Chapter 6 : Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap06-2.gif


Nowadays, antimicrobial agents are among the most frequently used therapeutics in human and veterinary medicine. Resistance to antimicrobial agents can be subdivided into two basic types of resistance, intrinsic resistance and acquired resistance. Resistance to ß-lactam antibiotics is mainly due to inactivation by ß-lactamases and decreased ability to bind to penicillin-binding proteins (PBPs) in both gram-positive and gram-negative bacteria, but may also be based on decreased uptake of ß-lactams due to permeability barriers or increased efflux via multidrug transporter systems. Different types of multidrug transporters mediating resistance to tetracycline in addition to resistance to a number of structurally unrelated compounds are described, for instance, in , , and . Plasmids, genomic islands, transposons, gene cassettes, and integrons are spread vertically during the division of the host cell, but can also be transferred horizontally between bacteria of the same or different species and genera via transduction, conjugation and mobilization, or transformation. The development of antimicrobial resistance—by either mutations, generation of new resistance genes, or acquisition of resistance genes already present in other bacteria—is a complex process that involves different mechanisms. Due to the usage of all types of antimicrobial substances for selection of resistant bacteria, prudent use of the antimicrobial agents is strongly recommended in both human and veterinary medicine, as well as in food animal production, to retain the efficacy of antimicrobial agents for the control of bacterial infections in animals.

Citation: Schwarz S, Cloeckaert A, Roberts M. 2006. Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, p 73-98. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch6
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1.. Aarestrup, F. M. 1995. Occurrence of glycopeptide resistance among Enterococcus faecium from conventional and ecological poultry farms. Microb. Drug Resist. 1:255257.
2. Aarestrup, F. M. 2000. Characterization of glycopeptide resistant Enterococcus faecium (GRE) from broilers and pigs in Denmark: genetic evidence that persistence of GRE in pig herds is associated with coselection by resistance to macrolides. J. Clin. Microbiol. 38:27742777.
3. Aarestrup, F. M. 2000. Occurrence, selection and spread of resistance to antimicrobial agents used for growth promotion for food animals in Denmark. APMIS Suppl. 101:148.
4. Aarestrup, F. M.,, P. Ahrens,, M. Madsen,, L. V. Pallesen,, R. L. Poulsen,, and H. Westh. 1996. Glycopeptide susceptibility among Danish Enterococcus faecium and Enterococcus faecalis isolates of animal and human origin and PCR identification of genes within the VanA cluster. Antimicrob. Agents Chemother. 40:19381940.
5. Aarestrup, F. M.,, and L. B. Jensen. 2000. Presence of variations in ribosomal protein L16 corresponding to susceptibility of enterococci to oligosaccharides (avilamycin and evernimicin). Antimicrob. Agents Chemother. 44:34253427.
6. Alekshun, M. N.,, and S. B. Levy. 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7:410413.
7. Alekshun, M. N.,, and S. B. Levy,. 2000. Bacterial drug resistance: response to survival threats, p. 323366. In G. Storz, and R. Hengge-Aronis (ed.), Bacterial Stress Responses. ASM Press, Washington, D.C.
8. Allmeier, H.,, B. Cresnar,, M. Greck,, and R. Schmitt. 1992. Complete nucleotide sequence of Tn1721: gene organization and a novel gene product with features of a chemotaxis protein. Gene 111:1120.
9. Alton, N. K.,, and D. Vapnek. 1979. Nucleotide sequence analysis of the chloramphenicol resistance transposon Tn9. Nature 282:864869.
10. Ambler, R. P. 1980. The structure of β-lactamases. Philos. Trans. R. Soc. Lond. Biol. 289:321331.
11. Arcangioli, M. A.,, S. Leroy-Setrin,, J. L. Martel,, and E. Chaslus-Dancla. 1999. A new chloramphenicol and florfenicol resistance gene linked to an integron structure in Salmonella typhimurium DT104. FEMS Microbiol. Lett. 174:327332.
12. Arthur, M.,, and P. Courvalin. 1993. Genetics and mechanisms of glycopeptide resistance in enterococci. Antimicrob. Agents Chemother. 37:15631571.
13. Arthur, M.,, P. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4:401407.
14. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
15. Bager, F.,, F. M. Aarestrup,, M. Madsen,, and H. C. Wegener. 1999. Glycopeptide resistance in Enterococcus faecium from broilers and pigs following discontinued use of avoparcin. Microb. Drug Resist. 5:5356.
16. Bager, F.,, and R. Helmuth. 2001. Epidemiology of quinolone resistance in Salmonella. Vet. Res. 32:285290.
17. Bannam, T. L.,, and J. I. Rood. 1991. The relationship between the Clostridium perfringens catQ gene product and chloramphenicol acetyltransferases from other bacteria. Antimicrob. Agents Chemother. 35:471476.
18. Barbosa, T. M.,, and S. B. Levy. 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol. 182:34673474.
19. Baucheron, S.,, E. Chaslus-Dancla,, and A. Cloeckaert. 2004. Role of TolC and parC mutation in high-level fluoroquinolone resistance in Salmonella enterica serotype Typhimurium DT204. J. Antimicrob. Chemother. 53:657659.
20. Baucheron, S.,, H. Imberechts,, E. Chaslus-Dancla,, and A. Cloeckaert. 2002. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb. Drug Resist. 8:281289.
21. Beauclerk, A. A.,, and E. Cundliffe. 1987. Sites of action of two ribosomal RNA methylases responsible for resistance to aminoglycosides. J. Mol. Biol. 20:661671.
22. Bennett, P. M., 1995. The spread of drug resistance, p. 317344. In S. Baumberg,, J. P. W. Young,, E. M. H. Wellington,, and J. R. Saunders (ed.), Population Genetics in Bacteria. Cambridge University Press, Cambridge, United Kingdom.
23.Bernard. R., P. Joseph, A. Guiseppi, M. Chippaux, and F. Denizot. 2003. YtsCD and YwoA, two independent systems that confer bacitracin resistance to Bacillus subtilis. FEMS Microbiol. Lett. 228:9397.
24. Blickwede, M.,, and S. Schwarz. 2004. Molecular analysis of florfenicol-resistant Escherichia coli isolates from pigs. J. Antimicrob. Chemother. 53:5864.
25. Bonnet, R. 2004. Growing group of extended-spectrum β-lactamases: the CTX-M enzymes. Antimicrob. Agents Chemother. 48:114.
26. Bosling, J.,, S. M. Poulsen,, B. Vester,, and K. S. Long. 2003. Resistance to the peptidyl transferase inhibitor tiamulin caused by mutation of ribosomal protein l3. Antimicrob. Agents Chemother. 47:28922896.
27. Boyd, D.,, A. Cloeckaert,, E. Chaslus-Dancla,, and M. R. Mulvey. 2002. Characterization of variant Salmonella genomic island 1 multidrug resistance regions from serovars Typhimurium DT104 and Agona. Antimicrob. Agents Chemother. 46:17141722.
