interaction of chromatids leads to replacement of information of one chromatid by transfer from the other. One or both DNA strands of the recipient chromosome may be replaced, leading to 3:5 and 6:2 segregations, respectively. Conversions may occur in either direction, from to (as shown in the 6:3 example) or from to (as shown in the 3:5 example).

Citation: Davis R, Clutterbuck A. 2007. Microbiological and Genetic Methods for Filamentous Fungi, p 965-977. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Intragenic crossing over. Rare cases of intragenic crossing over must be detected by selective means, such as plating ascospores of a cross between two auxotrophs on minimal medium. Here, two different sites of mutation, and in the gene, are shown. Prototrophic progeny ( ) recovered in plating may arise in three ways. In the first, orthodox crossing over leads to reconstruction of the wild-type allele. (In such a process, a double mutant will form as the reciprocal product.) The crossover leads to the recombination of the markers on either side, as shown. prototrophs may, however, frequently form by gene conversion of either the mutational site or the mutational site without any recombination of the flanking markers.

Citation: Davis R, Clutterbuck A. 2007. Microbiological and Genetic Methods for Filamentous Fungi, p 965-977. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch44
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap44
1. Agger, T.,, A. B. Spohr,, and J. Nielsen. 2001. [alpha]-Amylase production in high cell density submerged cultivation of Aspergillus oryzae and A. nidulans. Appl. Microbiol. Biotechnol. 55:8184.
2. Aleksenko, A.,, and A. J. Clutterbuck. 1996. The AMA1 plasmid replicator in Aspergillus nidulans is an inverted duplication of a low-copy-number dispersed genomic repeat. Mol. Microbiol. 19:565574.
3. Anwar, M. M.,, J. H. Croft,, and R. G. B. Dales. 1993. Analysis of heterokaryon incompatibility between heterokaryon- compatibilty (h-c) groups R and GL provides evidence that at least eight het loci control somatic incompatibility in Aspergillus nidulans. J. Gen. Microbiol. 139:15991603.
4. Axelrod, D. E. 1972. Kinetics of differentiation of conidiophores and conidia by colonies of Aspergillus nidulans. J. Gen. Microbiol. 73:181184.
5.Bal J., E. M. Kajtaniak, and N. J. Pieniazek. 1977. 4-Nitroquinoline-1-oxide: a good mutagen for Aspergillus nidulans. Mutat. Res. 56:153156.
6. Basabe, J. R.,, C. A. Lee,, and R. L. Weiss. 1979. Enzyme assays using permeabilized cells of Neurospora. Anal. Biochem. 92:356360.
7. Bennett, J. W.,, and L. L. Lasure (ed.). 1985. Gene Manipulations in Fungi. Academic Press, Inc., Orlando, FL.
8. Bennett, J. W.,, and L. L. Lasure (ed.). 1991. More Gene Manipulations in Fungi. Academic Press, Inc., San Diego, CA.
9. Borkovich, K. A.,, L. A. Alex,, O. Yarden,, M. Freitag,, G. E. Turner,, N. D. Read,, S. Seiler,, D. Bell-Pedersen,, J. Paietta,, N. Plesofsky,, M. Plamann,, M. Goodrich-Tanrikulu,, U. Schulte,, G. Mannhaupt,, F. E. Nargang,, A. Radford,, C. Selitrennikoff,, J. E. Galagan,, J. C. Dunlap,, J. J. Loros,, D. Catcheside,, H. Inoue,, R. Aramayo,, M. Polymenis,, E. U. Selker,, M. S. Sachs,, G. A. Marzluf,, I. Paulsen,, R. Davis,, D. J. Ebbole,, A. Zelter,, E. R. Kalkman,, R. O’Rourke,, F. Bowring,, J. Yeadon,, C. Ishii,, K. Suzuki,, W. Sakai,, and R. Pratt. 2004. Lessons from the genome sequence of Neurospora crassa: tracing the path from genomic blueprint to multicellular organism. Microbiol. Mol. Biol. Rev. 68:1108.
10. Bos, C. J. (ed.). 1996. Fungal Genetics, Principles and Practice. Marcel Dekker, New York, NY.
11. Brown, T. A., 1993. Mitochondrial genome of Aspergillus nidulans, p. 3.853.86. In S. J. O’Brien (ed.). Genetic Maps, 6th ed. Cold Spring Harbor Press, New York, NY.
12. Brown, T. A., 1994. Mitochondria, p. 505524. In S. D. Martinelli, and J. R. Kinghorn (ed.), Aspergillus 50 Years On. Elsevier, Amsterdam, The Netherlands.
