1887

Chapter 6 : Atomic Force Microscopy

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Atomic Force Microscopy, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817497/9781555812232_Chap06-2.gif

Abstract:

The advent of atomic force microscopy (AFM), one technique in a family of new microscopies called scanning probe microscopies, has recently opened a wide range of novel applications for microbiologists. This chapter focuses on the use of AFM in microbiology. Rather than providing an exhaustive review of the literature in this area, the chapter emphasizes methods and gives recommendations for reproducible, reliable experiments. The first section concentrates on sample preparation procedures: selection of appropriate substrates and immobilization protocols available for isolated macromolecules, cell surface layers, and whole cells. The second section deals with the various aspects of AFM imaging: different imaging modes together with common problems and artifacts, imaging parameters, and imaging environments. The third section focuses on AFM force measurements: the principle of force-distance curves and their application to probe molecular interactions and mechanical properties. Finally, isoporous polymer membranes can be used to immobilize large objects such as whole cells. The protocols differ according to the type of sample investigated, i.e., macromolecules, cell surface layers, or whole cells. Probing molecular interactions method has been used to measure the forces between -coated probes and solids of different surface hydrophobicities.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6

Key Concept Ranking

Atomic Force Microscopy
0.87097013
Scanning Probe Microscopy
0.7308107
Atomic Force Microscope
0.52586883
Electron Microscopy
0.50791246
Bacterial Proteins
0.49717015
0.87097013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

General design of an atomic force microscope.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

High-resolution AFM image, obtained with the specimen in aqueous solution, of purple membrane adsorbed to freshly cleaved mica ( ). A fully reversible, force-induced conformational change was observed: at the top of the image, the force applied to the atomic force microscope stylus was 100 pN. During scanning of the surface line by line, the force was increased until it reached 150 pN at the bottom of the image. White outlines indicate bacteriorhodopsin trimers. (Reprinted from reference with permission of the publisher.)

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Schematic illustration of two immobilization methods for AFM investigation of native, single microbial cells. (A) Agar gel; (B) porous membrane.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

AFM height image (range = 750 nm) recorded under water showing cells trapped by a pore of a polycarbonate membrane. By trapping the cells mechanically into a porous membrane, single cells can be imaged under physiological conditions without any pretreatment.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

AFM height (A) and deflection (B) images recorded under water for the surfaces of dormant spores of the fungus . The height image (A) together with the vertical cross section (taken along the dashed line) reveal the presence of a heterogeneous outer layer ∼35 nm thick. The deflection image (B) shows that the outer layer is made of rodlet structures 10 ± 1 nm in diameter.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

AFM force measurements: different parts of a force-distance curve. Labels indicate the approach (1, 2, 3) and retraction (3, 4, 4′) parts.

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Stretching cell surface macromolecules. Typical force-extension curve recorded under water between a silicon nitride probe and the surface of a germinating spore (thin line, starting at 0 mm extension). Elongation forces were well described by an extended freely jointed chain model (thick line, starting at 200 mm extension) with parameters consistent with values reported for the elastic deformation of single dextran and amylose polysaccharides ( ).

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Combining AFM imaging and force spectroscopy to unzip proteins from the HPI layer of ( ). (A) Control AFM topograph of the inner surface of the HPI layer. (B) Force-extension curve recorded for this inner surface region showing a saw-tooth pattern with six force peaks of about 300 pN. (C) The same inner surface area imaged after recording of the force curve; a molecular defect the size of a hexameric HPI protein complex has clearly been created. (Reprinted from reference with permission of the publisher.)

