1887

Chapter 7 : Resistance to Metals Used in Agricultural Production

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Resistance to Metals Used in Agricultural Production, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap07-2.gif

Abstract:

Metal resistance measurements of bacteria in the laboratory are calculated either in milligrams of metal per liter of medium or in millimolar units (millimoles per liter). Little has been done to determine MIC distributions of metals for bacterial populations under standardized conditions. One study tested populations of , , , , , and isolated from Danish food animals for their tolerance to copper sulfate and zinc chloride in Mueller-Hinton media at either pH 7 (copper sulfate) or pH 5.5 (zinc chloride). Heavy metal homeostasis versus resistance is a complicated balancing act between maintaining a full supply of cells with essential trace elements on one hand and protection against accumulation of toxic metal concentrations on the other. The use of copper as a feed supplement to poultry and pigs could therefore shift the bacterial populations toward increased levels of these potential pathogens in the guts of the animals. A more critical issue is the maintenance of antibiotic resistance genes by increasing the selective pressure of the bacterial populations through coselection by metals. Some studies do establish a direct link between copper, zinc, and arsenic resistance and resistance to antibiotics. In these cases, the metal resistance mechanism has the potential to select for resistance to antibiotics through coselection, when the bacterial host is exposed to selective concentrations of the metal, for instance, copper and streptomycin resistance transferred together in a conjugation study on .

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Zn(II) transport systems in . This model shows the known Zn transport systems of . Under conditions of zinc deficiency Zn is taken up by ZupT and ZnuABC ( ). ZupT belongs to the ZIP family of metal transporters ( ), and ZnuABC is an ABC transport system. Zn?can also be taken up as inorganic Zn-PO complex via PitA ( ). Zinc-translocating efflux pumps are the P-type ATPase ZntA and the CDF protein ZitB ( ). ZnuABC and ZntA (both ATP dependent) are probably more powerful transporters than ZitB or ZupT, which might be responsible for zinc homeostasis under physiological conditions. CP, cytoplasm; CPM, cytoplasmic membrane; PP, periplasm; OM, outer membrane.

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Proposed mechanism of Pco-mediated copper detoxification. The function of the outer membrane protein PcoB has not been elucidated, but it could transport Cu(II) from the periplasm across the outer membrane or transport Cu(I) from the outside to PcoA. Cu(I) could be oxidized to the less toxic Cu(II) by the multicopper oxidase PcoA. In order to load copper into catalytic sites within PcoA, PcoC and PcoD might transport it across the cytoplasmic membrane, with PcoC delivering copper to PcoD. PcoE binds copper in the periplasm and possibly shuttles it to PcoA.