13. Brown, J. S.,, A. Aufauvre-Brown,, and D. W. Holden. 1998. Insertional mutagenesis of Aspergillus fumigatus. Mol. Gen. Genet. 259:327335.
14. Champe, S. P.,, D. L. Nagle,, and L. N. Yager,. 1994. Sexual sporulation, p. 429454. In S. D. Martinelli, and J. R. Kinghorn (ed.), Aspergillus 50 Years On. Elsevier, Amsterdam, The Netherlands.
15. Clutterbuck, A. J., 1974. Aspergillus nidulans, p. 447510. In R. C. King (ed.), Handbook of Genetics, 1. Bacteria, Bacteriophages and Fungi. Plenum Press, New York, NY.
16. Clutterbuck, A. J., 1995. Genetics of fungi, p. 239253. In N. A. R. Gow, and G. M. Gadd, (ed.), The Growing Fungus. Chapman and Hall, London, United Kingdom.
17. Cove, D. J. 1966. The induction and repression of nitrate reductase in the fungus Aspergillus nidulans. Biochim. Biophys. Acta 113:5156.
18. Cramer, C. L.,, J. L. Ristow,, T. J. Paulus,, and R. H. Davis. 1983. Methods for mycelial breakeage and isolation of mitochondria and vacuoles of Neurospora. Anal. Biochem. 128:384392.
19. Cummings, W. J.,, M. Celerin,, J. Crodian,, L. K. Brunick,, and M. E. Zolan. 1999. Insertional mutagenesis in Coprinus cinereus: use of a dominant selectable marker to generate tagged, sporulation-defective mutants. Curr. Genet. 39:371382.
20. Davis, R. H. 2000. Neurospora: Contributions of a Model Organism. Oxford University Press, Oxford, United Kingdom.
21. Davis, R. H.,, and F. J. de Serres. 1970. Genetic and microbiological research techniques for Neurospora. Methods Enzymol. 17A:79143.
22. Dunn-Coleman, N. S.,, E. A. Brodie,, G. L. Carter,, and G. L. Armstrong,. 1992. Stability of recombinant strains under fermentation conditions, p. 152174. In J. R. Kinghorn, and G. Turner (ed.), Applied Molecular Genetics of Filamentous Fungi. Chapman & Hall, London, United Kingdom.
23. Ebbole, D.,, and M. S. Sachs. 1990. A rapid and simple method for isolation of Neurospora crassa homokaryons using microconidia. Fungal Genet. Newsl. 37:1718.
24. Esser, K., 1974. Podospora anserina, p. 531551. In R. C. King (ed.), Handbook of Genetics, vol. 1. Bacteria, Bacteriophages and Fungi. Plenum Press, New York, NY.
25. Fincham, J. R. S.,, P. R. Day,, and A. Radford. 1979. Fungal Genetics. Univ. of California Press, Berkeley, CA.
26. Graïa, F.,, O. Lesprinet,, B. Rimbault,, M. Deqard-Chablat,, E. Coppin,, and M. Picard. 2001. Genome quality control: RIP (repeat-induced point mutation) comes to Podospora. Mol. Microbiol. 40:586595.
27. Harkness, T. A. A.,, R. L. Metzenberg,, H. Schneider,, R. Lill,, W. Neupert,, and F. E. Nargang. 1994. Inactivation of the Neurospora crassa gene encoding the mitochondrial protein import receptor MOM19 by the technique of “sheltered RIP.” Genetics 136:107118.
28. Hua-Van, A.,, F. Héricourt,, P. Capy,, M. J. Daboussie,, and T. Langin. 1998. Three highly divergent subfamilies of the impala transposable element coexist in the genome of the fungus Fusarium oxysporium. Mol. Gen. Genet. 259:354362.
29. Jung, M. K.,, N. Ovechkina,, C. E. Oakley,, and B. Oakley. 2000. The use of beta-D-glucanase as a substitute for Novozyme 234 in immunofluorescence and protoplasting. Fungal Genet. Newsl. 47:6566.
30. Käfer, E. 1961. The processes of spontaneous recombination in vegetative nuclei of Aspergillus nidulans. Genetics 46:15811609.
31. Käfer, E. 1977. Meiotic and mitotic recombination in Aspergillus and its chromosomal aberrations. Adv. Genet. 19:33131.
32. King, R. C. (ed.). 1974. Handbook of Genetics, vol. 1. Bacteria, Bacteriophages and Fungi. Plenum Press, New York, NY.