Citation: Dufrêne Y. 2007. Atomic Force Microscopy, p 96-107. In Reddy C, Beveridge T, Breznak J, Marzluf G, Schmidt T, Snyder L (ed), Methods for General and Molecular Microbiology, Third Edition. ASM Press, Washington, DC. doi: 10.1128/9781555817497.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817497.chap6
1. Abu-Lail, N. I.,, and T. A. Camesano. 2002. Elasticity of Pseudomonas putida KT2442 surface polymers probed with single-molecule force microscopy. Langmuir 18: 4071 4081.
2. Ahimou, F.,, F. A. Denis,, A. Touhami,, and Y. F. Dufrêne. 2002. Probing microbial cell surface charges by atomic force microscopy. Langmuir 18: 9937 9941.
3. Ahimou, F.,, A. Touhami,, and Y. F. Dufrêne. 2003. Realtime imaging of the surface topography of living yeast cells by atomic force microscopy. Yeast 20: 25 30.
4. Amro, N. A.,, L. P. Kotra,, K. Wadu-Mesthrige,, A. Bulychev,, S. Mobashery,, and G.-Y. Liu. 2000. Highresolution atomic force microscopy studies of the Escherichia coli outer membrane: structural basis for permeability. Langmuir 16: 2789 2796.
5. Arnoldi, M.,, C. M. Kacher,, E. Bäuerlein,, M. Radmacher,, and M. Fritz. 1998. Elastic properties of the cell wall of Magnetospirillum gryphiswaldense investigated by atomic force microscopy. Appl. Phys. A 66: S613 S617.
6. Beech, I. B.,, C. W. S. Cheung,, D. B. Johnson,, and J. R. Smith. 1996. Comparative studies of bacterial biofilms on steel surfaces using atomic force microscopy and environmental scanning electron microscopy. Biofouling 10: 65 77.
7. Binnig, G.,, C. F. Quate,, and C. Gerber. 1986. Atomic force microscope. Phys. Rev. Lett. 56: 930 933.
8. Butt, H.-J. 1992. Measuring local surface charge densities in electrolyte solutions with a scanning force microscope. Biophys. J. 63: 578 582.
9. Butt, H.-J.,, M. Jaschke,, and W. Ducker. 1995. Measuring surface forces in aqueous electrolyte solution with the atomic force microscope. Bioelectrochem. Bioenerg. 38: 191 201.
10. Camesano, T. A.,, M. J. Natan,, and B. E. Logan. 2000. Observation of changes in bacterial cell morphology using tapping mode atomic force microscopy. Langmuir 16: 4563 4572.
11. Cappella, B.,, and G. Dietler. 1999. Force-distance curves by atomic force microscopy. Surf. Sci. Rep. 34: 1 104.
12. Clausen-Schaumann, H.,, M. Seitz,, R. Krautbauer,, and H. E. Gaub. 2000. Force spectroscopy with single biomolecules. Curr. Opin. Chem. Biol. 4: 524 530.
13. Cleveland, J. P.,, S. Manne,, D. Bocek,, and P. K. Hansma. 1993. A nondestructive method for determining the spring constant of cantilevers for scanning force microscopy. Rev. Sci. Instrum. 64: 403 405.
14. Colton, R. J.,, A. Engel,, J. E. Frommer,, H. E. Gaub,, A. A. Gewirth,, R. Guckenberger,, J. Rabe,, W. M. Heckel,, and B. Parkinson (ed.). 1998. Procedures in Scanning Probe Microscopies. John Wiley & Sons Ltd., Chichester, England.
15. Crawford, S. A.,, M. J. Higgins,, P. Mulvaney,, and R. Wetherbee. 2001. Nanostructure of the diatom frustule as revealed by atomic force and scanning electron microscopy. J. Phycol. 37: 543 554.
16. Dufrêne, Y. F. 2000. Direct characterization of the physicochemical properties of fungal spores using functionalized AFM probes. Biophys. J. 78: 3286 3291.
17. Dufrêne, Y. F. 2001. Application of atomic force microscopy to microbial surfaces: from reconstituted cell surface layers to living cells. Micron 32: 153 165.
18. Dufrêne, Y. F. 2002. Atomic force microscopy, a powerful tool in microbiology. J. Bacteriol. 184: 5205 5213.
19. Dufrêne, Y. F. 2003. Recent progress in the application of atomic force microscopy imaging and force spectroscopy to microbiology. Curr. Opin. Microbiol. 6: 317 323.
20. Dufrêne, Y. F. 2004. Using nanotechniques to explore microbial surfaces. Nat. Rev. Microbiol. 2: 451 460.