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817534.chap7
1. Aarestrup, F. M.,, and H. Hasman. 2004. Susceptibility of different bacterial species isolated from food animals to copper sulphate, zinc chloride and antimicrobial substances used for disinfection. Vet. Microbiol. 100: 83 89.
2. Acar, J. F.,, and F. W. Goldstein,. 2004. Disc susceptibility test, p. 1 51. In V. Lorian (ed.), Antibiotics in Laboratory Medicine. Williams & Wilkins, New York, N.Y.
3. Aguiar, J. M.,, E. Guzman,, and J. L. Martinez. 1990. Heavy metals, chlorine and antibiotic resistance in Escherichia coli isolates from ambulatory patients. J. Chemother. 2: 238 240.
4. Alonso, G.,, G. Vilchez,, I. Bruzual,, and V. Rodriguez-Lemoine. 2002. Characterization of plasmid MIP233 (IncHI3) of the H complex. Res. Microbiol. 153: 149 153.
5. Anton, A.,, C. Grosse,, J. Reissmann,, T. Pribyl,, and D. H. Nies. 1999. CzcD is a heavy metal ion transporter involved in regulation of heavy metal resistance in Ralstonia sp. strain CH34. J. Bacteriol. 181: 6876 6881.
6. Axelsen, K. B.,, and M. G. Palmgren. 1998. Evolution of substrate specificities in the P-type ATPase superfamily. J. Mol. Evol. 46: 84 101.
7. Banci, L.,, I. Bertini,, S. Ciofi-Baffoni,, L. Gonnelli,, and X. C. Su. 2003. Structural basis for the function of the N-terminal domain of the ATPase CopA from Bacillus subtilis. J. Biol. Chem. 278: 50506 50513.
8. Bayle, D.,, S. Wangler,, T. Weitzenegger,, W. Steinhilber,, J. Volz,, M. Przybylski,, K. P. Schafer,, G. Sachs,, and K. Melchers. 1998. Properties of the P-type ATPases encoded by the copAP operons of Helicobacter pylori and Helicobacter felis. J. Bacteriol. 180: 317 329.
9. Beard, S. J.,, R. Hashim,, G. Wu,, M. R. Binet,, M. N. Hughes,, and R. K. Poole. 2000. Evidence for the transport of zinc(II) ions via the pit inorganic phosphate transport system in Escherichia coli. FEMS Microbiol. Lett. 184: 231 235.
10. Bender, C. L.,, and D. A. Cooksey. 1986. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J. Bacteriol. 165: 534 541.
11. Blencowe, K. R.,, and A. P. Morby. 2003. Zn(II) metabolism in procaryotes. FEMS Microbiol. Rev. 27: 291 311.
12. Brocklehurst, K. R.,, J. L. Hobman,, B. Lawley,, L. Blank,, S. J. Marshall,, N. L. Brown,, and A. P. Morby. 1999. ZntR is a Zn(II)-responsive MerR-like transcriptional regulator of zntA in Escherichia coli. Mol. Microbiol. 31: 893 902.
13. Broer, S.,, G. Ji,, A. Broer,, and S. Silver. 1993. Arsenic efflux governed by the arsenic resistance determinant of Staphylococcus aureus plasmid pI258. J. Bacteriol. 175: 3480 3485.
14. Brown, N. L.,, S. R. Barrett,, J. Camakaris,, B. T. Lee,, and D. A. Rouch. 1995. Molecular genetics and transport analysis of the copper-resistance determinant ( pco) from Escherichia coli plasmid pRJ1004. Mol. Microbiol. 17: 1153 1166.
15. Busenlehner, L. S.,, M. A. Pennella,, and D. P. Giedroc. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27: 131 143.
16. Calomiris, J. J.,, J. L. Armstrong,, and R. J. Seidler. 1984. Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl. Environ. Microbiol. 47: 1238 1242.
17. Campoy, S.,, M. Jara,, N. Busquets,, A. M. PerezDeRozas,, I. Badiola,, and J. Barbe. 2002. Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar Typhimurium virulence. Infect. Immun. 70: 4721 4725.
18. Carlson, M. S.,, G. M. Hill,, and J. E. Link. 1999. Early- and traditionally weaned nursery pigs benefit from phase-feeding pharmacological concentrations of zinc oxide: effect on metallothionein and mineral concentrations. J. Anim. Sci. 77: 1199 1207.
19. Cervantes, C.,, and J. Chavez. 1992. Plasmid-determined resistance to arsenic and antimony in Pseudomonas aeruginosa. Antonie Leeuwenhoek 61: 333 337.
20. Cha, J.-S.,, and D. A. Cooksey. 1993. Copper hypersensitivity and uptake in Pseudomonas syringae containing cloned components of the copper resistance operon. Appl. Environ. Microbiol. 59: 1671 1674.
21. Changela, A.,, K. Chen,, Y. Xue,, J. Holschen,, C. E. Outten,, T. V. O’Halloran,, and A. Mondragon. 2003. Molecular basis of metal-ion selectivity and zeptomolar sensitivity by CueR. Science 301: 1383 1387.
22. Chao, Y.,, and D. Fu. 2004. Kinetic study of the antiport mechanism of an Escherichia coli zinc transporter, ZitB. J. Biol. Chem. 279: 12043 12050.
