1887

Chapter 1 : The Life of : An Overview

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Life of : An Overview, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap01-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap01-2.gif

Abstract:

Historical records, some >3,000 years old, attest to the antiquity of the disease malaria. Using a light microscope, Alphonse Laveran noticed some crescent-shaped bodies among the red blood cells that were almost entirely transparent, save for some pigment inclusions. He recognized that these bodies were alive, and that he was looking at an animal parasite, not a bacterium or a fungus. Subsequently, he examined blood samples from 192 malaria patients: in 148 of these, he found the telltale crescents. Where there were no crescents, there were no symptoms of malaria. He named the parasite and communicated his findings to the Societé Medicale des Hopitaux on 24 December 1880. Although malaria can be induced in a host by the introduction of parasites (called sporozoites) through the bite of an infectious female mosquito, the parasites do not immediately appear in the blood. This was surprising in view of the fact that in 1903 Fritz Schaudinn claimed to have seen sporozoites directly invade erythrocytes. All human malarial agents (, , , and ) are transmitted through the bite of an infected female anopheline mosquito when she injects sporozoites from her salivary glands during blood feeding. Investigations at the molecular level of enzyme structure, gene sequences, chromosomal arrangements, and transcriptional control will permit an uncovering of the adhesive molecules that mediate cell-cell interactions, determine the mechanisms of protein trafficking, and identify putative drug targets and vaccine candidates.

Citation: Sherman I. 2005. The Life of : An Overview, p 1-11. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch1

Key Concept Ranking

Plasmodium falciparum
0.6145833
Plasmodium malariae
0.609375
Plasmodium vivax
0.609375
Plasmodium malariae
0.609375
Plasmodium vivax
0.609375
0.6145833
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Laveran's drawings of in the blood.

Citation: Sherman I. 2005. The Life of : An Overview, p 1-11. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Ross's drawing of the development of malaria parasites in the mosquito. (a) Mosquito stomach with oocysts; (b) oocyst bursting to release sporozoites; (c) mosquito salivary gland with sporozoites.

Citation: Sherman I. 2005. The Life of : An Overview, p 1-11. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

The life cycle of .

Citation: Sherman I. 2005. The Life of : An Overview, p 1-11. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch1
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap1
1. Bozdech, Z.,, M. Llinas,, B. Pulliam,, E. Wong,, J. Zhu,, and J. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1:115.
2. Bruce-Chwatt, L., 1988. History of malaria from prehistory to eradication, p. 159. In W. Wernsdorfer, and I. McGregor (ed.), Malaria: Principles and Practice of Malariology. Churchill Livingstone, Edinburgh, United Kingdom.
3. De Kruif, P. 1926. Microbe Hunters. Harcourt Brace, New York, N.Y.
4. Friedman, M. 1978. Erythrocyte mechanism of sickle cell resistance to malaria. Proc. Natl. Acad. Sci. USA 75:19941997.
5. Friedman, M.,, E. F. Roth,, R. L. Nagel,, and W. Trager. 1979. Plasmodium falciparum: physiological interaction with the human sickle cell. Exp. Parasitol. 47:7380.
6. Hall, N.,, and M. Gardner,. 2004. The genome of Plasmodium falciparum. In A. P. Waters, and C. Janse (ed.), Malaria Parasites: Genomes and Molecular Biology. Caister Academic, Wynmondham, England.
7. Harrison, G. 1978. Mosquitoes, Malaria and Man: A History of the Hostilities since 1880. Dutton, New York, N.Y.
8. Holt, R. A.,, G. M. Subramanian,, A. Halpern,, G. G. Sutton,, R. Charlab,, D. R. Nusskern,, P. Wincker,, A. G. Clark,, J. M. Ribeiro,, R. Wides,, S. L. Salzberg,, B. Loftus,, M. Yandell,, W. H. Majoros,, D. B. Rusch,, Z. Lai,, C. L. Kraft,, J. F. Abril,, V. Anthouard,, P. Arensburger,, P.W. Atkinson,, H. Baden,, V. de Berardinis,, D. Baldwin,, V. Benes,, J. Biedler,, C. Blass,, R. Bolanos,, D. Boscus,, M. Barnstead,, S. Cai,, A. Center,, K. Chaturverdi,, G. K. Christophides,, M. A. Chrystal,, M. Clamp,, A. Cravchik,, V. Curwen,, A. Dana,, A. Delcher,, I. Dew,, C. A. Evans,, M. Flanigan,, A. Grundschober-Freimoser,, L. Friedli,, Z. Gu,, P. Guan,, R. Guigo,, M. E. Hillenmeyer,, S. L. Hladun,, J. R. Hogan,, Y. S. Hong,, J. Hoover,, O. Jaillon,, Z. Ke,, C. Kodira,, E. Kokoza,, A. Koutsos,, I. Letunic,, A. Levitsky,, Y. Liang,, J. J. Lin,, N. F. Lobo,, J. R. Lopez,, J. A. Malek,, T. C. McIntosh,, S. Meister,, J. Miller,, C. Mobarry,, E. Mongin,, S. D. Murphy,, D. A. O'Brochta,, C. Pfannkoch,, R. Qi,, M. A. Regier,, K. Remington,, H. Shao,, M. V. Sharakhova,, C. D. Sitter,, J. Shetty,, T. J. Smith,, R. Strong,, J. Sun,, D. Thomasova,, L. Q. Ton,, P. Topalis,, Z. Tu,, M. F. Unger,, B. Walenz,, A. Wang,, J. Wang,, M. Wang,, X. Wang,, K. J. Woodford,, J. R. Wortman,, M. Wu,, A. Yao,, E. M. Zdobnov,, H. Zhang,, Q. Zhao,, S. Zhao,, S. C. Zhu,, I. Zhimulev,, M. Coluzzi,, A. della Torre,, C. W. Roth,, C. Louis,, F. Kalush,, R. J. Mural,, E. W. Myers,, M. D. Adams,, H.O. Smith,, S. Broder,, M. J. Gardner,, C. M. Fraser,, E. Birney,, P. Bork,, P. T. Brey,, J. C. Venter,, J. Weissenbach,, F. C. Kafatos,, F. H. Collins,, and S. L. Hoffman. 2002. The genome sequence of the malaria mosquito Anopheles gambiae. Science 298:129149.
9. Langreth, S. G.,, J. B. Jensen,, R. T. Reese,, and W. Trager. 1978. Fine structure of human malaria in vitro. J. Protozool. 25:443452.
10. Le Roch, K.,, Y. Zhou,, P. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,. P. De la Vega,, A. A. Holder,. S. Batalov,, D. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:15031508.
11. Osta, M. A.,, G. K. Christophides,, and F. C. Kafatos. 2004. Effects of mosquito genes on Plasmodium development. Science 303:2030-2032.
12. Rosenthal, P.,, and S. R. Meshnick,. 1998. Hemoglobin processing and the metabolism of amino acids, heme and iron, p. 145158. In I.W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.
13. Ross, R. 1923. Memoirs: with a Full Account of the Great Malaria Problems and Its Solution. Murray, London, United Kingdom.
14. Scheibel, L., 1988. Plasmodial metabolism and related organellar function during various stages of the life cycle: carbohydrates, p. 171217. In W. Wernsdorfer, and I. McGregor (ed.), Malaria: Principles and Practice of Malariology. Churchill Livingstone, Edinburgh, United Kingdom.
15. Scheibel, L.W.,, and I.W. Sherman,. 1988. Plasmodial metabolism and related organellar function during various stages of the life cycle: proteins, lipids, nucleic acids and vitamins, p. 219252. In W. Wernsdorfer, and I. McGregor (ed.), Malaria: Principles and Practice of Malariology. Churchill Livingstone, Edinburgh, United Kingdom.
16. Sherman, I. 1979. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 43:453495.
17. Sherman, I., 1998a. A brief history of malaria and discovery of the parasite's life cycle, p. 310. In I.W., Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.
18. Sherman, I., 1998b. Carbohydrate metabolism of asexual stages, p. 135144. In I.W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.
19. Trager, W.,, and J. Jensen. 1976. Human malaria parasites in continuous culture. Science 193:673675.
20. Vaidya, A., 1998. Mitochondrial physiology as a target for atovaquone and other antimalarials, p. 355368. In I. W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.
21. Vial, H.,, and M. L. Ancelin,. 1998. Malarial lipids, p. 159176. In I.W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington, D.C.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error