21. 20a.Dufrêne, Y. F. 2003. Atomic force microscopy provides a new means for looking at microbial cells. ASM News 69: 438442.
21. Dufrêne, Y. F.,, C. J. P. Boonaert,, P. A. Gerin,, M. Asther,, and P. G. Rouxhet. 1999. Direct probing of the surface ultrastructure and molecular interactions of dormant and germinating spores of Phanerochaete chrysosporium. J. Bacteriol. 181: 5350 5354.
22. Firtel, M.,, and T. J. Beveridge. 1995. Scanning probe microscopy in microbiology. Micron 26: 347 362.
23. Fisher, T. E.,, P. E. Marszalek,, and J. M. Fernandez. 2000. Stretching single molecules into novel conformations using the atomic force microscope. Nat. Struct. Biol. 7: 719 724.
24. Forsythe, J. H.,, P. A. Maurice,, and L. E. Hersman. 1998. Attachment of a Pseudomonas sp. to Fe(III)-(hydr)oxide surfaces. Geomicrobiology 15: 293 308.
25. Gad, M.,, and A. Ikai. 1995. Method for immobilizing microbial cells on gel surface for dynamic AFM studies. Biophys. J. 69: 2226 2233.
26. Grantham, M. C.,, and P. M. Dove. 1996. Investigation of bacterial-mineral interactions using fluid tapping mode atomic force microscopy. Geochim. Cosmochim. Acta 60: 2473 2480.
27. Hansma, H. G.,, and J. H. Hoh. 1994. Biomolecular imaging with the atomic force microscope. Ann. Rev. Biophys. Biomol. Struct. 23: 115 139.
28. Hansma, H. G.,, J. Vesenka,, C. Siegerist,, G. Kelderman,, H. Morrett,, R. L. Sinsheimer,, V. Elings,, C. Bustamante,, and P. K. Hansma. 1992. Reproducible imaging and dissection of plasmid DNA under liquid with the atomic force microscope. Science 256: 1180 1184.
29. Hartley, P.,, M. Matsumoto,, and P. Mulvaney. 1998. Determination of the surface potential of two-dimensional crystals of bacteriorhodopsin by AFM. Langmuir 14: 5203 5209.
30. Hinterdorfer, P.,, W. Baumgartner,, H. J. Gruber,, K. Schilcher,, and H. Schindler. 1996. Detection and localization of individual antibody-antigen recognition events by atomic force microscopy. Proc. Natl. Acad. Sci. USA 93: 3477 3481.
31. Holstein, T. W.,, M. Benoit,, G. V. Herder,, G. Wanner,, C. N. David,, and H. E. Gaub. 1994. Fibrous minicollagens in Hydra nematocysts. Science 265: 402 404.
32. Hörber, J. K. H.,, and M. J. Miles. 2003. Scanning probe evolution in biology. Science 302: 1002 1005.
33. Ikai, A. 1996. STM and AFM of bio/organic molecules and structures. Surf. Sci. Rep. 26: 261 332.
34. Janshoff, A.,, M. Neitzert,, Y. Oberdörfer,, and H. Fuchs. 2000. Force spectroscopy of molecular systems—single molecule spectroscopy of polymers and biomolecules. Angew. Chem. Int. Ed. 39: 3213 3237.
35. Karrasch, S.,, and A. Engel,. 1998. AFM imaging of HPI layers in buffer solution, p. 433 439. In R. J. Colton,, A. Engel,, J. E. Frommer,, H. E. Gaub,, A. A. Gewirth,, R. Guckenberger,, J. Rabe,, W. M. Heckel,, and B. Parkinson (ed.), Procedures in Scanning Probe Microscopies. John Wiley & Sons Ltd., Chichester, England.
36. Karrasch, S.,, R. Hegerl,, J. Hoh,, W. Baumeister,, and A. Engel. 1994. Atomic force microscopy produces faithful high-resolution images of protein surfaces in an aqueous environment. Proc. Natl. Acad. Sci. USA 91: 836 838.
37. Kasas, S.,, and A. Ikai. 1995. A method for anchoring round shaped cells for atomic force microscope imaging. Biophys. J. 68: 1678 1680.
38. Kirby, A. R.,, A. P. Gunning,, and V. J. Morris. 1996. Imaging polysaccharides by atomic force microscopy. Biopolymers 38: 355 366.
39. Lee, G. U.,, L. A. Chrisey,, and R. J. Colton. 1994. Direct measurement of the forces between complementary strands of DNA. Science 266: 771 773.
40. Lister, T. E.,, and P. J. Pinhero. 2001. In vivo atomic force microscopy of surface proteins on Deinococcus radiodurans. Langmuir 17: 2624 2628.
