1887

Chapter 11 : Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap11-2.gif

Abstract:

In erythrocytes, has no obvious energy stores. Glucose storage forms such as amylopectin and mannitol identified in other apicomplexan parasites are not reported in . The mitochondrion maintains a transmembrane potential gradient that is essential for survival and is a target for the antimalarial atovaquone; however, it is not used for aerobic glycolysis in asexual-stage parasites. Large quantities of lactic acid produced in the vicinity of hypoxic host tissue may impair function of host cells. There are, therefore, two independent reasons for targeting glycolysis in the postgenome era: first, to kill parasites by identifying new inhibitors and eventually developing novel drugs, and second, to decrease use of glucose and output of lactic acid in those regions where there are many parasites that could compete with host tissues for glucose and add to the problem of disposal of lactate. Increased metabolic activity of -infected red blood cells is accompanied by the appearance of glycolytic enzymes with properties distinct from host red blood cell enzymes. The most obvious way for inhibitors to target the action of glycolytic enzymes is by blocking their catalytic sites, which allows substrate analogs to be used as probes. Glucose transport may be a promising target on theoretical grounds; Lactate dehydrogenase (LDH) has received the most attention so far in terms of rational drug development. Glycolysis in may contribute to disease pathogenesis by competing for glucose in host tissues, lending added impetus to discovering ways of inhibiting this key pathway.

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11

Key Concept Ranking

Major Facilitator Superfamily
0.5222222
0.5222222
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Postulated scheme for glycolytic reactions in -infected erythrocytes. Distinct cytosolic and apicoplast enzymes for TPI and pyruvate kinase are shown (see Table 1 ). Abbreviations: triosephosphate isomerase,TPI.For Enzyme Commission numbers, see Table 1 .