23. Chao, Y.,, and D. Fu. 2004. Thermodynamic studies of the mechanism of metal binding to the Escherichia coli zinc transporter YiiP. J. Biol. Chem. 279: 17173 17180.
24. Chen, C. Y.,, and S. A. Morse. 2001. Identification and characterization of a high-affinity zinc uptake system in Neisseria gonorrhoeae. FEMS Microbiol. Lett. 202: 67 71.
25. Chen, Y.,, and B. P. Rosen. 1997. Metalloregulatory properties of the ArsD repressor. J. Biol. Chem. 272: 14257 14262.
26. Chen, Y. T.,, H. Y. Chang,, Y. C. Lai,, C. C. Pan,, S. F. Tsai,, and H. L. Peng. 2004. Sequencing and analysis of the large virulence plasmid pLVPK of Klebsiella pneumoniae CG43. Gene 337: 189 198.
27. Cheng, J.,, E. T. Kornegay,, and T. Schell. 1998. Influence of dietary lysine on the utilization of zinc from zinc sulphate and a zinc-lysine complex by young pigs. J. Anim. Sci. 76: 1064 1074.
28. Choudhury, P.,, and R. Kumar. 1998. Multidrug- and metalresistant strains of Klebsiella pneumoniae isolated from Penaeus monodon of the coastal waters of deltaic Sundarban. Can. J. Microbiol. 44: 186 189.
29. Choudhury, R.,, and S. Srivastava. 2001. Mutational analysis of zinc resistance in Pseudomonas putida strain S4. Curr. Microbiol. 43: 316 321.
30. Ciraj, A. M.,, M. Mohammed,, K. G. Bhat,, and P. G. Shivananda. 1999. Copper resistance & its correlation to multiple drug resistance in Salmonella typhi isolates from south Karnataka. Indian J. Med. Res. 110: 181 182.
31. Claverys, J. P. 2001. A new family of high-affinity ABC manganese and zinc permeases. Res. Microbiol. 152: 231 243.
32. Collard, J. M.,, A. Provoost,, S. Taghavi,, and M. Mergeay. 1993. A new type of Alcaligenes eutrophus CH34 zinc resistance generated by mutations affecting regulation of the cnr cobalt-nickel resistance system. J. Bacteriol. 175: 779 784.
33. Cooksey, D. A. 1993. Copper uptake and resistance in bacteria. Mol. Microbiol. 7: 1 5.
34. Cooksey, D. A. 1994. Molecular mechanisms of copper resistance and accumulation in bacteria. FEMS Microbiol. Rev. 14: 381 386.
35. Cornelis, G. R.,, A. Boland,, A. P. Boyd,, C. Geuijen,, M. Iriarte,, C. Neyt,, M. P. Sory,, and I. Stainier. 1998. The virulence plasmid of Yersinia, an antihost genome. Microbiol. Mol. Biol. Rev. 62: 1315 1352.
36. Dabbs, E. R.,, and G. J. Sole. 1988. Plasmid-borne resistance to arsenate, arsenite, cadmium, and chloramphenicol in a Rhodococcus species. Mol. Gen. Genet. 211: 148 154.
37. Datta, N.,, and V. M. Hughes. 1983. Plasmids of the same Inc groups in enterobacteria before and after the medical use of antibiotics. Nature 306: 616 617.
38. Dutta, G. N.,, and L. A. Devriese. 1981. Sensitivity and resistance to growth promoting agents in animal lactobacilli. J. Appl. Bacteriol. 51: 283 288.
39. Elek, S. D.,, and L. Higney. 1970. Resistogram typing—a new epidemiological tool: application to Escherichia coli. J. Med. Microbiol. 3: 103 110.
40. Erardi, F. X.,, M. L. Failla,, and J. O. Falkinham III. 1987. Plasmid-encoded copper resistance and precipitation by Mycobacterium scrofulaceum. Appl. Environ. Microbiol. 53: 1951 1954.
41. European Commission’s Scientific Committee for Animal Nutrition (SCAN). 2003. Opinion of the Scientific Committee for Animal Nutrition on the Use of Copper in Feedingstuffs, p. 147.
42. European Commission ’s Scientific Committee for Animal Nutrition (SCAN). 2003. Opinion of the Scientific Committee for Animal Nutrition on the Use of Zinc in Feedingstuffs, p. 133.
43. Ewing, H. P.,, G. M. Pesti,, R. I. Bakalli,, and J. F. Menten. 1998. Studies on the feeding of cupric sulphate pentahydrate, cupric citrate, and copper oxychloride to broiler chickens. Poult. Sci. 77: 445 448.
44. Fan, B.,, and B. P. Rosen. 2002. Biochemical characterization of CopA, the Escherichia coli Cu(I)-translocating P-type ATPase. J. Biol. Chem. 277: 46987 46992.
45. Fujihira, E.,, N. Tamura,, and A. Yamaguchi. 2002. Membrane topology of a multidrug efflux transporter, AcrB, in Escherichia coli. J. Biochem. (Tokyo) 131: 145 151.
46. Gaballa, A.,, and J. D. Helmann. 1998. Identification of a zincspecific metalloregulatory protein, Zur, controlling zinc transport operons in Bacillus subtilis. J. Bacteriol. 180: 5815 5821.
47. Gaballa, A.,, T. Wang,, R. W. Ye,, and J. D. Helmann. 2002. Functional analysis of the Bacillus subtilis Zur regulon. J. Bacteriol. 184: 6508 6514.