28. Boyd, D.,, G. A. Peters,, A. Cloeckaert,, K. Sidi Boumedine,, E. Chaslus-Dancla,, H. Imberechts,, and M. R. Mulvey. 2001. Complete nucleotide sequence of a 43-kilobase genomic island associated with the multidrug resistance region of Salmonella enterica serovar Typhimurium DT104 and its identification in phage type DT120 and serovar Agona. J. Bacteriol. 183:57255732.
29. Bradford, P. 2001. Extended-spectrum β-lactamases in the 21st century: characterization, epidemiology, and detection of this important resistance threat. Clin. Microbiol. Rev. 14:933951.
30. Brenner, D. G.,, and W. V. Shaw. 1985. The use of synthetic oligonucleotides with universal templates for rapid DNA sequencing: results with staphylococcal replicon pC221. EMBO J. 4:561568.
31. Briggs, C. E.,, and P. M. Fratamico. 1999. Molecular characterization of an antibiotic resistance gene cluster of Salmonella typhimurium DT104. Antimicrob. Agents Chemother. 43:846849.
32.. Burrus, V.,, G. Pavlovic,, B. Decaris,, and G. Guedon. 2002. Conjugative transposons: the tip of the iceberg. Mol. Microbiol. 46:601610.
33. Bush, K. 2001. New beta-lactamases in gram-negative bacteria: diversity and impact on the selection of antimicrobial therapy. Clin. Infect. Dis. 32:10851089.
34. Bush, K.,, G. A. Jacoby,, and A. A. Medeiros. 1995. A functional classification scheme for β-lactamases and its correlation with molecular structure. Antimicrob. Agents Chemother. 39: 12111233.
35. Butaye, P.,, L. A. Devriese,, and F. Haesebrouck. 2003. Antimicrobial growth promoters used in animal feed: effects of less known antibiotics on gram-positive bacteria. Clin. Microbiol. Rev. 16:175188.
36. Carattoli, A. 2001. Importance of integrons in the diffusion of resistance. Vet. Res. 32:243259.
37. Casas, C.,, E. C. Anderson,, K. K. Ojo,, I. Keith,, D. Whelan,, D. Rainnie,, and M. C. Roberts. 2005. Characterization of pRAS1-like plasmids from atypical North American psychrophilic Aeromonas salmonicida. FEMS Microbiol. Lett. 242:5963.
38. Chalmers, S.,, R. Sewitz,, K. Lipkow,, and P. Crellin. 2000. Complete nucleotide sequence of Tn10. J. Bacteriol. 182: 29702972.
39. Charpentier, E.,, and P. Courvalin. 1997. Emergence of the trimethoprim resistance gene dfrD in Listeria monocytogenes BM4293. Antimicrob. Agents Chemother. 41:11241136.
40. Charrel, R. N.,, J.-M. Pages,, P. de Micco,, and M. Mallea. 1996. Prevalence of outer membrane porin alteration in β-lactam-antibiotic-resistant Enterobacter aerogenes. Antimicrob. Agents Chemother. 40:28542858.
41. Chaslus-Dancla, E.,, Y. Glupczynski,, G. Gerbaud,, M. Lagorce,, and J. P. Lafont. 1989. Detection of apramycin resistant Enterobacteriaceae in hospital isolates. FEMS Microbiol. Lett. 52:261265.
42. Chaslus-Dancla, E.,, J.-L. Martel,, C. Carlier,, J.-P. Lafont,, and P. Courvalin. 1986. Emergence of aminoglycoside 3-Nacetyltransferase IV in Escherichia coli and Salmonella typhimurium isolated from animals in France. Antimicrob. Agents Chemother. 29:239243.
43. Chaslus-Dancla, E.,, P. Pohl,, M. Meurisse,, M. Marin,, and J. P. Lafont. 1991. High genetic homology between plasmids of human and animal origins conferring resistance to the aminoglycosides gentamicin and apramycin. Antimicrob. Agents Chemother. 35:590593.
44. Chopra, I.,, and M. C. Roberts. 2001. Tetracycline antibiotics: mode of action, applications, molecular biology and epidemiology of bacterial resistance. Microbiol. Mol. Biol. Rev. 65:232260.
45. Clancy, J.,, J. W. Petitpas,, F. Dib-Hajj,, W. Yuan,, M. Cronan,, A. Kamath,, J. Bergeron,, and J. Retsema. 1996. Molecular cloning and functional analysis of a novel macrolide-resistance determinant mefA from Streptococcus pyogenes. Mol. Microbiol. 22:867879.
46. Cloeckaert, A.,, S. Baucheron,, and E. Chaslus-Dancla. 2001. Nonenzymatic chloramphenicol resistance mediated by IncC plasmid R55 is encoded by a floR gene variant. Antimicrob. Agents Chemother. 45:23812382.
47. Cloeckaert, A.,, S. Baucheron,, G. Flaujac,, S. Schwarz,, C. Kehrenberg,, J. L. Martel,, and E. Chaslus-Dancla. 2000. Plasmid-mediated florfenicol resistance by the floR gene in Escherichia coli isolated from cattle. Antimicrob. Agents Chemother. 44:28582860.
48. Cloeckaert, A.,, and E. Chaslus-Dancla. 2001. Mechanism of quinolone resistance in Salmonella. Vet. Res. 32: 291300.
49. Cohen, S. P.,, L. M. McMurry,, and S. B. Levy. 1988. marA locus causes decreased expression of OmpF porin in multipleantibiotic-resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 170:54165422.
50. Connell, S. R.,, D. M. Tracz,, K. H. Nierhaus,, and D. E. Taylor. 2003. Ribosomal protection proteins and their mechanism of tetracycline resistance. Antimicrob. Agents Chemother. 47: 36753681.
51. Cousin, S. L., Jr.,, W. L. Whittington,, and M. C. Roberts. 2003. Acquired macrolide resistance genes in pathogenic Neisseria spp. isolated between 1940 and 1987. Antimicrob. Agents Chemother. 47:38773880.
52. Dale, G. E.,, C. Broger,, A. D’Arcy,, P. G. Hartman,, R. De-Hoogt,, S. Jolidon,, I. Kompis,, A. M. Labhardt,, H. Langen,, H. Locher,, M. G. Page,, D. Stuber,, R. L. Then,, B. Wipf,, and C. Oefner. 1997. A single amino acid substitution in Staphylococcus aureus dihydrofolate reductase determines trimethoprim resistance. J. Mol. Biol. 266:2330.
53. Daly, M. M.,, S. Doktor,, R. Flamm,, and D. Shortridge. 2004. Characterization and prevalence of MefA, MefE, and associated msr(D) gene in Streptococcus pneumoniae clinical isolates. J. Clin. Microbiol. 42:35703574.
54. Davies, J.,, and G. D. Wright. 1997. Bacterial resistance to aminoglycoside antibiotics. Trends Microbiol. 5:375382.
55. De Groot, R.,, M. Sluijter,, A. de Bruyn,, J. Campos,, W. H. F. Goessens,, A. L. Smith,, and P. W. M. Hermans. 1996. Genetic characterization of trimethoprim resistance in Haemophilus influenzae. Antimicrob. Agents Chemother. 40:21312136.