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap11
1. Abrahamsen, M. S.,, T. J. Templeton,, S. Enomoto,, J. E. Abrahante,, G. Zhu,, C.A. Lancto,, M. Deng,, C. Liu,, G. Widmer,, S. Tzipori,, G. A. Buck,, P. Xu,, A.T. Bankier,, P.H. Dear,, B.A. Konfortov,, H. F. Spriggs,, L. Iyer,, V. Anantharaman,, L. Aravind,, and V. Kapur. 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441445.
2. Bakker, B. M.,, M. C. Walsh,, B. H. ter Kuile,, F. I. Mensonides,, P. A. Michels,, F. R. Opperdoes,, and H.V. Westerhoff. 1999. Contribution of glucose transport to the control of the glycolytic flux in Trypanosoma brucei. Proc. Natl. Acad. Sci. USA 96:1009810103.
3. Bakker, B. M.,, H.V. Westerhoff,, F. R. Opperdoes,, and P.A. Michels. 2000. Metabolic control analysis of glycolysis in trypanosomes as an approach to improve selectivity and effectiveness of drugs. Mol. Biochem. Parasitol. 106:110.
4. Bapteste, E.,, D. Moreira,, and H. Philippe. 2003. Rampant horizontal gene transfer and phosphodonor change in the evolution of the phosphofructokinase. Gene 318:185191.
5. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39:2636.
6. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E.D. Wong,, J. Zhu,, and J. L. DeRisi. 2003.The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1:E5.
7. Brady, R. L.,, and A. Cameron. 2004. Structurebased approaches to the development of novel antimalarials. Curr. Drug Targets 5:137149.
8. Brown, W. M.,, C. A. Yowell,, A. Hoard,, T. A. Vander Jagt,, L. A. Hunsaker,, L. M. Deck,, R. E. Royer,, R. C. Piper,, J. B. Dame,, M.T. Makler,, and D. L. Vander Jagt. 2004. Comparative structural analysis and kinetic properties of lactate dehydrogenases from the four species of human malarial parasites. Biochemistry 43:62196229.
9. Bzik, D. J.,, B. A. Fox,, and K. Gonyer. 1993. Expression of Plasmodium falciparum lactate dehydrogenase in Escherichia coli. Mol. Biochem. Parasitol. 59:155166.
10. Cameron, A.,, J. Read,, R. Tranter,, V. J. Winter,, R. B. Sessions,, R. L. Brady,, L. Vivas,, A. Easton,, H. Kendrick,, S. L. Croft,, D. Barros,, J. L. Lavandera,, J. J. Martin,, F. Risco,, S. Garcia-Ochoa,, F. J. Gamo,, L. Sanz,, L. Leon,, J. R. Ruiz,, R. Gabarro,, A. Mallo,, and F. Gomez de las Heras. 2004. Identification and activity of a series of azolebased compounds with lactate dehydrogenasedirected anti-malarial activity. J. Biol. Chem. 279: 3142931439.
11. Certa, U.,, P. Ghersa,, H. Dobeli,, H. Matile,, H. P. Kocher,, I.K. Shrivastava,, A.R. Shaw,, and L. H. Perrin. 1988. Aldolase activity of a Plasmodium falciparum protein with protective properties. Science 240:10361038.
12. Chan, M.,, and T. S. Sim. 2004. Functional analysis, overexpression, and kinetic characterization of pyruvate kinase from Plasmodium falciparum. Biochem. Biophys. Res. Commun. 326:188196.
13. Claustre, S.,, C. Denier,, F. Lakhdar-Ghazal,, A. Lougare,, C. Lopez,, N. Chevalier,, P.A. Michels,, J. Perie,, and M. Willson. 2002. Exploring the active site of Trypanosoma brucei phosphofructokinase by inhibition studies: specific irreversible inhibition. Biochemistry 41:1018310193.
14. Cooke, A. H.,, P. L. Chiodini,, T. Doherty,, A. H. Moody,, J. Ries,, and M. Pinder. 1999. Comparison of a parasite lactate dehydrogenase-based immunochromatographic antigen detection assay (OptiMAL) with microscopy for the detection of malaria parasites in human blood samples. Am. J.Trop. Med. Hyg. 60:173176.
15. Daubenberger, C. A.,, F. Poltl-Frank,, G. Jiang,, J. Lipp,, U. Certa,, and G. Pluschke. 2000. Identification and recombinant expression of glyceraldehyde- 3-phosphate dehydrogenase of Plasmodium falciparum. Gene 246:255264.
16. Daubenberger, C. A.,, E. J. Tisdale,, M. Curcic,, D. Diaz,, O. Silvie,, D. Mazier,, W. Eling,, B. Bohrmann,, H. Matile,, and G. Pluschke. 2003.The N′-terminal domain of glyceraldehyde-3-phosphate dehydrogenase of the apicomplexan Plasmodium falciparum mediates GTPase Rab2-dependent recruitment to membranes. Biol. Chem. 384:12271237.