48. Gaither, L. A.,, and D. J. Eide. 2001. Eukaryotic zinc transporters and their regulation. Biometals 14: 251 270.
49. Gaither, L. A.,, and D. J. Eide. 2000. Functional expression of the human hZIP2 zinc transporter. J. Biol. Chem. 275: 5560 5564.
50. Garcia-Villada, L.,, M. Rico,, M. M. Altamirano,, L. Sanchez-Martin,, V. Lopez-Rodas,, and E. Costas. 2004. Occurrence of copper resistant mutants in the toxic cyanobacteria Microcystis aeruginosa: characterisation and future implications in the use of copper sulphate as algaecide. Water Res. 38: 2207 2213.
51. Garde, S.,, and C. L. Bender. 1991. DNA probes for detection of copper resistance genes in Xanthomonas campestris pv. vesicatoria. Appl. Environ. Microbiol. 57: 2435 2439.
52. Ghosh, S.,, N. R. Mahapatra,, and P. C. Banerjee. 1997. Metal resistance in Acidocella strains and plasmid-mediated transfer of this characteristic to Acidiphilium multivorum and Escherichia coli. Appl. Environ. Microbiol. 63: 4523 4527.
53. Gilotra, U.,, and S. Srivastava. 1997. Plasmid-encoded sequestration of copper by Pseudomonas pickettii strain US321. Curr. Microbiol. 34: 378 381.
54. Goldberg, M.,, T. Pribyl,, S. Juhnke,, and D. H. Nies. 1999. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J. Biol. Chem. 274: 26065 26070.
55. Gotoh, N.,, T. Kusumi,, H. Tsujimoto,, T. Wada,, and T. Nishino. 1999. Topological analysis of an RND family transporter, MexD of Pseudomonas aeruginosa. FEBS Lett. 458: 32 36.
56. Grass, G.,, B. Fan,, B. P. Rosen,, S. Franke,, D. H. Nies,, and C. Rensing. 2001. ZitB (YbgR), a member of the cation diffusion facilitator family, is an additional zinc transporter in Escherichia coli. J. Bacteriol. 183: 4664 4667.
57. Grass, G.,, and C. Rensing. 2001. Genes involved in copper homeostasis in Escherichia coli. J. Bacteriol. 183: 2145 2147.
58. Grass, G.,, M. D. Wong,, B. P. Rosen,, R. L. Smith,, and C. Rensing. 2002. ZupT is a Zn(II) uptake system in Escherichia coli. J. Bacteriol. 184: 864 866.
59. Grosse, C.,, G. Grass,, A. Anton,, S. Franke,, A. N. Santos,, B. Lawley,, N. L. Brown,, and D. H. Nies. 1999. Transcriptional organization of the czc heavy-metal homeostasis determinant from Alcaligenes eutrophus. J. Bacteriol. 181: 2385 2393.
60. Guan, L.,, M. Ehrmann,, H. Yoneyama,, and T. Nakae. 1999. Membrane topology of the xenobiotic-exporting subunit, MexB, of the MexA,B-OprM extrusion pump in Pseudomonas aeruginosa. J. Biol. Chem. 274: 10517 10522.
61. Guerinot, M. L. 2000. The ZIP family of metal transporters. Biochim. Biophys. Acta 1465: 190 198.
62. Guffanti, A. A.,, Y. Wei,, S. V. Rood,, and T. A. Krulwich. 2002. An antiport mechanism for a member of the cation diffusion facilitator family: divalent cations efflux in exchange for K +and H +. Mol. Microbiol. 45: 145 153.
63. Hall, J. L.,, and L. E. Williams. 2003. Transition metal transporters in plants. J. Exp. Bot. 54: 2601 2613.
64. Hasman, H.,, and F. M. Aarestrup. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46: 1410 1416.
65. Hassan, M. T.,, D. vanderLelie,, D. Springael,, U. Romling,, N. Ahmed,, and M. Mergeay. 1999. Identification of a gene cluster, czr, involved in cadmium and zinc resistance in Pseudomonas aeruginosa. Gene 238: 417 425.
66. Hedges, R. W.,, and S. Baumberg. 1973. Resistance to arsenic compounds conferred by a plasmid transmissible between strains of Escherichia coli. J. Bacteriol. 115: 459 460.
67. Hill, G. M.,, G. L. Cromwell,, T. D. Crenshaw,, C. R. Dove,, R. C. Ewan,, D. A. Knabe,, A. J. Lewis,, G. W. Libal,, D. C. Mahan,, G. C. Shurson,, L. L. Southern,, and T. L. Veum. 2000. Growth promotion effects and plasma changes from feeding high dietary concentrations of zinc and copper to weanling pigs (regional study). J. Anim. Sci. 78: 1010 1016.
68. Hill, G. M.,, P. K. Ku,, E. R. Miller,, D. E. Ullrey,, T. A. Losty,, and B. L. O’Dell. 1983. A copper deficiency in neonatal pigs induced by a high zinc maternal diet. J. Nutr. 113: 867 872.
69. Huffman, D. L.,, J. Huyett,, F. W. Outten,, P. E. Doan,, L. A. Finney,, B. M. Hoffman,, and T. V. O’Halloran. 2002. Spectroscopy of Cu(II)-PcoC and the multicopper oxidase function of PcoA, two essential components of Escherichia coli pco copper resistance operon. Biochemistry 41: 10046 10055.
70. Hughes, V. M.,, and N. Datta. 1983. Conjugative plasmids in bacteria of the “pre-antibiotic” era. Nature 302: 725 726.
71. Jackson, B. P.,, and P. M. Bertsch. 2001. Determination of arsenic speciation in poultry wastes by IC-ICP-MS. Environ. Sci. Technol. 35: 4868 4873.
72. Jayasheela, M.,, P. Kaur,, R. Bhatia,, P. C. John,, and H. Singh. 1993. Prevalence of copper resistant salmonellae in India. Indian J. Med. Res. 97: 60 63.
73. Jensen-Waern, M.,, L. Melin,, R. Lindberg,, A. Johannisson,, L. Petersson,, and P. Wallgren. 1998. Dietary zinc oxide in weaned pigs—effects on performance, tissue concentrations, morphology, neutrophil functions and faecal microflora. Res. Vet. Sci. 64: 225 231.
74. Karnachuk, O. V.,, S. Y. Kurochkina,, D. Nicomrat,, Y. A. Frank,, D. A. Ivasenko,, E. A. Phyllipenko,, and O. H. Tuovinen. 2003. Copper resistance in Desulfovibrio strain R2. Antonie Leeuwenhoek 83: 99 106.
75. Katouli, M.,, L. Melin,, M. Jensen-Waern,, P. Wallgren,, and R. Mollby. 1999. The effect of zinc oxide supplementation on the stability of the intestinal flora with special reference to composition of coliforms in weaned pigs. J. Appl. Microbiol. 87: 564 573.
76. Kaukas, A.,, M. Hinton,, and A. H. Linton. 1988. The effect of growth-promoting antibiotics on the faecal enterococci of healthy young chickens. J. Appl. Bacteriol. 64: 57 64.
77. Klein, P.,, M. Kanehisa,, and C. DeLisi. 1985. The detection and classification of membrane-spanning proteins. Biochim. Biophys. Acta 815: 468 476.
78. Koronakis, V.,, J. Li,, E. Koronakis,, and K. Stauffer. 1997. Structure of TolC, the outer membrane component of the bacterial type I efflux system, derived from two-dimensional crystals. Mol. Microbiol. 23: 617 626.
79. Koronakis, V.,, A. Sharff,, E. Koronakis,, B. Luisi,, and C. Hughes. 2000. Crystal structure of the bacterial membrane protein TolC central to multidrug efflux and protein export. Nature 405: 914 919.
80. Laddaga, R. A.,, L. Chu,, T. K. Misra,, and S. Silver. 1987. Nucleotide sequence and expression of the mercurial-resistance operon from Staphylococcus aureus plasmid pI258. Proc. Natl. Acad. Sci. USA 84: 5106 5110.
81. Lee, S. M.,, G. Grass,, C. Rensing,, S. R. Barrett,, C. J. Yates,, J. V. Stoyanov,, and N. L. Brown. 2002. The Pco proteins are involved in periplasmic copper handling in Escherichia coli. Biochem. Biophys. Res. Commun. 295: 616 620.
82. Legatzki, A.,, G. Grass,, A. Anton,, C. Rensing,, and D. H. Nies. 2003. Interplay of the Czc system and two P-type ATPases in conferring metal resistance to Ralstonia metallidurans. J. Bacteriol. 185: 4354 4361.
83. Lewis, P. K., Jr.,, W. C. Hoekstra,, R. H. Grummer,, and P. H. Phillips. 1956. The effects of certain nutritional factors including calcium, phosphorus and zinc on parakeratosis. J. Anim. Sci. 15: 741 751.
84. Liu, C. Q.,, P. Charoechai,, N. Khunajakr,, Y. M. Deng,, Widodo,, and N. W. Dunn. 2002. Genetic and transcriptional analysis of a novel plasmid-encoded copper resistance operon from Lactococcus lactis. Gene 297: 241 247.
85. Lu, D.,, B. Boyd,, and C. A. Lingwood. 1997. Identification of the key protein for zinc uptake in Hemophilus influenzae. J. Biol. Chem. 272: 29033 29038.
86. Luecke, R. W.,, J. A. Hoefer,, W. G. Brammell,, and F. Thorp, Jr. 1956. Mineral interrelationships in parakeratosis of swine. J. Anim. Sci. 15: 247 251.
87. Mahapatra, N. R.,, and P. C. Banerjee. 1996. Extreme tolerance to cadmium and high resistance to copper, nickel and zinc in different Acidiphilium strains. Lett. Appl. Microbiol. 23: 393 397.
88. Mellano, M. A.,, and D. A. Cooksey. 1988. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J. Bacteriol. 170: 2879 2883.
89. Mergeay, M.,, S. Monchy,, T. Vallaeys,, V. Auquier,, A. Benotmane,, P. Bertin,, S. Taghavi,, J. Dunn,, D. vanderLelie,, and R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metalresponsive genes. FEMS Microbiol. Rev. 27: 385 410.
90. Mergeay, M.,, D. Nies,, H. G. Schlegel,, J. Gerits,, P. Charles,, and F. Van Gijsegem. 1985. Alcaligenes eutrophus CH34 is a facultative chemolithotroph with plasmid-bound resistance to heavy metals. J. Bacteriol. 162: 328 334.
91. Munson, G. P.,, D. L. Lam,, F. W. Outten,, and T. V. O’Halloran. 2000. Identification of a copper-responsive twocomponent system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182: 5864 5871.
92. Murakami, S.,, R. Nakashima,, E. Yamashita,, and A. Yamaguchi. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419: 587 593.
93. Nakahara, H.,, T. Ishikawa,, Y. Sarai,, I. Kondo,, H. Kozukue,, and S. Silver. 1977. Linkage of mercury, cadmium, and arsenate and drug resistance in clinical isolates of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 33: 975 976.
94. Nandi, S.,, J. J. Maurer,, C. Hofacre,, and A. O. Summers. 2004. Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc. Natl. Acad. Sci. USA 101: 7118 7122.
95. National Committee for Clinical Laboratory Standards. 2003. Methods for Dilution Antimicrobial Susceptibility Tests for Bacteria That Grow Aerobically. Approved standard M7-A4. National Committee for Clinical Laboratory Standards, Villanova, Pa.
96. Neyt, C.,, M. Iriarte,, V. H. Thi,, and G. R. Cornelis. 1997. Virulence and arsenic resistance in Yersiniae. J. Bacteriol. 179: 612 619.
97. Nies, D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27: 313 339.
98. Nieto, J. J.,, R. Fernandez-Castillo,, M. C. Marquez,, A. Ventosa,, E. Quesada,, and F. Ruiz-Berraquero. 1989. Survey of metal tolerance in moderately halophilic eubacteria. Appl. Environ. Microbiol. 55: 2385 2390.
99. Nucifora, G.,, L. Chu,, T. K. Misra,, and S. Silver. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86: 3544 3548.
100. Odermatt, A.,, H. Suter,, R. Krapf,, and M. Solioz. 1992. An ATPase operon involved in copper resistance by Enterococcus hirae. Ann. N. Y. Acad. Sci. 671: 484 486.
101. Odermatt, A.,, H. Suter,, R. Krapf,, and M. Solioz. 1993. Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J. Biol. Chem. 268: 12775 12779.
102. Okonkwo, A. C.,, P. K. Ku,, E. R. Miller,, K. K. Keahey,, and D. E. Ullrey. 1979. Copper requirement of baby pigs fed purified diets. J. Nutr. 109: 939 948.
103. Outten, C. E.,, F. W. Outten,, and T. V. O’Halloran. 1999. DNA distortion mechanism for transcriptional activation by ZntR, a Zn(II)-responsive MerR homologue in Escherichia coli. J. Biol. Chem. 274: 37517 37524.
104. Outten, F. W.,, D. L. Huffman,, J. A. Hale,, and T. V. O’Halloran. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276: 30670 30677.
105. Patzer, S. I.,, and K. Hantke. 2000. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J. Biol. Chem. 275: 24321 24332.
106. Patzer, S. I.,, and K. Hantke. 1998. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol. Microbiol. 28: 1199 1210.
107. Perron, K.,, O. Caille,, C. Rossier,, C. Van Delden,, J. L. Dumas,, and T. Kohler. 2004. CzcR-CzcS, a twocomponent system involved in heavy metal and carbapenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279: 8761 8768.
108. Pesti, G. M.,, and R. I. Bakalli. 1996. Studies on the feeding of cupric sulphate pentahydrate and cupric citrate to broiler chickens. Poult. Sci. 75: 1086 1091.
109. Rensing, C.,, B. Fan,, R. Sharma,, B. Mitra,, and B. P. Rosen. 2000. CopA: an Escherichia coli Cu(I)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 97: 652 656.
110. Rensing, C.,, M. Ghosh,, and B. P. Rosen. 1999. Families of soft-metal-ion-transporting ATPases. J. Bacteriol. 181: 5891 5897.
111. Rensing, C.,, and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27: 197 213.
112. Rensing, C.,, B. Mitra,, and B. P. Rosen. 1997. The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc. Natl. Acad. Sci. USA 94: 14326 14331.
113. Rensing, C.,, Y. Sun,, B. Mitra,, and B. P. Rosen. 1998. Pb(II)- translocating P-type ATPases. J. Biol. Chem. 273: 32614 32617.
114. Rosen, B. P. 1999. Families of arsenic transporters. Trends Microbiol. 7: 207 212.
115. Rosen, B. P.,, and M. G. Borbolla. 1984. A plasmid-encoded arsenite pump produces arsenite resistance in Escherichia coli. Biochem. Biophys. Res. Commun. 124: 760 765.
116. Rouch, D. A.,, and N. L. Brown. 1997. Copper-inducible transcriptional regulation at two promoters in the Escherichia coli copper resistance determinant pco. Microbiology 143: 1191 1202.
117. Ryan, D.,, and E. Colleran. 2002. Arsenical resistance in the IncHI2 plasmids. Plasmid 47: 234–240
118. Shakoori, A. R.,, and B. Muneer. 2002. Copper-resistant bacteria from industrial effluents and their role in remediation of heavy metals in wastewater. Folia Microbiol. (Praha) 47: 43 50.