41. Lo, Y. S.,, N. D. Huefner,, W. S. Chan,, P. Dryden,, B. Hagenhoff,, and T. P. Beebe. 1999. Organic and inorganic contamination on commercial AFM cantilevers. Langmuir 15: 6522 6526.
42. Lower, S. K.,, M. F. Hochella,, and T. J. Beveridge. 2001. Bacterial recognition of mineral surfaces: nanoscale interactions between Shewanella and α-FeOOH. Science 292: 1360 1363.
43. Lyubchenko, Y. L.,, A. A. Gall,, L. S. Shlyakhtenko,, R. E. Harrington,, P. I. Oden,, B. L. Jacobs,, and S. M. Lindsay. 1992. Atomic force microscopy imaging of double stranded DNA and RNA. J. Biomol. Struct. Dyn. 9: 589 606.
44. Magonov, S. N.,, and M.-H. Whangbo (ed.). 1996. Surface Analysis with STM and AFM. VCH, New York, N.Y..
45. Marszalek, P. E.,, A. F. Oberhauser,, Y.-P. Pang,, and J. M. Fernandez. 1998. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring. Nature 396: 661 664.
46. McIntire, T. M.,, and D. A. Brant. 1997. Imaging of individual biopolymers and supramolecular assemblies using noncontact atomic force microscopy. Biopolymers 42: 133 146.
47. Möller, C.,, M. Allen,, V. Elings,, A. Engel,, and D. J. Müller. 1999. Tapping mode atomic force microscopy produces faithful high-resolution images of protein surfaces. Biophys. J. 77: 1150 1158.
48. Morris, V. J.,, A. R. Kirby,, and A. P. Gunning (ed.). 1999. Atomic Force Microscopy for Biologists. Imperial College Press, London, England.
49. Müller, D. J.,, and A. Engel. 1999. Voltage and pHinduced channel closure of porin OmpF visualized by atomic force microscopy. J. Mol. Biol. 285: 1347 1351.
50. Müller, D. J.,, G. Büldt,, and A. Engel. 1995. Forceinduced conformational change of bacteriorhodopsin. J. Mol. Biol. 249: 239 243.
51. Müller, D. J.,, W. Baumeister,, and A. Engel. 1996. Conformational change of the hexagonally packed intermediate layer of Deinococcus radiodurans monitored by atomic force microscopy. J. Bacteriol. 178: 3025 3030.
52. Müller, D. J.,, M. Amrein,, and A. Engel. 1997. Adsorption of biological molecules to a solid support for scanning probe microscopy. J. Struct. Biol. 119: 172 188.
53. Müller, D. J.,, A. Engel,, and M. Amrein. 1997. Preparation techniques for the observation of native biological systems with the atomic force microscope. Biosens. Bioelectron. 12: 867 877.
54. Müller, D. J.,, G. Büldt,, and A. Engel,. 1998. Preparation and observation of purple membranes by AFM, p. 425 428. In R. J. Colton,, A. Engel,, J. E. Frommer,, H. E. Gaub,, A. A. Gewirth,, R. Guckenberger,, J. Rabe,, W. M. Heckel,, and B. Parkinson (ed.), Procedures in Scanning Probe Microscopies. John Wiley & Sons Ltd., Chichester, England.
55. Müller, D. J.,, D. Fotiadis,, S. Scheuring,, S. A. Müller,, and A. Engel. 1999. Electrostatically balanced subnanometer imaging of biological specimens by atomic force microscope. Biophys. J. 76: 1101 1111.
56. Müller, D. J.,, W. Baumeister,, and A. Engel. 1999. Controlled unzipping of a bacterial surface layer with atomic force microscopy. Proc. Natl. Acad. Sci. USA 96: 13170 13174.
57. Müller, D. J.,, J. B. Heymann,, F. Oesterhelt,, C. Möller,, H. Gaub,, G. Büldt,, and A. Engel. 2000. Atomic force microscopy of native purple membrane. Biochim. Biophys. Acta 1460: 27 38.
58. Ong, Y.-L.,, A. Razatos,, G. Georgiou,, and M. M. Sharma. 1999. Adhesion forces between E. coli bacteria and biomaterial surfaces. Langmuir 15: 2719 2725.
59. Patel, N.,, M. C. Davies,, M. Hartshorne,, R. J. Heaton,, C. J. Roberts,, S. J. B. Tendler,, and P. M. Williams. 1997. Immobilization of protein molecules onto homogeneous and mixed carboxylate-terminated self-assembled monolayers. Langmuir 13: 6485 6490.