17. Deck, L. M.,, R. E. Royer,, B. B. Chamblee,, V. M. Hernandez,, R. R. Malone,, J. E. Torres,, L. A. Hunsaker,, R. C. Piper,, M.T. Makler,, and D. L. Vander Jagt. 1998. Selective inhibitors of human lactate dehydrogenases and lactate dehydrogenase from the malarial parasite Plasmodium falciparum. J. Med. Chem. 41:38793887.
18. Dunn, C. R.,, M. J. Banfield,, J. J. Barker,, C.W. Higham,, K. M. Moreton,, D. Turgut-Balik,, R. L. Brady,, and J. J. Holbrook. 1996.The structure of lactate dehydrogenase from Plasmodium falciparum reveals a new target for anti-malarial design. Nat. Struct. Biol. 3:912915.
19. Elliott, J. L.,, K. J. Saliba,, and K. Kirk. 2001.Transport of lactate and pyruvate in the intraerythrocytic malaria parasite, Plasmodium falciparum. Biochem. J. 355:733739.
20. Fast, N. M.,, J. C. Kissinger,, D. S. Roos,, and P. J. Keeling. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18:418426.
21. Florens, L.,, M. P. Washburn,, J.D. Raine,, R.M. Anthony,, M. Grainger,, J. D. Haynes,, J. K. Moch,, N. Muster,, J. B. Sacci,, D. L. Tabb,, A.A. Witney,, D. Wolters,, Y. Wu,, M. J. Gardner,, A.A. Holder,, R. E. Sinden,, J. R. Yates,, and D. J. Carucci. 2002. A proteomic view of the Plasmodium falciparum life cycle. Nature 419:520526.
22. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J.A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J.C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C.M. Fraser,, and B. Barrell. 2002.Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498511.
23. Gardner, M. J.,, H. Tettelin,, D. J. Carucci,, L. M. Cummings,, L. Aravind,, E.V. Koonin,, S. Shallom,, T. Mason,, K. Yu,, C. Fujii,, J. Pederson,, K. Shen,, J. Jing,, C. Aston,, Z. Lai,, D. C. Schwartz,, M. Pertea,, S. Salzberg,, L. Zhou,, G. G. Sutton,, R. Clayton,, O. White,, H. O. Smith,, C. M. Fraser,, S. L. Hoffman, et al. 1998. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282:11261132.
24. Gomez, M. S.,, R. C. Piper,, L.A. Hunsaker,, R. E. Royer,, L. M. Deck,, M.T. Makler,, and D. L. Vander Jagt. 1997. Substrate and cofactor specificity and selective inhibition of lactate dehydrogenase from the malarial parasite P. falciparum.Mol. Biochem.Parasitol. 90:235246.
25. Goodyer, I.D.,, D. J. Hayes,, and R. Eisenthal. 1997. Efflux of 6-deoxy-D-glucose from Plasmodium falciparum- infected erythrocytes via two saturable carriers. Mol. Biochem. Parasitol. 84:229239.
26. Grall, M.,, I. K. Srivastava,, M. Schmidt,, A. M. Garcia,, J. Mauel,, and L. H. Perrin. 1992. Plasmodium falciparum: identification and purification of the phosphoglycerate kinase of the malaria parasite. Exp. Parasitol. 75:1018.
27. Heise, A.,, W. Peters,, and H. Zahner. 1999.A monoclonal antibody reacts species-specifically with amylopectin granules of Eimeria bovis merozoites. Parasitol. Res. 85:500503.
28. Hicks, K. E.,, M. Read,, S. P. Holloway,, P. F. Sims,, and J. E. Hyde. 1991. Glycolytic pathway of the human malaria parasite Plasmodium falciparum:primary sequence analysis of the gene encoding 3- phosphoglycerate kinase and chromosomal mapping studies. Gene 100:123129.
29. Homewood, C.A. 1977. Carbohydrate metabolism of malarial parasites. Bull.W. H.O. 55:229235.
30. Joet, T.,, U. Eckstein-Ludwig,, C. Morin,, and S. Krishna. 2003a.Validation of the hexose transporter of Plasmodium falciparum as a novel drug target. Proc. Natl.Acad. Sci. USA 100:74767479.
31. Joet, T.,, C. Morin,, J. Fischbarg,, A. I. Louw,, U. Eckstein-Ludwig,, C. Woodrow,, and S. Krishna. 2003b.Why is the Plasmodium falciparum hexose transporter a promising new drug target? Expert Opin.Ther.Targets 7:593602.
32. Kaslow, D. C.,, and S. Hill. 1990. Cloning metabolic pathway genes by complementation in Escherichia coli. Isolation and expression of Plasmodium falciparum glucose phosphate isomerase. J. Biol. Chem. 265:1233712341.
33. Kim, H.,, U. Certa,, H. Dobeli,, P. Jakob,, and W. G. Hol. 1998. Crystal structure of fructose-1,6-bisphosphate aldolase from the human malaria parasite Plasmodium falciparum.Biochemistry 37:43884396.
34. Kirk, K.,, H. A. Horner,, and J. Kirk. 1996. Glucose uptake in Plasmodium falciparum-infected erythrocytes is an equilibrative not an active process. Mol. Biochem. Parasitol. 82:195205.
