1887

Chapter 14 : The Apicoplast

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Apicoplast, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap14-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap14-2.gif

Abstract:

The discovery and characterization of the apicoplast has been one of the success stories for the growing union of molecular, cellular, and genomic biology in parasitology. The combination of these three disciplines in a short space of time has shed much light on the origin, structure, biogenesis, and metabolism of the apicoplast. The apicoplast contains visible ribosomes, distinctly smaller than the eukaryotic cytosolic ribosomes, and is surrounded by multiple membranes. The dissection of apicoplast targeting by Waller using green fluorescent protein (GFP), alongside similar constructs made in the laboratory of David Roos, inspired an ongoing series of broader targeting experiments in both and that have revolutionized the understanding of intra- and extracellular trafficking in apicomplexans. The fluoroquinolone compound ciprofloxacin interferes with the resealing step and results in linearization of the circular DNA, and ciprofloxacin does indeed inhibit displacement-loop replication in . Antibiotics such as ciprofloxacin inhibit bacterial or plastid DNA replication, while other antibiotics affect transcription, translation, and posttranslational modification. An elegant analysis showed that the fusion protein is apparently trapped in the apicoplast protein-translocation machinery and somehow prevents correct division and segregation of the apicoplast. Chloroplasts are chlorophyll-containing organelles found in plants and algae. Their key function is photosynthesis, and they come in red, brown, and even colorless, nonphotosynthetic versions. Products of the isopentenyl diphosphate (IPP) pathway are presumably also used by mitochondrial ubiquinones, by dolichol in the endoplasmic reticulum (ER) and Golgi, and to prenylate proteins within the parasite’s endomembrane system.

Citation: Ralph S. 2005. The Apicoplast, p 272-289. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch14

Key Concept Ranking

Type II Fatty Acid Synthase
0.4874491
0.4874491
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Apicoplasts arise through secondary endosymbiosis. In the primary endosymbiosis that created plastids, a cyanobacterium is engulfed by a heterotrophic eukaryote and retained in the eukaryotic cytosol. The transfer of genes from bacterium to host nucleus reinforces the dependence of the plastid on its new host. Most of the gene products that derive from these transferred genes are targeted back to the plastid with an N-terminal transit peptide. In secondary endosymbiosis, a plastid-bearing organism is itself engulfed and enslaved by an another eukaryote. As with primary endosymbionts, secondary endosymbiosis is characterized by large-scale gene transfer from endosymbiont to host. In most extant secondary endosymbionts, the nucleus of the engulfed eukaryote has completely disappeared through gene transfer and loss. The products of transferred genes are retargeted to the plastid with a bipartite leader consisting of signal sequence and transit peptide. The prey item that eventually became the apicoplast is unknown but is probably a red alga.

Citation: Ralph S. 2005. The Apicoplast, p 272-289. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

The apicoplast delayed-death phenomenon. Some of the inhibitors that are thought to target the apicoplast have delayed effects on parasite growth. Compounds such as ciprofloxacin do not appear to inhibit growth within the initial parasitophorous vacuole, but after the parasite reinvades, parasites cease to divide even when drug is removed. These reinvading parasites are not microscopically distinguishable from untreated parasites but are evidently phenotypically different. This inhibition kinetic is shared at least between (A) and (B). In , parasites with defects in apicoplast segregation mimic the drug-induced delayed death phenotype, with apicoplast-lacking parasites apparently growing normally until after reinvasion (C). One explanation for delayed death, consistent with known apicoplast metabolic functions, is that apicoplasts create a molecule that is needed for appropriate establishment or development of the parasitophorous vacuole membrane. In the absence of this molecule, a nonfunctional or simply nonexpanding parasitophorous vacuole restricts further growth.

Citation: Ralph S. 2005. The Apicoplast, p 272-289. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Major apicoplast anabolic pathways. Bioinformatic analyses and confirmation by biochemical methods suggest that the apicoplast is responsible for at least four major anabolic pathways, fatty acid synthesis, isopentenyl diphosphate synthesis, iron-sulfur cluster assembly, and heme synthesis, in conjunction with the mitochondrion. Plastid-specific transporters probably import triose phosphates and/or phosphoenolpyruvate to be used as the carbon building blocks for synthesis, as well as generating some energy for synthetic pathways. Each pathway may have organellar uses, but the indispensability of the apicoplast indicates there are also extraplastidic endpoints for at least one of these anabolic pathways.

Citation: Ralph S. 2005. The Apicoplast, p 272-289. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch14
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap14
1. Abrahamsen, M. S.,, T. J. Templeton,, S. Enomoto,, J. E. Abrahante,, G. Zhu,, C. A. Lancto,, M. Deng,, C. Liu,, G. Widmer,, S. Tzipori,, G. A. Buck,, P. Xu,, A.T. Bankier,, P.H. Dear,, B.A. Konfortov,, H. F. Spriggs,, L. Iyer,, V. Anantharaman,, L. Aravind,, and V. Kapur. 2004. Complete genome sequence of the apicomplexan, Cryptosporidium parvum. Science 304:441445.
2. Baldauf, S. L.,, A. J. Roger,, I. Wenk-Siefert,, and W. F. Doolittle. 2000.A kingdom-level phylogeny of eukaryotes based on combined protein data. Science 290:972977.
3. Beckers, C. J. M.,, D. S. Roos,, R. G. K. Donald,, B. J. Luft,, J.C. Schwab,, Y. Cao,, and K.A. Joiner. 1995. Inhibition of cytoplasmic and organellar protein synthesis in toxoplasma gondii—implications for the target of macrolide antibiotics. J. Clin. Investig. 95:367376.
4. Blanchard, J.,, and J. S. Hicks. 1999.The non-photosynthetic plastid in malarial parasites and other apicomplexans is derived from outside the green plastid lineage. J. Eukaryot. Microbiol. 46:367375.
5. Bonday, Z. Q.,, S. Dhanasekaran,, P. N. Rangarajan,, and G. Padmanaban. 2000. Import of host delta-aminolevulinate dehydratase into the malarial parasite: identification of a new drug target. Nat. Med. 6:898903.
6. Bonday, Z. Q.,, S. Taketani,, P. D. Gupta,, and G. Padmanaban. 1997. Heme biosynthesis by the malarial parasite. Import of delta-aminolevulinate dehydrase from the host red cell. J. Biol. Chem. 272:2183921846.
7. Boocock, M. R.,, and J. R. Coggins. 1983. Kinetics of 5-enolpyruvylshikimate-3-phosphate synthase inhibition by glyphosate. FEBS Lett. 154:127133.
8. Borrmann, S.,, S. Issifou,, G. Esser,, A. A. Adegnika,, M. Ramharter,, P. B. Matsiegui,, S. Oyakhirome,, D. P. Mawili-Mboumba,, M.A. Missinou,, J. F. Kun,, H. Jomaa,, and P. G. Kremsner. 2004.Fosmidomycin-clindamycin for the treatment of Plasmodium falciparum malaria. J.Infect. Dis. 190: 15341540.
9. Boucher, Y.,, and W. F. Doolittle. 2000.The role of lateral gene transfer in the evolution of isoprenoid biosynthesis pathways. Mol. Microbiol. 37:703716.
10. Cavalier-Smith, T. 1982.The origins of plastids. Biol. J. Linn. Soc. Lond. 17:289306.
11. Cavalier-Smith, T. 1999. Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree. J. Eukaryot. Microbiol. 46:347366.
12. Clough, B.,, M. Strath,, P. Preiser,, P. Denny,, and R. Wilson. 1997.Thiostrepton binds to malarial plastid rRNA. FEBS Lett. 406:123125.
13. Creasey, A.,, K. Mendis,, J. Carlton,, D. Williamson,, I. Wilson,, and R. Carter. 1994. Maternal inheritance of extrachromosomal DNA in malaria parasites. Mol. Biochem. Parasitol. 65:9598.
14. Delwiche, C. 1999.Tracing the tread of plastid diversity through the tapestry of life.Am.Nat. 154:S164S177.
15. Delwiche, C. F.,, and J. D. Palmer. 1997. The origin of plastids and their spread via secondary endosymbiosis. Plant Syst. Evol. 11(Suppl.):5186.
16. Denny, P.,, P. Preisser,, D. Williamson,, and I. Wilson. 1998. Evidence for a single origin of the 35kb plastid DNA in apicomplexans. Protist 149:5159.
17. DeRocher, A.,, C. B. Hagen,, J. E. Froehlich,, J. E. Feagin,, and M. Parsons. 2000. Analysis of targeting sequences demonstrates that trafficking to the Toxoplasma gondii plastid branches off the secretory system. J. Cell Sci. 113:39693977.
18. Dhanasekaran, S.,, N. R. