1887

Chapter 1 : Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap01-2.gif

Abstract:

This introductory chapter is an overview of targets for antimicrobial action and mechanisms of bacterial resistance combined with information on the nature of antibacterial drugs, their classification, and their usage in animals. On the basis of the target microorganism, drugs are classified as antiviral, antibacterial, antifungal, and antiparasitic. There are numerous definitions of bacterial resistance, which are based on different criteria (genetic, biochemical, microbiological, and clinical) and do not necessarily overlap. The two most commonly used definitions are based on microbiological (in vitro resistance) and clinical (in vivo resistance) criteria. Multiresistant clinical strains of , , serovar Enteritidis, and display in vivo mutation rates that are 1,000-fold higher than in other members of these species. There are important differences in the use of antibacterial agents in humans and animals, in particular food animals. Bacteria have developed various mechanisms to neutralize the action of antibacterial agents. The most widespread are enzymatic drug inactivation, modification or replacement of the drug target, active drug efflux, and reduced drug uptake.

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1

Key Concept Ranking

Antibacterial Agents
1.1930056
Bacterial Diseases
1.1502512
Mobile Genetic Elements
0.7445293
Viruses
0.68167436
Antiseptics and Disinfectants
0.6431808
Chemicals
0.63599813
1.1930056
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Modes of action of antibacterial drugs inhibiting cell wall synthesis. NAG, N-acetylglucosamine; NAMA, Nacetylmuramic acid; ala, alanine; glu, glutamic acid; lys, lysine; gly, glycine; mDAP, mesodiaminopimelic acid.

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Modes of action of antibacterial drugs inhibiting nucleic acid or protein synthesis.

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Mechanisms of resistance to antibacterial drugs.

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817534.chap1
1. Aarestrup, F. M. 2000. Characterization of glycopeptides-resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J. Clin. Microbiol. 38: 2774 2777.
2. Andremont, A.,, and C. Tancrede. 1981. Reduction of the aerobic Gram negative bacterial flora of the gastro-intestinal tract and prevention of traveller’s diarrhea using oral erythromycin. Ann. Microbiol (Paris). 132 B : 419 427.
3.. Arthur, M.,, P. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4: 401 407.
4. Banks, D. J.,, S. F. Porcella,, K. D. Barbian,, J. M. Martin,, and J. M. Musser. 2003. Structure and distribution of an unusual chimeric genetic element encoding macrolide resistance in phylogenetically diverse clones of group A Streptococcus. J. Infect. Dis. 188: 1898 1908.
5. Basak, J. 1995. Inter-strand cross-linking of Vibrio cholerae DNA induced by furazolidone: a quantitative assay by four simple methods. Mutat. Res. 327: 5 15.
6. Bismuth, R.,, R. Zilhao,, H. Sakamoto,, J. L. Guesdon,, and P. Courvalin. 1990. Gene heterogeneity for tetracycline resistance in Staphylococcus spp. Antimicrob. Agents Chemother. 34: 1611 1614.
7. Bosling, J.,, S. M. Poulsen,, B. Vester,, and K. S. Long. 2003. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3. Antimicrob. Agents Chemother. 47: 2892 2896.
8. Butaye, P.,, A. Cloeckaert,, and S. Schwarz. 2003. Mobile genes coding for efflux-mediated antimicrobial resistance in Grampositive and Gram-negative bacteria. Int. J. Antimicrob. Agents 22: 205 210.
9. Butaye, P.,, L. A. Devriese,, and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less well known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16: 175 188.
10. Carter, A. P.,, W. M. Clemons,, D. E. Brodersen,, R. J. Morgan- Warren,, B. T. Wimberly,, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340 348.
11. Cohen, S. P.,, L. M. McMurry,, D. C. Hooper,, J. S. Wolfson,, and S. B. Levy. 1989. Cross-resistance to fluoroquinolones in multiple-antibiotic-resistant (Mar ) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob. Agents Chemother. 33: 1318 1325.
12. Connell, S. R.,, D. M. Tracz,, K. H. Nierhaus,, and D. E. Taylor. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47: 3675 3681.
13. Courvalin, P.,, and P. Trieu-Cuot. 2001. Minimizing potential resistance: the molecular view. Clin. Infect. Dis. 33 (Suppl.3): S138 S146.
14. Cui, L.,, H. Murakami,, K. Kuwahara-Arai,, H. Hanaki,, and K. Hiramatsu. 2000. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother. 44: 2276 2285.
15. Doucet-Populaire, F.,, P. Trieu-Cuot,, I. Dosbaa,, A. Andremont,, and P. Courvalin. 1991. Inducible transfer of conjugative transposon Tn1545 from Enterococcus faecalis to Listeria monocytogenes in the digestive tracts of gnotobiotic mice. Antimicrob. Agents Chemother. 35: 185 187.
16. El Solh, N.,, and J. Allignet. 1998. Staphylococcal resistance to streptogramins and related antibiotics. Drug Resis. Updates 1: 169 175.
17. Ferretti, J. J.,, K. S. Gilmore,, and P. Courvalin. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6'-aminoglycoside acetyltransferase 2"-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 167: 631 638.
18. Fluit, A. C.,, and F. J. Schmitz. 1999. Class 1 integrons, gene cassettes, mobility, and epidemiology. Eur. J. Clin. Microbiol. Infect. Dis. 18: 761 770.
19. Hakenbeck, R.,, and J. Coyette. 1998. Resistant penicillin-binding proteins. Cell Mol. Life Sci. 54: 332 340.
20. Hancock, R. E.,, and F. S. Brinkman. 2002. Function of Pseudomonas porins in uptake and efflux. Annu. Rev. Microbiol. 56: 17 38.
21. Hardy, C. D.,, and N. R. Cozzarelli. 2003. Alteration of Escherichia coli topoisomerase IV to novobiocin resistance. Antimicrob. Agents Chemother. 47: 941 947.
22. Harms, J. M.,, H. Bartels,, F. Schlunzen,, and A. Yonath. 2003. Antibiotics acting on the translational machinery. J. Cell Sci. 116: 1391 1393.
23. Harms, J. M.,, F. Schlunzen,, P. Fucini,, H. Bartels,, and A. Yonath. 2004. Alterations at the peptidyl transferase centre of the ribosome induced by the synergistic action of the streptogramins dalfopristin and quinupristin. BMC Biol. 2: 4.
24. Jensen, L. B.,, A. M. Hammerum,, F. Bager,, and F. M. Aarestrup. 2002. Streptogramin resistance among Enterococcus faecium isolated from production animals in Denmark in 1997. Microb. Drug Resist. 8: 369 374.
25. Kofoed, C. B.,, and B. Vester. 2002. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob. Agents Chemother. 46: 3339 3342.
26. LeClerc, J. E.,, B. Li,, W. L. Payne,, and T. A. Cebula. 1996. High mutation frequencies among Escherichia coli and Salmonella pathogens. Science 274: 1208 1211.
27. Martinez, M. B.,, M. Flickinger,, L. Higgins,, T. Krick,, and G. L. Nelsestuen. 2001. Reduced outer membrane permeability of Escherichia coli O157:H7: suggested role of modified outer membrane porins and theoretical function in resistance to antimicrobial agents. Biochemistry 40: 11965 11974.
28. Mascaretti, O. 2003. Bacteria versus Antibacterial Agents: an Integrated Approach. ASM Press, Washington, D.C.
29. McDonnell, G.,, and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12: 147 179.
30. Menard, R.,, C. Molinas,, M. Arthur,, J. Duval,, P. Courvalin,, and R. Leclercq. 1993. Overproduction of 3'-aminoglycoside phosphotransferase type I confers resistance to tobramycin in Escherichia coli. Antimicrob. Agents Chemother. 37: 78 83.
31. Muniesa, M.,, A. Garcia,, E. Miro,, B. Mirelis,, G. Prats,, J. Jofre,, and F. Navarro. 2004. Bacteriophages and diffusion of beta-lactamase genes. Emerg. Infect. Dis. 10: 1134 1137.
32. Neyfakh, A. A. 2002. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44: 1123 1130.
33. Oliver, A.,, R. Canton,, P. Campo,, F. Baquero,, and J. Blazquez. 2000. High frequency of hypermutable Pseudomonas aeruginosa in cystic fibrosis lung infection. Science 288: 1251 1254.
34. Putman, M.,, H. W. van Veen,, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672 693.
35. Reynolds, P. E. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8: 943 950.
36. Schlunzen, F.,, E. Pyetan,, P. Fucini,, A. Yonath,, and J. M. Harms. 2004. Inhibition of peptide bond formation by pleuromutilins: the structure of the 50S ribosomal subunit from Deinococcus radiodurans in complex with tiamulin. Mol. Microbiol. 54: 1287 1294.
37. Schlunzen, F.,, R. Zarivach,, J. Harms,, A. Bashan,, A. Tocilj,, R. Albrecht,, A. Yonath,, and F. Franceschi. 2001. Structural basis for the interaction of antibiotics with the peptidyl transferase centre in eubacteria. Nature 413: 814 821.
38. Schmieger, H.,, and P. Schicklmaier. 1999. Transduction of multiple drug resistance of Salmonella enterica serovar Typhimurium DT104. FEMS Microbiol. Lett. 170: 251 256.
39. Schmitz, F. J.,, P. G. Higgins,, S. Mayer,, A. C. Fluit,, and A. Dalhoff. 2002. Activity of quinolones against gram-positive cocci: mechanisms of drug action and bacterial resistance. Eur. J. Clin. Microbiol. Infect. Dis. 21: 647 659.
40. Schonbrunn, E.,, S. Eschenburg,, F. Krekel,, K. Luger,, and N. Amrhein. 2000. Role of the loop containing residue 115 in the induced-fit mechanism of the bacterial cell wall biosynthetic enzyme MurA. Biochemistry 39: 2164 2173.
41. Schwarz, S.,, and E. Chaslus-Dancla. 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet. Res. 32: 201 225.
42. Sigeti, J. S.,, D. G. Guiney, Jr., and C. E. Davis. 1983. Mechanism of action of metronidazole on Bacteroides fragilis. J. Infect. Dis. 148: 1083 1089.
43. Snyder, L.,, and W. Champness. 1997. Molecular Genetics of Bacteria. ASM Press, Washington, D.C.
44. Toscano, W. A., Jr., and D. R. Storm. 1982. Bacitracin. Pharmacol. Ther. 16: 199 210.
45. Tran, J. H.,, and G. A. Jacoby. 2002. Mechanism of plasmid-mediated quinolone resistance. Proc. Natl. Acad. Sci. USA 99: 5638 5642.
46. van Heijenoort, J. 2001. Formation of the glycan chains in the synthesis of bacterial peptidoglycan. Glycobiology 11: 25R 36R.
47. Walsh, C. 2003. Antibiotics: Actions, Origins, Resistance. ASM Press, Washington, D.C.
48. Whittle, G.,, N. B. Shoemaker,, and A. A. Salyers. 2002. The role of Bacteroides conjugative transposons in the dissemination of antibiotic resistance genes. Cell. Mol. Life Sci. 59: 2044 2054.
49. Wright, G. D. 1999. Aminoglycoside-modifying enzymes. Curr. Opin. Microbiol. 2: 499 503002E

Tables

Generic image for table
Table 1.

The antibacterial alphabet

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Generic image for table
Table 2.

Human health importance and clinical use of antibacterial drugs licensed for animal use in European Union countries and/or the United States

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Generic image for table
Table 3.

Modes of enzymatic inactivation of antibacterial drugs

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1
Generic image for table
Table 4.

Antibacterial substrate ranges of MDR efflux pumps in bacterial species that can be isolated from animals

Citation: Guardabassi L, Courvalin P. 2006. Modes of Antimicrobial Action and Mechanisms of Bacterial Resistance, p 1-18. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch1

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error