35. Kissinger, J. C.,, B. P. Brunk,, J. Crabtree,, M. J. Fraunholz,, B. Gajria,, A. J. Milgram,, D. S. Pearson,, J. Schug,, A. Bahl,, S. J. Diskin,, H. Ginsburg,, G. R. Grant,, D. Gupta,, P. Labo,, L. Li,, M. D. Mailman,, S. K. McWeeney,, P. Whetzel,, C. J. Stoeckert,, and D. S. Roos. 2002.The Plasmodium genome database. Nature 419:490492.
36. Knapp, B.,, E. Hundt,, and H. A. Kupper. 1990. Plasmodium falciparum aldolase: gene structure and localization. Mol. Biochem. Parasitol. 40:112.
37. Krishna, S.,, and C. J. Woodrow. 1999. Expression of parasite transporters in Xenopus oocytes. Novartis Found. Symp. 226:126139.
38. Lasonder, E.,, Y. Ishihama,, J. S. Andersen,, A. M. Vermunt,, A. Pain,, R.W. Sauerwein,, W. M. Eling,, N. Hall,, A. P. Waters,, H. G. Stunnenberg,, and M. Mann. 2002.Analysis of the Plasmodium falciparum proteome by high-accuracy mass spectrometry. Nature 419:537542.
39. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A.A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:15031508.
40. Lopez, C.,, N. Chevalier,, V. Hannaert,, D. J. Rigden,, P. A. Michels,, and J. L. Ramirez. 2002. Leishmania donovani phosphofructokinase. Gene characterization, biochemical properties and structure- modeling studies. Eur. J. Biochem. 269:39783989.
41. Makler, M.T.,, J. M. Ries,, J.A. Williams,, J. E. Bancroft,, R.C. Piper,, B. L. Gibbins,, and D. J. Hinrichs. 1993.Parasite lactate dehydrogenase as an assay for Plasmodium falciparum drug sensitivity.Am. J.Trop. Med. Hyg. 48:739741.
42. Meier, B.,, H. Dobeli,, and U. Certa. 1992. Stage-specific expression of aldolase isoenzymes in the rodent malaria parasite Plasmodium berghei. Mol. Biochem. Parasitol. 52:1527.
43. Murphy, A. D.,, J. E. Doeller,, B. Hearn,, and N. Lang-Unnasch. 1997. Plasmodium falciparum: cyanide-resistant oxygen consumption. Exp. Parasitol. 87:112120.
44. Olafsson, P.,, and U. Certa. 1994. Expression and cellular localisation of hexokinase during the bloodstage development of Plasmodium falciparum. Mol. Biochem. Parasitol. 63:171174.
45. Olafsson, P.,, H. Matile,, and U. Certa. 1992. Molecular analysis of Plasmodium falciparum hexokinase. Mol. Biochem. Parasitol. 56:89101.
46. Opperdoes, F. R. 1987.Compartmentation of carbohydrate metabolism in trypanosomes. Annu. Rev. Microbiol. 41:127151.
47. Pal, B.,, B. Pybus,, D. D. Muccio,, and D. Chattopadhyay. 2004. Biochemical characterization and crystallization of recombinant 3-phosphoglycerate kinase of Plasmodium falciparum. Biochim. Biophys. Acta 1699:277280.
48. Palmer, C. J.,, J. F. Lindo,, W. I. Klaskala,, J.A. Quesada,, R. Kaminsky,, M. K. Baum,, and A. L. Ager. 1998. Evaluation of the OptiMAL test for rapid diagnosis of Plasmodium vivax and Plasmodium falciparum malaria. J. Clin. Microbiol. 36:203206.
49. Parthasarathy, S.,, H. Balaram,, P. Balaram,, and M. R. Murthy. 2002. Structures of Plasmodium falciparum triosephosphate isomerase complexed to substrate analogues: observation of the catalytic loop in the open conformation in the ligand-bound state. Acta Crystallogr. D Biol. Crystallogr. 58:19922000.
50. Parthasarathy, S.,, K. Eaazhisai,, H. Balaram,, P. Balaram,, and M. R. Murthy. 2003. Structure of Plasmodium falciparum triose-phosphate isomerase- 2-phosphoglycerate complex at 1.1-A resolution. J. Biol. Chem. 278:5246152470.
51. Petry, F.,, and J. R. Harris. 1999. Ultrastructure, fractionation and biochemical analysis of Cryptosporidium parvum sporozoites. Int. J. Parasitol. 29:12491260.
52. Rager, N.,, C. B. Mamoun,, N. S. Carter,, D. E. Goldberg,, and B. Ullman. 2001. Localization of the Plasmodium falciparum PfNT1 nucleoside transporter to the parasite plasma membrane. J. Biol. Chem. 276:4109541099.
53. Ralph, S. A.,, G. G. Van Dooren,, R. F. Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2:203216.
54. Ranie, J.,, V. P. Kumar,, and H. Balaram. 1993. Cloning of the triosephosphate isomerase gene of Plasmodium falciparum and expression in Escherichia coli. Mol. Biochem. Parasitol. 61:159169.
55. Razakantoanina, V.,, P. P. Nguyen Kim,, and G. Jaureguiberry. 2000. Antimalarial activity of new gossypol derivatives. Parasitol. Res. 86:665668.