33. Li Destri Nicosia, M. G.,, C. Brocard-Masson,, S. Demais,, A. H. Van,, M.-J. Daboussi,, and C. Scazzocchio. 2001. Heterologous transposition in Aspergillus nidulans. Mol. Microbiol. 39:13301344.
34. Marhoul, J. F.,, and T. H. Adams. 1996. Aspergillus fabM encodes an essential product that is related to poly(A)-binding proteins and activates development when overexpressed. Genetics 144:14631470.
35. Martinelli, S. D. 1976. Conidiation of Aspergillus nidulans in submerged culture. Trans. Br. Mycol. Soc. 67:121128.
36. Martinelli, S. D.,, and J. R. Kinghorn (ed.). 1994. Aspergillus: 50 Years On. Elsevier, Amsterdam, The Netherlands.
37. McCully, K. S.,, and E. Forbes. 1965. The use of master strains of Aspergillus nidulans for assigning genes to linkage groups. Genet. Res. 6:352359.
38. Miller, B. L.,, K. Y. Miller,, and W. E. Timberlake. 1985. Direct and indirect gene replacements in Aspergillus nidulans. Mol. Cell. Biol. 5:17141721.
39. Mullins, E. D.,, X. Chen,, P. Romaine,, R. Raina,, D. M. Geiser,, and S. Kang. 2001. Agrobacterium-mediated transformation of Fusarium oxysporium: an efficient tool for insertional mutagenesis and gene transfer. Phytopathology 91:173180.
40. Nakayashiki, H.,, N. Nishimoto,, K. Ikeda,, Y. Tosa,, and S. Mayama. 1999. Degenerate MAGGY elements in a subgroup of Pyricularia grisea: a possible example of successful capture of a genetic invader by a fungal genome. Mol. Gen. Genet. 261:958966.
41. Ninomiya, Y.,, K. Suzuki,, C. Ishii,, and H. Inoue. 2004. Highly efficient gene replacements in Neurospora strains deficient for nonhomologous end-joining. Proc. Natl. Acad. Sci. USA 101:1224812253.
42. Perkins, D. D.,, and R. H. Davis. 2000. Neurospora at the millennium. Fungal Genet. Biol. 31:153167.
43. Perkins, D. D.,, A. Radford,, and M. S. Sachs. 2001. The Neurospora Compendium. Chromosomal Loci. Academic Press, New York, NY.
44. Pontecorvo, G.,, J. A. Roper,, L. M. Hemmons,, K. D. MacDonald,, and A. W. J. Bufton. 1953. The genetics of Aspergillus nidulans. Adv. Genet. 5:141238.
45. Pritchard, R. H. 1955. the linear arrangement of a series of alleles in Aspergillus nidulans. Heredity 9:343371.
46. Raper, J. R.,, and R. M. Hoffman,. 1974. Schizophyllum commune, p. 597626. In R. C. King (ed.), Handbook of Genetics, vol. 1. Bacteria, Bacteriophages and Fungi. Plenum Press, New York, NY.
47. Rowlands, R. T.,, and G. Turner. 1976. Maternal inheritance of extranuclear markers in Aspergillus nidulans. Genet. Res. 285:281290.
48. Singer, M. J.,, and E. U. Selker. 1995. Genetic and epigenetic inactivation of repetitive sequences in Neurospora crassa: RIP, DNA methylation and Quelling. Curr. Top. Microbiol. Immunol. 197:165177.
49. Tzeng, T.-H.,, L. K. Lyngholm,, C. F. Ford,, and C. R. Bronson. 1992. A restriction fragment length polymorphism map and electrophoretic karyotype of the fungal maize pathogen Cochliobolus heterostrophus. Genetics 130:8196.
50. Varga, J.,, and J. H. Croft. 1994. Assignment of RFLP, RAPD and isozyme markers to Aspergillus nidulans chromosomes, using chromosome-substituted segregants of hybrid A. nidulans and A. quadrilineatus. Curr. Genet. 25:311317.
51. Villalba, F.,, M.-H. Lebrun,, A. Hua-Van,, M.-J. Daboussi,, and M.-C. Grosjean-Cournoyer. 2001. Transposon impala, a novel tool for gene tagging in the rice blast fungus Magnaporthe grisea. Mol. Plant-Microbe Interact. 14:308315.
52. Waring, R. B.,, and C. Scazzocchio. 1983. Mitochondrial four-point crosses in Aspergillus nidulans: mapping of a suppressor of a mitochondrially inherited cold-sensitive mutation. Genetics 103:297311.
53. White, B.,, and D. O. Woodward. 1995. A simple method for making disposable race tubes. Fungal Genet. Newslet. 42:79.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error