119. Shanklin, S. H.,, E. R. Miller,, D. E. Ullrey,, J. A. Hoefer,, and R. W. Luecke. 1968. Zinc requirements of baby pigs on casein diets. J. Nutr. 96: 101 108.
120. Sharma, R.,, C. Rensing,, B. P. Rosen,, and B. Mitra. 2000. The ATP hydrolytic activity of purified ZntA, a Pb(II)/ Cd(II)/Zn(II)-translocating ATPase from Escherichia coli. J. Biol. Chem. 275: 3873 3878.
121. Shi, X.,, C. Stoj,, A. Romeo,, D. J. Kosman,, and Z. Zhu. 2003. Fre1p Cu 2+ reduction and Fet3p Cu 1+oxidation modulate copper toxicity in Saccharomyces cerevisiae. J. Biol. Chem. 278: 50309 50315.
122. Silver, S.,, and L. T. Phung. 1996. Bacterial heavy metal resistance: new surprises. Annu. Rev. Microbiol. 50: 753 789.
123. Silver, S.,, K. Budd,, K. M. Leahy,, W. V. Shaw,, D. Hammond,, R. P. Novick,, G. R. Willsky,, M. H. Malamy,, and H. Rosenberg. 1981. Inducible plasmid-determined resistance to arsenate, arsenite, and antimony (III) in Escherichia coli and Staphylococcus aureus. J. Bacteriol. 146: 983 996.
124. Singh, S. K.,, G. Grass,, C. Rensing,, and W. R. Montfort. 2004. Cuprous oxidase activity of CueO from Escherichia coli. J. Bacteriol. 186: 7815 7817.
125. Singh, V. K.,, A. Xiong,, T. R. Usgaard,, S. Chakrabarti,, R. Deora,, T. K. Misra,, and R. K. Jayaswal. 1999. ZntR is an autoregulatory protein and negatively regulates the chromosomal zinc resistance operon znt of Staphylococcus aureus. Mol. Microbiol. 33: 200 207.
126. Skrivan, M.,, V. Skrivanova,, M. Marounek,, E. Tumova,, and J. Wolf. 2000. Influence of dietary fat source and copper supplementation on broiler performance, fatty acid profile of meat and depot fat, and on cholesterol content in meat. Br. Poult. Sci. 41: 608 614.
127. Smith, J. W.,, M. D. Tokach,, R. D. Goodband,, J. L. Nelssen,, and B. T. Richert. 1997. Effects of the interrelationship between zinc oxide and copper sulphate on growth performance of early-weaned pigs. J. Anim. Sci. 75: 1861 1866.
128. Smith, R. L.,, L. J. Thompson,, and M. E. Maguire. 1995. Cloning and characterization of MgtE, a putative new class of Mg 2+transporter from Bacillus firmus OF4. J. Bacteriol. 177: 1233 1238.
129. Smith, W. H.,, M. P. Plumlee,, and W. M. Beeson. 1962. Effect of source of protein on zinc requirement of the growing pig. J. Anim. Sci. 21: 399 405.
130. Snavely, M. D.,, J. B. Florer,, C. G. Miller,, and M. E. Maguire. 1989. Magnesium transport in Salmonella typhimurium: 28Mg 2+transport by the CorA, MgtA, and MgtB systems. J. Bacteriol. 171: 4761 4766.
131. Solioz, M.,, and C. Vulpe. 1996. CPx-type ATPases: a class of P-type ATPases that pump heavy metals. Trends Biochem. Sci. 21: 237 241.
132. Solomon, E. I.,, U. M. Sundaram,, and T. E. Machonkin. 1996. Multicopper oxidases and oxygenases. Chem. Rev. 96: 2563 2606.
133. Stoj, C.,, and D. J. Kosman. 2003. Cuprous oxidase activity of yeast Fet3p and human ceruloplasmin: implication for function. FEBS Lett. 554: 422 426.
134. Sundin, G. W.,, and C. L. Bender. 1993. Ecological and genetic analysis of copper and streptomycin resistance in Pseudomonas syringae pv. syringae. Appl. Environ. Microbiol. 59: 1018 1024.
135. Suzuki, K.,, N. Wakao,, Y. Sakurai,, T. Kimura,, K. Sakka,, and K. Ohmiya. 1997. Transformation of Escherichia coli with a large plasmid of Acidiphilium multivorum AIU 301 encoding arsenic resistance. Appl. Environ. Microbiol. 63: 2089 2091.
136. Szybalski, W.,, and V. Bryson. 1952. Genetic studies on microbial cross resistance to toxic agents. I. Cross resistance of Escherichia coli to fifteen antibiotics. J. Bacteriol. 64: 489 499.
137. Tamas, I.,, L. Klasson,, B. Canback,, A. K. Naslund,, A. S. Eriksson,, J. J. Wernegreen,, J. P. Sandstrom,, N. A. Moran,, and S. G. Andersson. 2002. 50 million years of genomic stasis in endosymbiotic bacteria. Science 296: 2376 2379.
138. Tetaz, T. J.,, and R. K. Luke. 1983. Plasmid-controlled resistance to copper in Escherichia coli. J. Bacteriol. 154: 1263 1268.
139. Tom-Petersen, A.,, C. Hosbond,, and O. Nybroe. 2001. Identification of copper-induced genes in Pseudomonas fluorescens and use of a reporter strain to monitor bioavailable copper in soil. FEMS Microbiol. Ecol. 38: 59 67.
