1887

Chapter 8 : Disinfectant Resistance in Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Disinfectant Resistance in Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817534/9781555813062_Chap08-2.gif

Abstract:

Disinfectants are used extensively in animal husbandry, hospital and food industry. Particularly important in the food industry is the inactivation of bacteria attached to surfaces and at low temperatures, both conditions where bacterial tolerance to disinfectants can be enhanced. Concerns about possible antibiotic and disinfectant cross-resistance are discussed in “Potential for Selection of Resistant Strains”. Gram-negative bacteria are generally less susceptible to disinfectants than gram-positive bacteria, presumably due to the reduced permeability of the double membrane. Mutants of various bacterial species ( serovar Typhimurium, , and ) with reduced susceptibility to triclosan can be selected in vitro after exposure to sublethal concentrations of the compound. The inherent resistance of gram-negative bacteria to antibacterial agents and disinfectants is often attributed to poor permeability of the cell to these agents. The MICs of disinfectants for most bacteria are normally greatly below the concentrations used in practice. A recent study demonstrated differences between the hand flora isolated from “homemakers” and intensive care nurses. A key difference between the two groups was the increased hand hygiene practiced by the nurses, and it is possible that disinfectant exposure has contributed to the differences in flora observed in this study. Cleaning prior to disinfection is important in order to remove organic material and other contaminants that might interfere with disinfectant activity.

Citation: Webber M, Piddock L, Woodward M. 2006. Disinfectant Resistance in Bacteria, p 115-125. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch8

Key Concept Ranking

Antibacterial Agents
0.44991067
Porcine reproductive and respiratory syndrome virus
0.44448262
0.44991067
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Potential outcomes of exposure to a disinfectant.

Citation: Webber M, Piddock L, Woodward M. 2006. Disinfectant Resistance in Bacteria, p 115-125. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817534.chap8
1. Aiello, A. E.,, and E. L. Larson. 2002. Causal inference: the case of hygiene and health. Am. J. Infect. Control 30: 503 511.
2. Aiello, A. E.,, J. Cimiotti,, P. Della-Latta,, and E. L. Larson. 2003. A comparison of the bacteria found on the hands of “homemakers” and neonatal intensive care unit nurses. J. Hosp. Infect. 54: 310 315.
3. Aiello, A. E.,, B. Marshall,, S. B. Levy,, P. Della-Latta,, and E. Larson. 2004. Relationship between triclosan and susceptibilities of bacteria isolated from hands in the community. Antimicrob. Agents Chemother. 48: 2973 2979.
4. Akimitsu, N.,, H. Hamamoto,, R. Inoue,, M. Shoji,, A. Akamine,, K. Takemori,, N. Hamasaki,, and K. Sekimizu. 1999. Increase in resistance of methicillin-resistant Staphylococcus aureus to beta-lactams caused by mutations conferring resistance to benzalkonium chloride, a disinfectant widely used in hospitals. Antimicrob. Agents Chemother. 43: 3042 3043.
5. Association of Official Analytical Chemists. 1990. Official Methods of the Association of Official Analytical Chemists, 111; 15th ed. Association of Official Analytical Chemists, Inc., Arlington, Va.
6. Ayliffe, G. A.,, J. R. Babb,, J. G. Davies,, and H. A. Lilly. 1988. Hand disinfection: a comparison of various agents in laboratory and ward studies. J. Hosp. Infect. 11: 226 243.
7. Bailey, J. S.,, R. J. Buhr,, N. A. Cox,, and M. E. Berrang. 1996. Effect of hatching cabinet sanitation treatments on Salmonella cross-contamination and hatchability of broiler eggs. Poult. Sci. 75: 191 196.
8. Bamber, A. I.,, and T. J. Neal. 1999. An assessment of triclosan susceptibility in methicillin-resistant and methicillinsensitive Staphylococcus aureus. J. Hosp. Infect. 41: 107 109.
9. Barker, J.,, M. Naeeni,, and S. F. Bloomfield. 2003. The effects of cleaning and disinfection in reducing Salmonella contamination in a laboratory model kitchen. J. Appl. Microbiol. 95: 1351 1360.
10. Bierer, B.,, B. D. Barnett,, and H. D. Valentine. 1961. Experimentally killing Salmonella typhimurium on egg shells by washing. Poult. Sci. 40: 1009 1014.
11. Bjorland, J.,, T. Steinum,, M. Sunde,, S. Waage,, and E. Heir. 2003. Novel plasmid-borne gene qacJ mediates resistance to quaternary ammonium compounds in equine Staphylococcus aureus, Staphylococcus simulans, and Staphylococcus intermedius. Antimicrob. Agents Chemother. 47: 3046 3052.
12. Block, C.,, and M. Furman. 2002. Association between intensity of chlorhexidine use and micro-organisms of reduced susceptibility in a hospital environment. J. Hosp. Infect. 51: 201 206.
13. Boddie, R. L.,, and S. C. Nickerson. 2002. Reduction of mastitis caused by experimental challenge with Staphylococcus aureus and Streptococcus agalactiae by use of a quaternary ammonium and halogen-mixture teat dip. J. Dairy Sci. 85: 258 262.
14. Boddie, R. L.,, W. E. Owens,, C. H. Ray,, S. C. Nickerson,, and N. T. Boddie. 2002. Germicidal activities of representatives of five different teat dip classes against three bovine mycoplasma species using a modified excised teat model. J. Dairy Sci. 85: 1909 1912.
15. Braoudaki, M.,, and A. C. Hilton. 2004. Low level of crossresistance between triclosan and antibiotics in Escherichia coli K-12 and E. coli O55 compared to E. coli O157. FEMS Microbiol. Lett. 235: 305 309.
16. Brenwald, N. P.,, and A. P. Fraise. 2003. Triclosan resistance in methicillin-resistant Staphylococcus aureus (MRSA). J. Hosp. Infect. 55: 141 144.
17. Chaplin, C. E. 1951. Observations on quaternary ammonium compound disinfectants. Can. J. Bot. 29: 373 382.
18. Coolman, B. R.,, S. M. Marretta,, I. Kakoma,, M. A. Wallig,, S. L. Coolman,, and A. J. Paul. 1998. Cutaneous antimicrobial preparation prior to intravenous catheterization in healthy dogs: clinical, microbiological, and histopathological evaluation. Can. Vet. J. 39: 757 763.
19. Cozad, A.,, and R. D. Jones. 2003. Disinfection and the prevention of infectious disease. Am. J. Infect. Control 31: 243 254.
20. Davies, R. H.,, and M. F. Breslin. 2004. Observations on the distribution and control of Salmonella contamination in poultry hatcheries. Br. Poult. Sci. 45( Suppl.1): S12 S14.
21. Davies, R. H.,, and C. Wray. 1995. Observations on disinfection regimens used on Salmonella enteritidis infected poultry units. Poult. Sci. 74: 638 647.
22. Davison, S.,, C. E. Benson,, D. S. Munro,, S. C. Rankin,, A. E. Ziegler,, and R. J. Eckroade. 2003. The role of disinfectant resistance of Salmonella enterica serotype enteritidis in recurring infections in Pennsylvania egg quality assurance program monitored flocks. Avian Dis. 47: 143 148.
23. Dee, S.,, J. Deen,, D. Burns,, G. Douthit,, and C. Pijoan. 2004. An assessment of sanitation protocols for commercial transport vehicles contaminated with porcine reproductive and respiratory syndrome virus. Can. J. Vet. Res. 68: 208 214.
24. Denton, M.,, M. H. Wilcox,, P. Parnell,, D. Green,, V. Keer,, P. M. Hawkey,, I. Evans,, and P. Murphy. 2004. Role of environmental cleaning in controlling an outbreak of Acinetobacter baumannii on a neurosurgical intensive care unit. J. Hosp. Infect. 56: 106 110.
25. Erskine, R. J.,, P. M. Sears,, P. C. Bartlett,, and C. R. Gage. 1998. Efficacy of postmilking disinfection with benzyl alcohol versus iodophor in the prevention of new intramammary infections in lactating cows. J. Dairy Sci. 81: 116 120.
26. Fan, F.,, K. Yan,, N. G. Wallis,, S. Reed,, T. D. Moore,, S. F. Rittenhouse,, W. E. DeWolf, Jr.,, J. Huang,, D. McDevitt,, W. H. Miller,, M. A. Seefeld,, K. A. Newlander,, D. R. Jakas,, M. S. Head,, and D. J. Payne. 2002. Defining and combating the mechanisms of triclosan resistance in clinical isolates of Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 3343 3347.
27. Fraise, A. P. 1999. Choosing disinfectants. J. Hosp. Infect. 43: 255 264.
28. Fraise, A. P. 2002. Biocide abuse and antimicrobial resistance—a cause for concern? J. Antimicrob. Chemother. 49: 11 12.
29. French, G. L.,, J. A. Otter,, K. P. Shannon,, N. M. Adams,, D. Watling,, and M. J. Parks. 2004. Tackling contamination of the hospital environment by methicillin-resistant Staphylococcus aureus (MRSA): a comparison between conventional terminal cleaning and hydrogen peroxide vapour decontamination. J. Hosp. Infect. 57: 31 37.
30. Gasparini, R.,, T. Pozzi,, R. Magnelli,, D. Fatighenti,, E. Giotti,, G. Poliseno,, M. Pratelli,, R. Severini,, P. Bonanni,, and L. De Feo. 1995. Evaluation of in vitro efficacy of the disinfectant Virkon. Eur. J. Epidemiol. 11: 193 197.
31. Gilbert, P.,, A. J. McBain,, and S. F. Bloomfield. 2002. Biocide abuse and antimicrobial resistance: being clear about the issues. J. Antimicrob. Chemother. 50: 137 139.
32. Gilbert, P.,, and A. J. McBain. 2003. Potential impact of increased use of biocides in consumer products on prevalence of antibiotic resistance. Clin. Microbiol. Rev. 16: 189 208.
33. Guerin-Mechin, L.,, J. Y. Leveau,, and F. Dubois-Brissonnet. 2004. Resistance of spheroplasts and whole cells of Pseudomonas aeruginosa to bactericidal activity of various biocides: evidence of the membrane implication. Microbiol. Res. 159: 51 57.
34. Holah, J. T.,, J. H. Taylor,, D. J. Dawson,, and K. E. Hall. 2002. Biocide use in the food industry and the disinfectant resistance of persistent strains of Listeria monocytogenes and Escherichia coli. J. Appl. Microbiol. 92: 111S 120S.
35. Jorgensen, F.,, R. Bailey,, S. Williams,, P. Henderson,, D. R. Wareing,, F. J. Bolton,, J. A. Frost,, L. Ward,, and T. J. Humphrey. 2002. Prevalence and numbers of Salmonella and Campylobacter spp. on raw, whole chickens in relation to sampling methods. Int. J. Food Microbiol. 76: 151 164.
36. Kitis, M. 2004. Disinfection of wastewater with peracetic acid: a review. Environ. Int. 30: 47 55.
37. Levy, S. B. 2002. Active efflux, a common mechanism for biocide and antibiotic resistance. J. Appl. Microbiol. 92( Suppl.): 65S 71S.
38. Luppens, S. B.,, M. W. Reij,, R. W. van der Heijden,, F. M. Rombouts,, and T. Abee. 2002. Development of a standard test to assess the resistance of Staphylococcus aureus biofilm cells to disinfectants. Appl. Environ. Microbiol. 68: 4194 4200.
39. Mazzola, P. G.,, T. C. Penna,, and A. M. Martins. 2003. Determination of decimal reduction time (D value) of chemical agents used in hospitals for disinfection purposes. BMC Infect. Dis. 3: 24.
40. McBain, A. J.,, R. G. Ledder,, L. E. Moore,, C. E. Catrenich,, and P. Gilbert. 2004. Effects of quaternary-ammonium-based formulations on bacterial community dynamics and antimicrobial susceptibility. Appl. Environ. Microbiol. 70: 3449 3456.
41. McDonnell, G.,, and A. D. Russell. 1999. Antiseptics and disinfectants: activity, action, and resistance. Clin. Microbiol. Rev. 12: 147 179. (Erratum, 14:227, 2001.)
42. McMurry, L. M.,, M. Oethinger,, and S. B. Levy. 1998. Triclosan targets lipid synthesis. Nature 394: 531 532.
43. McMurry, L. M.,, P. F. McDermott,, and S. B. Levy. 1999. Genetic evidence that InhA of Mycobacterium smegmatis is a target for triclosan. Antimicrob. Agents Chemother. 43: 711 713.
44. Moken, M. C.,, L. M. McMurry,, and S. B. Levy. 1997. Selection of multiple-antibiotic-resistant (mar) mutants of Escherichia coli by using the disinfectant pine oil: roles of the mar and acrAB loci. Antimicrob. Agents Chemother. 41: 2770 2772.
45. Morita, Y.,, T. Murata,, T. Mima,, S. Shiota,, T. Kuroda,, T. Mizushima,, N. Gotoh,, T. Nishino,, and T. Tsuchiya. 2003. Induction of mexCD- oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J. Antimicrob. Chemother. 51: 991 994.
46. Murdough, P. A.,, and J. W. Pankey. 1993. Evaluation of 57 teat sanitizers using excised cow teats. J. Dairy Sci. 76: 2033 2038.
47. Murtough, S. M.,, S. J. Hiom,, M. Palmer,, and A. D. Russell. 2002. A survey of rotational use of biocides in hospital pharmacy aseptic units. J. Hosp. Infect. 50: 228 231.
48. Mostellar, T. M.,, and J. R. Bishop. 1993. Sanitizer efficacy against attached bacteria in a milk biofilm. J. Food Prot. 56: 34 41.
49. Parkinson, E., 1981. Testing of disinfectants for veterinary and agricultural use, p. 33 36. In C. H. Collins,, M. C. Allwood,, S. F. Bloomfield,, and A. Fox (ed.), Disinfectants: Their Use and Evaluation of Effectiveness. Academic Press, London, United Kingdom.
50. Patel, S. 2004. The efficacy of alcohol-based hand disinfectant products. Nurs. Times 100: 32 34.
51. Paterson, S. 1999. Miconazole/chlorhexidine shampoo as an adjunct to systemic therapy in controlling dermatophytosis in cats. J. Small Anim. Pract. 40: 163 166.
52. Paulsen, I. T.,, M. H. Brown,, T. G. Littlejohn,, B. A. Mitchell,, and R. A. Skurray. 1996. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc. Natl. Acad. Sci. USA 93: 3630 3635.
53. Poole, K. 2002. Mechanisms of bacterial biocide and antibiotic resistance. J. Appl. Microbiol. 92(Suppl.): 55S 64S.
54. Ramesh, N.,, S. W. Joseph,, L. E. Carr,, L. W. Douglass,, and F. W. Wheaton. 2002. Evaluation of chemical disinfectants for the elimination of Salmonella biofilms from poultry transport containers. Poult. Sci. 81: 904 910.
55. Rampling, A.,, S. Wiseman,, L. Davis,, A. P. Hyett,, A. N. Walbridge,, G. C. Payne,, and A. J. Cornaby. 2001. Evidence that hospital hygiene is important in the control of methicillin-resistant Staphylococcus aureus. J. Hosp. Infect. 49: 109 116.
56. Randall, L. P.,, S. W. Cooles,, A. R. Sayers,, and M. J. Woodward. 2001. Association between cyclohexane resistance in Salmonella of different serovars and increased resistance to multiple antibiotics, disinfectants and dyes. J. Med. Microbiol. 50: 919 924.
57. Randall, L. P.,, A. M. Ridley,, S. W. Cooles,, M. Sharma,, A. R. Sayers,, L. Pumbwe,, D. G. Newell,, L. J. Piddock,, and M. J. Woodward. 2003. Prevalence of multiple antibiotic resistance in 443 Campylobacter spp. isolated from humans and animals. J. Antimicrob. Chemother. 52: 507 510.
58. Randall, L. P.,, S. W. Cooles,, L. J. Piddock,, and M. J. Woodward. 2004. Effect of triclosan or a phenolic farm disinfectant on the selection of antibiotic-resistant Salmonella enterica. J. Antimicrob. Chemother. 54: 621 627.
59. Rodgers, J. D.,, J. J. McCullagh,, P. T. McNamee,, J. A. Smyth,, and H. J. Ball. 2001. An investigation into the efficacy of hatchery disinfectants against strains of Staphylococcus aureus associated with the poultry industry. Vet. Microbiol. 82: 131 140.
60. Russell, A. D. 2000. Do biocides select for antibiotic resistance? J. Pharm. Pharmacol. 52: 227 233.
61. Russell, A. D. 2003. Biocide use and antibiotic resistance: the relevance of laboratory findings to clinical and environmental situations. Lancet Infect. Dis. 3: 794 803.
62. Rutala, W. A.,, and D. J. Weber. 2001. Surface disinfection: should we do it? J. Hosp. Infect. 48( Suppl. A): S64 S68.
63. Rutala, W. A.,, and D. J. Weber. 2004. Disinfection and sterilization in health care facilities: what clinicians need to know. Clin. Infect. Dis. 39: 702 709.
64. Rutala, W. A.,, and D. J. Weber. 2004. The benefits of surface disinfection. Am. J. Infect. Control 32: 226 231.
65. Saier, M. H., Jr.,, and I. T. Paulsen. 2001. Phylogeny of multidrug transporters. Semin. Cell Dev. Biol. 12: 205 213.
66. Sander, J. E.,, C. L. Hofacre,, I. H. Cheng,, and R. D. Wyatt. 2002. Investigation of resistance of bacteria from commercial poultry sources to commercial disinfectants. Avian Dis. 46: 997 1000.
67. Schweizer, H. P. 2001. Triclosan: a widely used biocide and its link to antibiotics. FEMS Microbiol. Lett. 202: 1 7.
68. Sidhu, M. S.,, E. Heir,, H. Sorum,, and A. Holck. 2001. Genetic linkage between resistance to quaternary ammonium compounds and beta-lactam antibiotics in food-related Staphylococcus spp. Microb. Drug Resist. 7: 363 371.
69. Sidhu, M. S.,, E. Heir,, T. Leegaard,, K. Wiger,, and A. Holck. 2002. Frequency of disinfectant resistance genes and genetic linkage with beta-lactamase transposon Tn552 among clinical staphylococci. Antimicrob. Agents Chemother. 46: 2797 2803.
70. Sivaraman, S.,, J. Zwahlen,, A. F. Bell,, L. Hedstrom,, and P. J. Tonge. 2003. Structure-activity studies of the inhibition of FabI, the enoyl reductase from Escherichia coli, by triclosan: kinetic analysis of mutant FabIs. Biochemistry 42: 4406 4413.
71. Suller, M. T.,, and A. D. Russell. 2000. Triclosan and antibiotic resistance in Staphylococcus aureus. J. Antimicrob. Chemother. 46: 11 18.
72. Tabata, A.,, H. Nagamune,, T. Maeda,, K. Murakami,, Y. Miyake,, and H. Kourai. 2003. Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob. Agents Chemother. 47: 2093 2099.
73. Tattawasart, U.,, J. Y. Maillard,, J. R. Furr,, and A. D. Russell. 2000. Outer membrane changes in Pseudomonas stutzeri resistant to chlorhexidine diacetate and cetylpyridinium chloride. Int. J. Antimicrob. Agents 16: 233 238.
74. Taylor, J. T.,, S. J. Rogers,, and J. T. Holah. 1999. A comparison of the bactericidal efficacy of 18 disinfectants used in the food industry aginst Escherichia coli O157:H7 and Pseudomonas aeruginosa at 10°C and 20°C. J. Appl. Microbiol. 87: 718 726.
75. Walker, S. E.,, J. E. Sander,, I. H. Cheng,, and R. E. Wooley. 2002. The in vitro efficacy of a quaternary ammonia disinfectant and/or ethylenediaminetetraacetic acid-Tris against commercial broiler hatchery isolates of Pseudomonas aeruginosa. Avian Dis. 46: 826 830.
76. Willighan, E. M.,, J. E. Sander,, S. G. Thayer,, and J. L. Wilson. 1996. Investigation of bacterial resistance to hatchery disinfectants. Avian Dis. 40: 510 515.
77. Zhao, C.,, B. Ge,, J. De Villena,, R. Sudler,, E. Yeh,, S. Zhao,, D. G. White,, D. Wagner,, and J. Meng. 2001. Prevalence of Campylobacter spp., Escherichia coli, and Salmonella serovars in retail chicken, turkey, pork, and beef from the Greater Washington, D.C., area. Appl. Environ. Microbiol. 67: 5431 5436.

Tables

Generic image for table
Table 1.

Classes of disinfectant and their advantages, disadvantages, and applications

Citation: Webber M, Piddock L, Woodward M. 2006. Disinfectant Resistance in Bacteria, p 115-125. In Aarestrup F (ed), Antimicrobial Resistance in Bacteria of Animal Origin. ASM Press, Washington, DC. doi: 10.1128/9781555817534.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error