60. Pum, D.,, M. Weinhandl,, C. Hödl,, and U. B. Sleytr. 1993. Large-scale recrystallization of the S-layer of Bacillus coagulans E38-66 at the air/water interface and on lipid films. J. Bacteriol. 175: 2762 2766.
61. Razatos, A.,, Y.-L. Ong,, M. M. Sharma,, and G. Georgiou. 1998. Molecular determinants of bacterial adhesion monitored by atomic force microscopy. Proc. Natl. Acad. Sci. USA 95: 11059 11064.
62. Rief, M.,, F. Oesterhelt,, B. Heymann,, and H. E. Gaub. 1997. Single molecule force spectroscopy on polysaccharides by atomic force microscopy. Science 275: 1295 1297.
63. Schabert, F. A., 1998. Imaging of reconstituted OmpF porin in solution using AFM, p. 429 432. In R. J. Colton,, A. Engel,, J. E. Frommer,, H. E. Gaub,, A. A. Gewirth,, R. Guckenberger,, J. Rabe,, W. M. Heckel,, and B. Parkinson (ed.), Procedures in Scanning Probe Microscopies. John Wiley & Sons Ltd., Chichester, England.
64. Schabert, F. A.,, C. Henn,, and A. Engel. 1995. Native Escherichia coli OmpF porin surfaces probed by atomic force microscopy. Science 268: 92 94.
65. Scheuring, S.,, P. Ringler,, M. Borgnia,, H. Stahlberg,, D. J. Müller,, P. Agre,, and A. Engel. 1999. High resolution AFM topographs of the Escherichia coli water channel aquaporin Z. EMBO J. 18: 4981 4987.
66. Shao, Z.,, J. Mou,, D. M. Czajkowsky,, J. Yang,, and J.-Y. Yuan. 1996. Biological atomic force microscopy: what is achieved and what is needed. Adv. Phys. 45: 1 86.
67. Tortonese, M.,, and M. Kirk. 1997. Characterization of application specific probes for SPMs. SPIE 3009: 53 60.
68. Touhami, A.,, B. Nysten,, and Y. F. Dufrêne. 2003. Nanoscale mapping of the elasticity of microbial cells by atomic force microscopy. Langmuir 19: 4539 4543.
69. Touhami, A.,, B. Hoffmann,, A. Vasella,, F. A. Denis,, and Y. F. Dufrêne. 2003. Aggregation of yeast cells: direct measurement of discrete lectin-carbohydrate interactions. Microbiol. SGM 149: 2873 2878.
70. Touhami, A.,, M. Jericho,, and T. J. Beveridge. 2004. Atomic force microscopy of cell growth and division in Staphylococcus aureus. J. Bacteriol. 186: 3286 3295.
71. van der Aa, B. C.,, R. M. Michel,, M. Asther,, M. T. Zamora,, P. G. Rouxhet,, and Y. F. Dufrêne. 2001. Stretching cell surface macromolecules by atomic force microscopy. Langmuir 17: 3116 3119.
72. van der Mei, H. C.,, H. J. Busscher,, R. Bos,, J. de Vries,, C. J. P. Boonaert,, and Y. F. Dufrêne. 2000. Direct probing by atomic force microscopy of the cell surface softness of a fibrillated and non-fibrillated oral streptococcal strain. Biophys. J. 78: 2668 2674.
73. Wagner, P.,, M. Hegner,, P. Kernen,, F. Zaugg,, and G. Semenza. 1996. Covalent immobilization of native biomolecules onto Au(111) via N-hydroxysuccinimide ester functionalized self-assembled monolayers for scanning probe microscopy. Biophys. J. 70: 2052 2066.
74. Weisenhorn, A. L.,, M. Khorsandi,, S. Kasas,, V. Gotzos,, and H.-J. Butt. 1993. Deformation and height anomaly of soft surfaces studied with an AFM. Nanotechnology 4: 106 113.
75. Wetzer, B.,, D. Pum,, and U. B. Sleytr. 1997. S-layer stabilized solid supported lipid bilayers. J. Struct. Biol. 119: 123 128.
76. Wilson, D. L.,, K. S. Kump,, S. J. Eppell,, and R. E. Marchant. 1995. Morphological restoration of atomic force microscopy images. Langmuir 11: 265 272.
77. Xu, W.,, P. J. Mulhern,, B. L. Blackford,, M. H. Jericho,, M. Firtel,, and T. J. Beveridge. 1996. Modeling and measuring the elastic properties of an archaeal surface, the sheath of Methanospirillum hungatei, and the implication for methane production . J. Bacteriol. 178: 3106 3112.
78. Yao, X.,, M. Jericho,, D. Pink,, and T. Beveridge. 1999. Thickness and elasticity of gram-negative murein sacculi measured by atomic force microscopy. J. Bacteriol. 181: 6865 6875.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error