140. Top, E.,, M. Mergeay,, D. Springael,, and W. Verstraete. 1990. Gene escape model: transfer of heavy metal resistance genes from Escherichia coli to Alcaligenes eutrophus on agar plates and in soil samples. Appl. Environ. Microbiol. 56: 2471 2479.
141. Tsai, K. J.,, Y. F. Lin,, M. D. Wong,, H. H. Yang,, H. L. Fu,, and B. P. Rosen. 2002. Membrane topology of the p1258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bioenerg. Biomembr. 34: 147 156.
142. Tsai, K. J.,, and A. L. Linet. 1993. Formation of a phosphorylated enzyme intermediate by the cadA Cd 2+-ATPase. Arch. Biochem. Biophys. 305: 267 270.
143. Tsai, K. J.,, K. P. Yoon,, and A. R. Lynn. 1992. ATPdependent cadmium transport by the cadA cadmium resistance determinant in everted membrane vesicles of Bacillus subtilis. J. Bacteriol. 174: 116 121.
144. Tynecka, Z.,, and Z. Gos. 1974. Cadmium resistance of Staphylococcus aureus determined by penicillinase plasmids. Ann. Univ. Mariae Curie Sklodowska 29: 17 26.
145. Tynecka, Z.,, and W. Zylinska. 1974. Plasmid borne resistance to some inorganic ions in Staphylococcus aureus. Acta Microbiol. Pol. A 6: 83 92.
146. Tynecka, Z.,, Z. Gos,, and J. Zajac. 1981. Energy-dependent efflux of cadmium coded by a plasmid resistance determinant in Staphylococcus aureus. J. Bacteriol. 147: 313 319.
147. Ug, A.,, and O. Ceylan. 2003. Occurrence of resistance to antibiotics, metals, and plasmids in clinical strains of Staphylococcus spp. Arch. Med. Res. 34: 130 136.
148. van Ham, R. C.,, J. Kamerbeek,, C. Palacios,, C. Rausell,, F. Abascal,, U. Bastolla,, J. M. Fernandez,, L. Jimenez,, M. Postigo,, F. J. Silva,, J. Tamames,, E. Viguera,, A. Latorre,, A. Valencia,, F. Moran,, and A. Moya. 2003. Reductive genome evolution in Buchnera aphidicola. Proc. Natl. Acad. Sci. USA 100: 581 586.
149. Walia, S. K.,, D. R. Arora,, T. D. Chugh,, and K. B. Sharma. 1986. Plasmid linked mercury & zinc resistance in Klebsiella pneumoniae. Indian J. Med. Res. 83: 369 373.
150. Wang, P. Z.,, and R. P. Novick. 1987. Nucleotide sequence and expression of the beta-lactamase gene from Staphylococcus aureus plasmid pI258 in Escherichia coli, Bacillus subtilis, and Staphylococcus aureus. J. Bacteriol. 169: 1763 1766.
151. Wedekind, K. J.,, A. J. Lewis,, M. A. Giesemann,, and P. S. Miller. 1994. Bioavailability of zinc from inorganic and organic sources for pigs fed corn-soybean meal diets. J. Anim. Sci. 72: 2681 2689.
152. Williams, J. R.,, A. G. Morgan,, D. A. Rouch,, N. L. Brown,, and B. T. Lee. 1993. Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59: 2531 2537.
153. Worlock, A. J.,, and R. L. Smith. 2002. ZntB is a novel Zn 2+ transporter in Salmonella enterica serovar Typhimurium. J. Bacteriol. 184: 4369 4373.
154. Xiong, A.,, and R. K. Jayaswal. 1998. Molecular characterization of a chromosomal determinant conferring resistance to zinc and cobalt ions in Staphylococcus aureus. J. Bacteriol. 180: 4024 4029.
155. Yoon, K. P.,, and S. Silver. 1991. A second gene in the Staphylococcus aureus cadA cadmium resistance determinant of plasmid pI258. J. Bacteriol. 173: 7636 7642.

Tables

Generic image for table
Table 1.

Requirements of copper and zinc supplements for production animals

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Generic image for table
Table 2.

Recommendations of copper and zinc supplements for production animals

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Generic image for table
Table 3.

Susceptibility of 569 bacterial isolates from livestock in Denmark to copper sulfate

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Generic image for table
Table 4.

Susceptibility of 177 bacterial isolates from livestock in Denmark to zinc chloride

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Generic image for table
Table 5.

Organisms which have been tested for copper tolerance and in which resistance to copper has been suggested to occur

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7
Generic image for table
Table 6.

Organisms which have been tested for zinc tolerance and in which resistance to zinc has been suggested to occur

Citation: Hasman H, Franke S, Rensing C. 2006. Resistance to Metals Used in Agricultural Production, p 99-114. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch7

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error