56. Read, J.A.,, V. J. Winter,, C.M. Eszes,, R.B. Sessions,, and R. L. Brady. 2001. Structural basis for altered activity of M- and H-isozyme forms of human lactate dehydrogenase. Proteins 43:175185.
57. Read, M.,, K. E. Hicks,, P. F. Sims,, and J. E. Hyde. 1994. Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur. J. Biochem. 220:513520.
58. Ridley, R. G. 1997. Plasmodium: drug discovery and development—an industrial perspective. Exp. Parasitol. 87:293304.
59. Roth, E. F., Jr.,, M. C. Calvin,, I. Max-Audit,, J. Rosa,, and R. Rosa. 1988. The enzymes of the glycolytic pathway in erythrocytes infected with Plasmodium falciparum malaria parasites. Blood 72:19221925.
60. Royer, R. E.,, L. M. Deck,, N. M. Campos,, L. A. Hunsaker,, and D. L. Vander Jagt. 1986. Biologically active derivatives of gossypol: synthesis and antimalarial activities of peri-acylated gossylic nitriles. J. Med. Chem. 29:17991801.
61. Saliba, K. J.,, S. Krishna,, and K. Kirk. 2004. Inhibition of hexose transport and abrogation of pH homeostasis in the intraerythrocytic malaria parasite by an O-3-hexose derivative. FEBS Lett. 570:9396.
62. Sherman, I.W. 1979. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 43:453495.
63. Sherman, I.W. 1998. Malaria, p. 135143.ASM Press, Washington,D.C.
64. Simmons, D. L.,, J. E. Hyde,, M. Mackay,, M. Goman,, and J. Scaife. 1985. Cloning studies on the gene coding for L-(+)-lactate dehydrogenase of Plasmodium falciparum. Mol. Biochem. Parasitol. 15:231243.
65. Speer, C. A.,, S. Clark,, and J. P. Dubey. 1998. Ultrastructure of the oocysts, sporocysts, and sporozoites of Toxoplasma gondii. J. Parasitol. 84:505512.
66. Srivastava, I. K.,, H. Rottenberg,, and A. B. Vaidya. 1997. Atovaquone, a broad spectrum antiparasitic drug, collapses mitochondrial membrane potential in a malarial parasite. J. Biol. Chem. 272:39613966.
67. Srivastava, I. K.,, M. Schmidt,, M. Grall,, U. Certa,, A. M. Garcia,, and L. H. Perrin. 1992. Identification and purification of glucose phosphate isomerase of Plasmodium falciparum. Mol. Biochem. Parasitol. 54:153164.
68. Takashima, E.,, S. Takamiya,, S. Takeo,, F. Mi-ichi,, H. Amino,, and K. Kita. 2001. Isolation of mitochondria from Plasmodium falciparum showing dihydroorotate dependent respiration. Parasitol. Int. 50:273278.
69. ter Kuile, F.,, N. J. White,, P. Holloway,, G. Pasvol,, and S. Krishna. 1993. Plasmodium falciparum: in vitro studies of the pharmacodynamic properties of drugs used for the treatment of severe malaria. Exp. Parasitol. 76:8595.
70. Ureta, T. 1982.The comparative isozymology of vertebrate hexokinases. Comp. Biochem. Physiol. B 71: 549555.
71. Uyemura, S.A.,, S. Luo,, S.N. Moreno,, and R. Docampo. 2000. Oxidative phosphorylation, Ca2+ transport, and fatty acid-induced uncoupling in malaria parasites mitochondria. J. Biol. Chem. 275:97099715.
72. Velanker, S. S.,, S. S. Ray,, R. S. Gokhale,, S. Suma,, H. Balaram,, P. Balaram,, and M. R. Murthy. 1997.Triosephosphate isomerase from Plasmodium falciparum: the crystal structure provides insights into antimalarial drug design. Structure 5:751761.
73. Winter, V. J.,, A. Cameron,, R. Tranter,, R. B. Sessions,, and R. L. Brady. 2003. Crystal structure of Plasmodium berghei lactate dehydrogenase indicates the unique structural differences of these enzymes are shared across the Plasmodium genus. Mol. Biochem. Parasitol. 131:110.
74. Woodrow, C. J.,, R. J. Burchmore,, and S. Krishna. 2000. Hexose permeation pathways in Plasmodium falciparum-infected erythrocytes. Proc. Natl. Acad. Sci. USA 97:99319936.
75. Woodrow, C. J.,, J. I. Penny,, and S. Krishna. 1999. Intraerythrocytic Plasmodium falciparum expresses a high affinity facilitative hexose transporter. J. Biol. Chem. 274:72727277.
76. Yang, S.,, and S. F. Parmley. 1997.Toxoplasma gondii expresses two distinct lactate dehydrogenase homologous genes during its life cycle in intermediate hosts. Gene 184:112.

Tables

Generic image for table
TABLE 1

In silico analysis of glycolytic enzymes of

Citation: Woodrow C, Krishna S. 2005. Molecular Approaches to Malaria: Glycolysis in Asexual-Stage Parasites, p 223-233. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error