56. DePaola, A.,, and M. C. Roberts. 1995. Class D and E tetracycline resistance determinants in gram-negative catfish pond bacteria. Mol. Cell. Probes 9:311313.
57. Diaz-Torres, M. L.,, R. McNab,, D. A. Spratt,, A. Villedieu,, N. Hunt,, M. Wilson,, and P. Mullany. 2003. Characterization of a novel tetracycline resistance determinate from the oral metagenome. Antimicrob. Agents Chemother. 47:14301432.
58. Doublet, B.,, D. Boyd,, M. R. Mulvey,, and A. Cloeckaert. 2005. The Salmonella genomic island 1 is an integrative mobilizable element. Mol. Microbiol. 55:19111924.
59. Doublet, B.,, P. Butaye,, H. Imberechts,, D. Boyd,, M. R. Mulvey,, E. Chaslus-Dancla,, and A. Cloeckaert. 2004. Salmonella genomic island 1 multidrug resistance gene clusters in Salmonella enterica serovar Agona isolated in Belgium in 1992 to 2002. Antimicrob. Agents Chemother. 48: 25102517.
60. Doublet, B.,, R. Lailler,, D. Meunier,, A. Brisabois,, D. Boyd,, M. R. Mulvey,, E. Chaslus-Dancla,, and A. Cloeckaert. 2003. Variant Salmonella genomic island 1 antibiotic resistance gene cluster in Salmonella enterica serovar Albany. Emerg. Infect. Dis. 9:585591.
61. Doublet, B.,, S. Schwarz,, C. Kehrenberg,, and A. Cloeckaert. 2005. Florfenicol resistance gene floR is part of a novel transposon. Antimicrob. Agents Chemother. 49:21062108.
62. Doublet, B.,, F.-X. Weill,, L. Fabre,, E. Chaslus-Dancla,, and A. Cloeckaert. 2004. Variant Salmonella genomic island 1 antibiotic resistance gene cluster containing a novel 3′-Naminoglycoside acetyltransferase gene cassette, aac(3)-Id, in Salmonella enterica serovar Newport. Antimicrob. Agents Chemother. 48:38063812.
63. Drlica, K.,, and X. L. Zhao. 1997. DNA gyrase, topoisomerase IV, and the 4-quinolones. Microbiol. Rev. 61:377392.
64. Ebner, P.,, K. Garner,, and A. Mathew. 2004. Class 1 integrons in various Salmonella enterica serovars isolated from animals and identification of genomic island SGI1 in Salmonella enterica var. Meleagridis. J. Antimicrob. Chemother. 53:10041009.
65. Edgar, R.,, and E. Bibi. 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179:22742280.
66. Ehlert, K. 1999. Methicillin resistance in Staphylococcus aureus—molecular basis, novel targets and antibiotic therapy. Curr. Pharm. Des. 5: 4555.
67. El Ghachi, M.,, A. Bouhss,, D. Blanot,, and D. J. Mengin-Lecreulx. 2004. The bacA gene of Escherichia coli encodes an undecaprenyl pyrophosphate phosphatase activity. J. Biol. Chem. 279:3010630113.
68. Elwell, L. P.,, and M. E. Fling,. 1989. Resistance to trimethoprim, p. 249290. In L. E. Bryan (ed.), Microbial Resistance to Drugs. Springer-Verlag, Berlin, Germany.
69. Ettayebi, M.,, S. M. Prasad,, and E. A. Morgan. 1985. Chloramphenicol-erythromycin resistance mutations in a 23S rRNA gene of Escherichia coli. J. Bacteriol. 162:551557.
70. Everett, M. J.,, Y. F. Jin,, V. Ricci,, and L. J. V. Piddock. 1996. Contributions of individual mechanisms to fluoroquinolone resistance in 36 Escherichia coli strains isolated from humans and animals. Antimicrob. Agents Chemother. 40:23802386.
71. Everett, M. J.,, and L. J. V. Piddock,. 1998. Mechanisms of resistance to fluoroquinolones, p. 259296. In J. Kuhlmann,, A. Dalhoff,, and H.-J. Zeiler (ed.), Quinolone Antibacterials. Springer-Verlag, Berlin, Germany.
72. Flannagan, S. E.,, L. A. Zitzow,, Y. A. Su,, and D. B. Clewell. Nucleotide sequence of the 18-kb conjugative transposon Tn916 from Enterococcus faecalis. Plasmid 32:350354.
73. Georgeopapadakou, N. H. 1993. Penicillin-binding proteins and bacterial resistance to β-lactams. Antimicrob. Agents Chemother. 37:20452053.
74. Gilmore, K. S.,, M. S. Gilmore,, and D. F. Sahm,. 2002. Methicillin resistance in Staphylococcus aureus, p. 331354. In K. Lewis,, A. A. Salyers,, H. W. Taber,, and R. G. Wax (ed.), Bacterial Resistance to Antimicrobials. Marcel Dekker, Inc., New York, N.Y.
75. Gonzalez-Zorn, B.,, and P. Courvalin. 2003. VanA-mediated high-level glycopeptide resistance in MRSA. Lancet Infect. Dis. 3:6768.
76. Grape, M.,, L. Sundström,, and G. Kronvall. 2003. Sulphonamide resistance gene sul3 found in Escherichia coli isolates from human sources. J. Antimicrob. Chemother. 52:10221024.
77.Reference deleted.
78. Guerra, B.,, E. Junker,, and R. Helmuth. 2004. Incidence of the newly described sulfonamide resistance gene sul3 among German Salmonella enterica strains isolated from livestock and food. Antimicrob. Agents Chemother. 48:27122715.
79. Guerra, B.,, E. Junker,, A. Schroeter,, B. Malorny,, S. Lehmann,, and R. Helmuth. 2003. Phenotypic and genotypic characterization of antimicrobial resistance in German Escherichia coli isolates from cattle, swine and poultry. J. Antimicrob. Chemother. 52:489492.
80. Haanperä, M.,, P. Huovinen,, and J. Jalava. 2005. Detection and quantification of macrolide resistance mutations at positions 2058 and 2059 of the 23S rRNA gene by pyrosequencing. Antimicrob. Agents Chemother. 49:457460.
81. Hackbarth, C. J.,, and H. F. Chambers. 1989. Methicillin-resistant staphylococci: genetics and mechanism of resistance. Antimicrob. Agents Chemother. 33:991994.
82. Hansen, L. H.,, E. Johannesen,, M. Burmølle,, A. H. Sørensen,, and S. J. Sorensen. 2004. Plasmid-encoded multidrug efflux pump conferring resistance to olaquindox in Escherichia coli. Antimicrob. Agents Chemother. 48:33323337.
83. Harrow, S. A.,, B. J. Gilpin,, and J. D. Klena. 2004. Characterization of erythromycin resistance in Campylobacter coli and Campylobacter jejuni isolated from pig offal in New Zealand. J. Appl. Microbiol. 97:141148.
84. Hasman, H.,, and F. M. Aarestrup. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46: 14101416.
85. Hasman, H.,, and F. M. Aarestrup. 2005. Relationship between copper, glycopeptide, and macrolide resistance among Enterococcus faecium strains isolated from pigs in Denmark between 1997 and 2003. Antimicrob. Agents Chemother. 49:454456.
86. Hochhut, B.,, Y. Lotfi,, D. Mazel,, S. M. Faruque,, R. Woodgate,, and M. K. Waldor. 2001. Molecular analysis of antibiotic resistance gene clusters in Vibrio cholerae O139 and O1 SXT constins. Antimicrob. Agents Chemother. 45:29913000.
87. Hooper, D. C. 1999. Mechanisms of fluoroquinolone resistance. Drug Res. Updates 2:3855.
88. Hooper, D. C.,, J. S. Wolfson,, M. A. Bozza,, and E. Y. Ng. 1992. Genetics and regulation of outer protein expression by quinolone resistance loci nfxB, nfxC, and cfxB. Antimicrob. Agents Chemother. 36:11511154.
89. Hopkins, J. M.,, and K. J. Towner. 1990. Enhanced resistance to cefotaxime and imipenem associated with outer membrane protein alterations in Enterobacter aerogenes. J. Antimicrob. Chemother. 25:4955.
90. Horinouchi, S.,, and B. Weisblum. 1982. Nucleotide sequence and functional map of pC194, a plasmid that specifies inducible chloramphenicol resistance. J. Bacteriol. 150:815825.
91. Huovinen, P. 2001. Resistance to trimethoprim-sulfamethoxazole. Clin. Infect. Dis. 32:16081614.
92. Huovinen, P.,, L. Sundström,, G. Swedberg,, and O. Sköld. 1995. Trimethoprim and sulfonamide resistance. Antimicrob. Agents Chemother. 39:279289.
93. Ito, T.,, X. X. Ma,, F. Takaeuchi,, K. Okuma,, H. Yuzawa,, and K. Hiramatsu. 2004. Novel type V staphylococcal cassette chromosome mec driven by a novel cassette chromosome recombinase, ccrC. Antimicrob. Agents Chemother. 48: 26372651.
94. Jensen, L. B.,, N. Fimodt-Moller,, and F. M. Aarestrup. 1999. Presence of erm gene classes in gram-positive bacteria of animal and human origin in Denmark. FEMS Microbiol. Lett. 170:151158.
95. Johnson, A. P.,, L. Burns,, N. Woodford,, E. J. Threlfall,, J. Naidoo,, E. M. Cooke,, and R. C. George. 1994. Gentamicin resistance in clinical isolates of Escherichia coli encoded by genes of veterinary origin. J. Med. Microbiol. 40:221226.
96. Jones, M. E.,, D. F. Sahm,, N. Martin,, S. Scheuring,, P. Heisig,, C. Thornsberry,, K. Köhrer,, and F.-J. Schmitz. 2000. Prevalence of gyrA, gyrB, parC, and parE mutations in clinical isolates of Streptococcus pneumoniae with decreased susceptibilities to different fluoroquinolones and originating from worldwide surveillance studies during the 1997-1998 respiratory season. Antimicrob. Agents Chemother. 44:462466.
97. Karlsson, M.,, C. Fellstrom,, M. U. Heldtander,, K. E. Johansson,, and A. Franklin. 1999. Genetic basis of macrolide and lincosamide resistance in Brachyspira (Serpulina) hyodysenteriae. FEMS Microbiol. Lett. 15:255260.
98. Katayama, Y.,, T. Ito,, and K. Hiramatsu. 2000. A new class of genetic element, Staphylococcus cassette chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44:15491555.
99. Kehrenberg, C.,, and S. Schwarz. 2002. Nucleotide sequence and organisation of plasmid pMVSCS1 from Mannheimia varigena: identification of a multiresistance gene cluster. J. Antimicrob. Chemother. 49:383386.
100. Kehrenberg, C.,, and S. Schwarz. 2001. Occurrence and linkage of genes coding for resistance to sulfonamides, streptomycin and chloramphenicol in bacteria of the genera Pasteurella and Mannheimia. FEMS Microbiol. Lett. 205:283290.
101. Kehrenberg, C.,, and S. Schwarz. 2004. Identification of dfrA20, a novel trimethoprim resistance gene from Pasteurella multocida. Antimicrob. Agents Chemother. 49:414417.
102. Kehrenberg, C.,, and S. Schwarz. 2004. fexA, a novel Staphylococcus lentus gene encoding resistance to florfenicol and chloramphenicol. Antimicrob. Agents Chemother. 48:615618.
103. Kehrenberg, C.,, and S. Schwarz. 2004. The florfenicol/chloramphenicol exporter gene fexA is part of the novel transposon Tn558. Antimicrob. Agents Chemother. 49:813815.
104. Kehrenberg, C.,, and S. Schwarz. 2005. Plasmid-borne florfenicol resistance in Pasteurella multocida. J. Antimicrob. Chemother. 55:773775.
104a.. Kehrenberg, C.,, S. Schwarz,, L. Jacobsen,, L. H. Hansen,, and B. Vester. 2005. A new mechanism for chloramphenicol, florfenicol and clindamycin resistance: methylation of 23S ribosomal RNA at A2503. Mol. Microbiol. 57:10641073.
105. Kehrenberg, C.,, C. Werckenthin,, and S. Schwarz. 1998. Tn5706, a transposon-like element from Pasteurella multocida mediating tetracycline resistance. Antimicrob. Agents Chemother. 42:21162118.
106. Keyes, K.,, C. Hudson,, J. J. Maurer,, S. Thaye,, D. G. White,, and M. D. Lee. 2000. Detection of florfenicol resistance genes in Escherichia coli from sick chickens. Antimicrob. Agents Chemother. 44:421424.
107. Kim, E.,, and T. Aoki. 1996. Sequence analysis of the florfenicol resistance gene encoded in the transferable R plasmid from a fish pathogen Pasteurella piscicida. Microbiol. Immunol. 40:665669.
108. Klare, I.,, H. Heier,, H. Claus,, R. Reissbrodt,, and W. Witte. 1995. vanA-mediated high-level glycopeptide resistance in Enterococcus faecium from animal husbandry. FEMS Microbiol. Lett. 125:165171.
109. Kofoed, C. B.,, and B. Vester. 2002. Interaction of avilamycin with ribosomes and resistance caused by mutations in 23S rRNA. Antimicrob. Agents Chemother. 46:33393342.
110. Köhler, T.,, M. Kok,, M. Michea-Hamzehpour,, P. Plesiat,, N. Gotoh,, T. Nishino,, L. K. Curty,, and J.-C. Pechere. 1996. Multidrug efflux in intrinsic resistance to trimethoprim and sulfamethoxazole in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40:22882290.
111. Kokjohn, T. A., 1989. Transduction: mechanism and potential for gene transfer in the environment, p. 7397. In S. B. Levy, and R. V. Miller (ed.), Gene Transfer in the Environment. McGraw-Hill Book Co., New York, N.Y.
112. Lange, C. C.,, C. Werckenthin,, and S. Schwarz. 2003. Molecular analysis of the plasmid-borne aacA/aphD resistance gene region of coagulase-negative staphylococci from chickens. J. Antimicrob. Chemother. 51:13971401.
113. Lawley, T. D.,, V. D. Burland,, and D. E. Taylor. 2000. Analysis of the complete nucleotide sequence of the tetracycline resistance transposon Tn10. Plasmid 43:235239.
114. Leclercq, R.,, and P. Courvalin. 1991. Bacterial resistance to macrolide, lincosamide, and streptogramin antibiotics by target modification. Antimicrob. Agents Chemother. 35:12671272.
115. Leclercq, R.,, and P. Courvalin. 1991. Intrinsic and unusual resistance to macrolide, lincosamide, and streptogramin antibiotics in bacteria. Antimicrob. Agents Chemother. 35: 12731276.
116. Lee, A.,, W. Mao,, M. S. Warren,, A. Mistry,, K. Hoshino,, R. Okumura,, H. Ishida,, and O. Lomovskaya. 2000. Interplay between efflux pumps may provide either additive or multiplicative effects on drug resistance. J. Bacteriol. 182: 31423150.
117. Levy, S. B.,, L. M. McMurry,, T. M. Barbosa,, V. Burdett,, P. Courvalin,, W. Hillen,, M. C. Roberts,, J. I. Rood,, and D. E. Taylor. 1999. Nomenclature for new tetracycline resistance determinants. Antimicrob. Agents Chemother. 43:15231524.
118. Ling, B.,, and B. Berger-Bächi. 1998. Increased overall antibiotic susceptibility in Staphylococcus aureus femAB null mutants. Antimicrob. Agents Chemother. 42:936938.
119. Livermore, D. M. 1995. β-Lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8:557584.
120. Lomovskaya, O.,, A. Lee,, K. Hoshino,, H. Ishida,, A. Mistry,, M. S. Warren,, E. Boyer,, S. Chamberland,, and V. J. Lee. 1999. Use of a genetic approach to evaluate the consequences of inhibition of efflux pumps in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43:13401346.
121. Lovett, P. S. 1990. Translational attenuation as the regulator of inducible cat genes. J. Bacteriol. 172:16.
122. Lyon, B. R.,, and R. Skurray. 1987. Antimicrobial resistance in Staphylococcus aureus: genetic basis. Microbiol. Rev. 51: 88134.
123. Ma, X. X.,, T. Ito,, C. Tiensasitorn,, M. Jamklang,, P. Chongtrakool,, S. Boyle-Vavra,, R. S. Daum,, and K. Hiramatsu. 2002. Novel type of staphylococcal cassette chromosome mec identified in community-acquired methicillin-resistant Staphylococcus aureus strains. Antimicrob. Agents Chemother. 46:11471152.
124. Madsen, L.,, F. M. Aarestrup,, and J. E. Olsen. 2000. Characterisation of streptomcin resistance determinants in Danish isolates of Salmonella Typhimurium. Vet. Microbiol. 75:7382.
125. Mann, P. A.,, L. Xiong,, A. S. Mankin,, A. S. Chau,, C. A. Mendrick,, D. J. Najarian,, C. A. Cramer,, D. Loebenberg,, E. Coates,, N. J. Murgolo,, F. M. Aarestrup,, R. V. Goering,, T. A. Black,, R. S. Hare,, and P. M. McNicholas. 2001. EmtA, a rRNA methyltransferase conferring high-level evernimicin resistance. Mol. Microbiol. 41:13491356.
126. Manson, J. M.,, S. Keis,, J. M. Smith,, and G. M. Cook. 2004. Acquired bacitracin resistance in Enterococcus faecalis is mediated by an ABC transporter and a novel regulatory protein, BcrR. Antimicrob. Agents Chemother. 48: 37433748.
127. Martinez-Marzinez, L.,, S. Hernandez-Alles,, S. Alberti,, J. M. Tomas,, V. J. Benedi,, and G. A. Jacoby. 1996. In vivo selection of porin-deficient mutants of Klebsiella pneumoniae with increased resistance to cefoxitin and expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 40:342348.
128. McMurray, L. M.,, A. M. George,, and S. B. Levy. 1994. Active efflux of chloramphenicol in susceptible Escherichia coli strains and in multiple-antibiotic-resistant (Mar) mutants. Antimicrob. Agents Chemother. 38:542546.
129. Meier, A.,, P. Kirschner,, S. Burkhardt,, V. A. Steingrube,, B. A. Brown,, R. J. Wallace, Jr., and E. C. Böttger. 1994. Identification of mutations in 23S rRNA gene of clarithromycinresistant Mycobacterium intracellulare. Antimicrob. Agents Chemother. 38:381384.
130. Meier, A.,, P. Sander,, K. J. Schaper,, M. Scholz,, and E. C. Böttger. 1996. Correlation of molecular resistance mechanisms and phenotypic resistance levels in streptomycinresistant Mycobacterium tuberculosis. Antimicrob. Agents Chemother. 40:24522454.
131. Meunier, D.,, D. Boyd,, M. R. Mulvey,, S. Baucheron,, C. Mammina,, A. Nastasi,, E. Chaslus-Dancla,, and A. Cloeckaert. 2002. Salmonella enterica serotype Typhimurium DT 104 antibiotic resistance genomic island I in serotype Paratyphi B. Emerg. Infect. Dis. 8:430433.
132. Mingeot-Leclercq, M.-P.,, Y. Glupczynski,, and P. M. Tulkens. 1999. Aminoglycosides: activity and resistance. Antimicrob. Agents Chemother. 43:727737.
133. Miranda, C. D.,, C. Kehrenberg,, C. Ulep,, S. Schwarz,, and M. C. Roberts. 2003. Diversity of tetracycline resistance genes in bacteria from Chilean salmon farms. Antimicrob. Agents Chemother. 47:883888.
134. Mitsuyama, J. R.,, R. Hiruma,, A. Yamaguchi,, and T. Sawai. 1987. Identification of porins in outer membrane of Proteus, Morganella, and Providencia spp. and their role in outer membrane permeation of β-lactams. Antimicrob. Agents Chemother. 31:379384.
135. Murray, I. A.,, J. Hawkins,, J. W. Keyte,, and W. V. Shaw. 1988. Nucleotide sequence analysis and overexpression of the gene encoding a type III chloramphenicol acetyltransferase. Biochem. J. 252:173179.
136. Murray, I. A.,, J. V. Martinez-Suarez,, T. J. Close,, and W. V. Shaw. 1990. Nucleotide sequences of genes encoding the type II chloramphenicol acetyltransferases of Escherichia coli and Haemophilus influenzae, which are sensitive to inhibition by thiol-reactive reagents. Biochem. J. 272:505510.
137. Murray, I. A.,, and W. V. Shaw. 1997. O-acetyltransferases for chloramphenicol and other natural products. Antimicrob. Agents Chemother. 41:16.
138. Nandi, S.,, J. J. Maurer,, C. Hofacre,, and A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA. 101:71187122.
139. Noble, W. C.,, Z. Virani,, and R. G. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 72:195198.
140. Nonaka, L.,, and S. Suzuki. 2002. New Mg2+-dependent oxytetracycline resistance determinant Tet34 in Vibrio isolates from marine fish intestinal contents. Antimicrob. Agents Chemother. 46:15501552.
141. Oethinger, M.,, W. V. Kern,, A. S. Jellen-Ritter,, L. M. McMurry,, and S. B. Levy. 2000. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 44:1013.
142. Oethinger, M.,, I. Podglajen,, W. V. Kern,, and S. B. Levy. 1998. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents Chemother. 42:20892094.
143. Ohmae, K.,, S. Yonezawa,, and N. Terakado. 1981. R plasmid with carbadox resistance from Escherichia coli of porcine origin. Antimicrob. Agents Chemother. 19:8690.
144. Ojo, K. K.,, C. Ulep,, N. Van Kirk,, H. Luis,, M. Bernardo,, J. Leitao,, and M. C. Roberts. 2004. The mef(A) gene predominates among seven macrolide resistant genes identified in 13 gram-negative genera from healthy Portuguese children. Antimicrob. Agents Chemother. 48:34513456.
145. Okusu, H.,, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178:306308.
146. Olliver, A.,, M. Vallé,, E. Chaslus-Dancla,, and A. Cloeckaert. 2004. Role of an acrR mutation in multidrug resistance of in vitro-selected fluoroquinolone-resistant mutants of Salmonella enterica serovar Typhimurium. FEMS Microbiol. Lett. 238:267272.
147. Padayachee, T.,, and K. P. Klugman. 1999. Novel expansions of the gene encoding dihydropteroate synthase in trimethoprim-sulfamethoxazole-resistant Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43:22252230.
148. Pattishall, K. H.,, J. Acar,, J. J. Burchall,, F. W. Goldstein,, and R. J. Harvey. 1977. Two distinct types of trimethoprimresistant dihydrofolate reductase specified by R-plasmids of different incompatibility groups. J. Biol. Chem. 252: 23192323.
149. Paulsen, I. T.,, M. H. Brown,, and R. A. Skurray. 1996. Proton-dependent multidrug efflux systems. Microbiol. Rev. 60:575608.
150. Payot, S.,, L. Avrain,, C. Magras,, K. Praud,, A. Cloeckaert,, and E. Chaslus-Dancla. 2004. Relative contribution of target gene mutation and efflux to fluoroquinolone and erythromycin resistance in French poultry and pig isolates of Campylobacter coli. Int. J. Antimicrob. Agents 23:468472.
151. Perreten, V.,, and P. Boerlin. 2003. A new sulfonamide resistance gene (sul3) in Escherichia coli is widespread in the pig population in Switzerland. Antimicrob. Agents Chemother. 47:11691172.
152. Petrosino, J.,, C. Cantu III,, and T. Palzkill. 1998. β- Lactamases: protein evolution in real time. Trends Microbiol. 6:323327.
153. Pikis, A.,, J. A. Donkersloot,, W. J. Rodriquez,, and J. M. Keith. 1998. A conservative amino acid mutation in the chromosome-encoded dihydrofolate reductase confers trimethoprim resistance in Streptococcus pneumoniae. J. Infect. Dis. 178:700706.
154. Plante, I.,, D. Centron,, and P. H. Roy. 2003. An integron cassette encoding erythromycin esterase, ere(A), from Providencia stuartii. Antimicrob. Agents Chemother. 51:787790.
155. Podlesek, Z.,, A. Comino,, B. Herzog-Velikonja,, D. Zgur-Bertok,, R. Komel,, and M. Grabnar. 1995. Bacillus licheniformis bacitracin-resistance ABC transporter: relationship to mammalian multidrug resistance. Mol. Microbiol. 16: 969976.
156. Poehlsgaard, J.,, and S. Douthwaite. 2003. Macrolide antibiotic interaction and resistance on the bacterial ribosome. Curr. Opin. Invest. Drugs 4:140148.
157. Poole, K. 2000. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother. 44:22332241.
158. Poole, K. 2000. Efflux-mediated resistance to fluoroquinolones in gram-positive bacteria and the mycobacteria. Antimicrob. Agents Chemother. 44:25952599.
159. Poole, K., 2002. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms, p. 273298. In I. T. Paulsen, and K. Lewis (ed.), Microbial Multidrug Efflux. Horizon Scientific Press, Wymondham, United Kingdom.
160. Prammanaman, T.,, P. Sander,, B. A. Brown,, K. Frischkorn,, G. O. Onyi,, Y. Zhang,, E. C. Böttger,, and R. J. Wallace, Jr. 1998. A single 16S ribosomal RNA substitution is responsible for resistance to amikacin and other 2-deoxystreptamine aminoglycosides in Mycobacterium abscessus and Mycobacterium chelonae. J. Infect. Dis. 177:15731581.
161. Pringle, M.,, J. Poehlsgaard,, B. Vester,, and K. S. Long. 2004. Mutations in ribosomal protein L3 and 23S ribosomal RNA at the peptidyl transferase centre are associated with reduced susceptibility to tiamulin in Brachyspira spp. isolates. Mol. Microbiol. 54:12951306.
162. Projan, S. J.,, J. Kornblum,, S. L. Moghazeh,, I. Edelman,, M. L. Gennaro,, and R. P. Novick. 1985. Comparative sequence and functional analysis of pT181 and pC221, cognate plasmid replicons from Staphylococcus aureus. Mol. Gen. Genet. 199:452464.
163. Putman, M.,, H. W. van Veen,, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64:672693.
164. Quintiliani, R.,, Jr., D. F. Sahm, and P. Courvalin. 1999. Mechanisms of resistance to antimicrobial agents, p. 15051525. In P. R. Murray,, E. J. Baron,, M. A. Pfaller,, F. C. Tenover,, and R. H. Yolken (ed.), Manual of Clinical Microbiology, 7th ed. ASM Press, Washington, D.C.
165. Radström, P.,, and G. Swedberg. 1988. RSF1010 and a conjugative plasmid contain sulII, one of two known genes for plasmid-borne sulfonamide resistance dihydropteroate synthase. Antimicrob. Agents Chemother. 32:16841692.
166. Recchia, G. D.,, and R. M. Hall. 1995. Gene cassettes: a new class of mobile element. Microbiology 141:30153027.
167. Reynolds, E.,, J. I. Ross,, and J. H. Cove. 2003. msr(A) and related macrolide/streptogramin resistance determinants: incomplete transporters? Int. J. Antimicrob. Agents 22: 228236.
168. Roberts, M. C. 1996. Tetracycline resistance determinants: mechanisms of action, regulation of expression, genetic mobility, and distribution. FEMS Microbiol. Rev. 19:124.
169. Roberts, M. C.,, J. Sutcliffe,, P. Courvalin,, L. B. Jensen,, J. I. Rood,, and H. Seppala. 1999. Nomenclature for macrolide and macrolide-lincosamide streptogramin B antibiotic resistance determinants. Antimicrob. Agents Chemother. 43:28232830.
170. Rosenberg, E.,, D. Ma,, and H. Nikaido. 2000. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 182:17541756.
171. Ross, J. I.,, E. A. Eady,, J. H. Cove,, and W. J. Cunliffe. 1998. 16S rRNA mutation associated with tetracycline resistance in a gram-positive bacterium. Antimicrob. Agents Chemother. 42:17021705.
172. Ross, J. I.,, E. A. Eady,, J. H. Cove,, W. J. Cunliffe,, S. Baumberg,, and J. C. Wootton. 1990. Inducible erythromycin resistance in staphylococci is encoded by a member of the ATP-binding transport super gene family. Mol. Microbiol. 4:12071214.
173. Rouch, D. A.,, M. E. Byrne,, Y. C. Kong,, and R. A. Skurray. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133:30393052.
174. Rouch, D. A.,, L. J. Masserotti,, L. S. L. Loo,, C. A. Jackson,, and R. A. Skurray. 1989. Trimethoprim resistance transposon Tn4003 from Staphylococcus aureus encodes genes for a dihydrofolate reductase and thymidylate synthetase flanked by three copies of IS257. Mol. Microbiol. 3:161175.
175. Ruiz, J. 2003. Mechanisms of resistance to quinolones: target alterations, decreased accumulation and DNA gyrase protection. J. Antimicrob. Chemother. 51:11091117.
176. Salyers, A. A.,, N. B. Shoemaker,, A. M. Stevens,, and L.-Y. Li. 1995. Conjugative transposons: an unusual and diverse set of integrated gene transfer elements. Microbiol. Rev. 59: 579590.
177. Salyers, A. A.,, and D. D. Whitt. 1994. Bacterial Pathogenesis: a Molecular Approach. ASM Press, Washington, D.C.
178. Sandvang, D. 2001. Aminoglycoside resistance genes and their mobility in gram-negative bacteria from production animals. Ph.D. thesis. The Royal Veterinary and Agricultural University, Copenhagen, Denmark.
179. Sandvang, D.,, and F. M. Aarestrup. 2000. Characterization of aminoglycoside resistance genes and class 1 integrons in porcine and bovine gentamicin-resistant Escherichia coli. Microb. Drug Resist. 6:1927.
180. Schmitz, F.-J.,, J. Petridou,, H. Jagusch,, N. Astfalk,, S. Scheuring,, and S. Schwarz. 2002. Molecular characterization of ketolide-resistant erm(A)-carrying Staphylococcus aureus isolates selected in vitro by telithromycin, ABT-773, quinupristin and clindamycin. J. Antimicrob. Chemother. 49:611617.
181. Schmitz, F.-J.,, J. Petridou,, N. Astfalk,, S. Scheuring,, K. Köhrer,, and S. Schwarz. 2002. Molecular analysis of constitutively expressed erm(C) genes selected in-vitro by incubation in the presence of the non-inducers quinupristin, telithromycin or ABT-773. Microb. Drug Resist. 8:171177.
182. Schwarz, S.,, and M. Cardoso. 1991. Nucleotide sequence and phylogeny of a chloramphenicol acetyltransferase encoded by the plasmid pSCS7 from Staphylococcus aureus. Antimicrob. Agents Chemother. 35:15511556.
183.. Schwarz, S.,, and E. Chaslus-Dancla. 2001. Use of antimicrobials in veterinary medicine and mechanisms of resistance. Vet. Res. 32:201225.
184. Schwarz, S.,, C. Kehrenberg,, B. Doublet,, and A. Cloeckaert. 2004. Molecular basis of bacterial resistance to chloramphenicol and florfenicol. FEMS Microbiol. Rev. 28:519542.
185. Schwarz, S.,, C. Kehrenberg,, and K. K. Ojo. 2002. Staphylococcus sciuri gene erm(33), encoding inducible resistance to macrolides, lincosamides, and streptogramin B antibiotics, is a product of recombination between erm(C) and erm(A). Antimicrob. Agents Chemother. 46:36213623.
186. Schwarz, S.,, C. Kehrenberg,, and T. R. Walsh. 2001. Use of antimicrobial agents in veterinary medicine and food animal production. Int. J. Antimicrob. Agents 17:431437.
187.. Schwarz, S.,, and W. C. Noble. 1994. Tetracycline resistance genes in staphylococci from the skin of pigs. J. Appl. Bacteriol. 76:320326.
188. Schwarz, S.,, and W. C. Noble. 1999. Aspects of bacterial resistance to antimicrobial agents used in veterinary dermatological practice. Vet. Dermatol. 10:163176.
189. Schwarz, S.,, C. Werckenthin,, and C. Kehrenberg. 2000. Identification of a plasmid-borne chloramphenicol/florfenicol resistance gene in Staphylococcus sciuri. Antimicrob. Agents Chemother. 44:25302533.
190. Shaw, K. J.,, P. N. Rather,, S. R. Hare,, and G. H. Miller. 1993. Molecular genetics of aminoglycoside resistance genes and familial relationships of the aminoglycoside-modifying enzymes. Microbol. Rev. 57:138163.
191. Shaw, W. V. 1983. Chloramphenicol acetyltransferase: enzymology and molecular biology. Crit. Rev. Biochem. 14:146.
192. Simjee, S.,, S. M. Donabedian,, and M. J. Zervos. 2004. Linkage of the streptogramin resistance gene, vatE, to the copper resistance gene, tcrB, on a 10kb plasmid recovered from Enterococcus faecium isolated from poultry farms in the USA, abstr. C2-649, p. 91. Abstracts of the 44th Interscience Conference on Antimicrobial Agents and Chemotherapy, ASM Press, Washington, D.C.
193. Simonet, V.,, M. Mallea,, and J.-M. Pages. 2000. Substitutions in the eyelet region disrupt cefepime diffusion through the Escherichia coli OmpF channel. Antimicrob. Agents Chemother. 44:311315.
194. Sköld, O. 2000. Sulfonamide resistance: mechanisms and trends. Drug Resist. Updates. 3:155160.
195. Sköld, O. 2001. Resistance to trimethoprim and sulfonamides. Vet. Res. 32:261273.
196. Sorum, H.,, and M. Sunde. 2001. Resistance to antibiotics in the normal flora of animals. Vet. Res. 32:227241.
197. Speer, B. S.,, L. Bedzyk,, and A. A. Salyers. 1991. Evidence that a novel tetracycline resistance gene found on two Bacteroides transposons encodes an NADP-requiring oxidoreductase. J. Bacteriol. 173:176183.
198. Speer, B. S.,, N. B. Shoemaker,, and A. A. Salyers. 1992. Bacterial resistance to tetracyclines: mechanisms, transfer, and clinical significance. Clin. Microbiol. Rev. 5:387399.
199. Stanisich, V. A., 1988. Identification and analysis of plasmids at the genetic level, p. 1148. In J. Grinsted, and P. M. Bennett (ed.), Plasmid Technology. Academic Press, London, United Kingdom.
200. Stokes, H. W.,, and R. M. Hall. 1991. Sequence analysis of the inducible chloramphenicol resistance determinant in the Tn1696 integron suggests regulation by translational attenuation. Plasmid 26:1019.
201. Sundström, L.,, P. Radström,, G. Swedberg,, and O. Sköld. 1988. Site-specific recombination promotes linkage between trimethoprim- and sulfonamide resistance genes. Sequence characterization of dhfrV and sulI and a recombination active locus of Tn21. Mol. Gen. Genet. 213:191201.
202. Sutcliffe, J. A.,, and R. Leclercq,. 2003. Mechanisms of resistance to macrolides, lincosamides and ketolides, p. 281317. In W. Schonfeld, and H. A. Kirst (ed.), Macrolide Antibiotics. Birkhauser Verlag, Basel, Switzerland.
203. Swedberg, G.,, and O. Sköld. 1980. Characterization of different plasmid-borne dihydropteroate synthases mediating bacterial resistance to sulfonamides. J. Bacteriol. 142:17.
204. Taylor, D. E.,, and A. Chau. 1996. Tetracycline resistance mediated by ribosomal protection. Antimicrob. Agents Chemother. 40:15.
205. Tran, J. H.,, and G. A. Jacoby. 2002. Mechanism of plasmidmediated quinolone resistance. Proc. Natl. Acad. Sci. USA 99:56385642.
206. Treede, I.,, L. Jakobsen,, F. Kirpekar,, B. Vester,, G. Weitnauer,, A. Bechthold,, and S. Douthwaite. 2003. The avilamycin resistance determinants AviRa and AviRb methylate 23S rRNA at the guanosine 2535 base and the uridine 2479 ribose. Mol. Microbiol. 49:309318.
207. van den Bogaard, A. E.,, M. Hazen,, M. Hoyer,, P. Oostenbach,, and E. E. Stobberingh. 2002. Effects of flavophospholipol on resistance in fecal Escherichia coli and enterococci of fattening pigs. Antimicrob. Agents Chemother. 46:110118.
208. Vester, B.,, and S. Douthwaite. 2001. Macrolide resistance conferred by base substitutions in 23S rRNA. Antimicrob. Agents Chemother. 45:112.
209. Walsh, C. 2003. Antibiotics: Actions, Origins, Resistance. ASM Press, Washington, D.C.
210. Wang, M.,, D. F. Sahm,, G. A. Jacoby,, and D. C. Hooper. 2004. Emerging plasmid-mediated quinolone resistance associated with the qnr gene in Klebsiella pneumoniae clinical isolates in the United States. Antimicrob. Agents Chemother. 48:12951299.
211. Wang, M.,, J. H. Tran,, G. A. Jacoby,, Y. Zhang,, F. Wang,, and D. C. Hooper. 2003. Plasmid-mediated quinolone resistance in clinical isolates of Escherichia coli from Shanghai, China. Antimicrob. Agents Chemother. 47:22422248.
212. Webber, M.,, and L. J. V. Piddock. 2001. Quinolone resistance in Escherichia coli. Vet. Res. 32:275284.
213. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Kilgore,, and F. C. Tenover. 2003. Genetic analysis of a highlevel vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
214. Weisblum, B. 1995. Erythromycin resistance by ribosome modification. Antimicrob. Agents Chemother. 39: 577585.
215. Weisblum, B. 1995. Insights into erythromycin action from studies of its activity as inducer of resistance. Antimicrob. Agents Chemother. 39:797805.
216. Weitnauer, G.,, S. Gaisser,, A. Trefzer,, S. Stockert,, L. Westrich,, L. M. Quiros,, C. Mendez,, J. A. Salas,, and A. Bechthold. 2001. An ATP-binding cassette transporter and two rRNA methyltransferases are involved in resistance to avilamycin in the producer organism Streptomyces viridochromogenes Tu57. Antimicrob. Agents Chemother. 45:690695.
217. Weldenhagen, G. F. 2004. Integrons and β-lactamases—a novel perspective on resistance. Int. J. Antimicrob. Chemother. 23:556562.
218. Werckenthin, C.,, S. Schwarz,, and M. C. Roberts. 1996. Integration of pT181-like tetracycline resistance plasmids into large staphylococcal plasmids involves IS257. Antimicrob. Agents Chemother. 40:25422544.
219. Werckenthin, C.,, S. Schwarz,, and H. Westh. 1999. Structural alterations in the translational attenuators of constitutively expressed erm(C) genes. Antimicrob. Agents Chemother. 43:16811685.
220. Werner, G.,, I. Klare,, and W. Witte. 1999. Large conjugative plasmids in vancomycin-resistant Enterococcus faecium. J. Clin. Microbiol. 37:23832384.
221. White, D. G.,, C. Hudson,, J. J. Maurer,, S. Ayers,, S. Zhao,, M. D. Lee,, L. Bolton,, T. Foley,, and J. Sherwood. 2000. Characterization of chloramphenicol and florfenicol resistance in Escherichia coli associated with bovine diarrhea. J. Clin. Microbiol. 38:45934598.
222. Wiedemann, B.,, D. Pfeifle,, I. Wiegand,, and E. Janas. 1998. β-Lactamase induction and cell wall recycling in gramnegative bacteria. Drug Resist. Updates 1:223226.
223. Wiegand, I. 2003. Molecular and biochemical elements of β-lactam resistance by β-lactamases. Chemother. J. 12: 151167.
224. Wolter, D. J.,, N. D. Hanson,, and P. D. Lister. 2004. Insertional inactivation of oprD in clinical isolates of Pseudomonas aeruginosa leading to carbapenem resistance. FEMS Microbiol. Lett. 236:137143.
225. Wright, G. D. 1999. Aminoglycoside-modifying enzymes. Curr. Opin. Microbiol. 2:499503.
226. Yoshida, H.,, M. Bogaki,, M. Nakamura,, and S. Nakamura. 1990. Quinolone resistance determining region in the DNA gyrase gyrA gene of Escherichia coli. Antimicrobial Agents Chemother. 34:12711272.


Generic image for table
Table 1.

Origins of antimicrobial agents

Citation: Schwarz S, Cloeckaert A, Roberts M. 2006. Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, p 73-98. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch6
Generic image for table
Table 2.

Examples of resistance to antimicrobials by decreased intracellular drug accumulation

Citation: Schwarz S, Cloeckaert A, Roberts M. 2006. Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, p 73-98. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch6
Generic image for table
Table 3.

Examples of resistance to antimicrobials by enzymatic inactivation

Citation: Schwarz S, Cloeckaert A, Roberts M. 2006. Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, p 73-98. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch6
Generic image for table
Table 4.

Examples of resistance to antimicrobials by target modification

Citation: Schwarz S, Cloeckaert A, Roberts M. 2006. Mechanisms and Spread of Bacterial Resistance to Antimicrobial Agents, p 73-98. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch6

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error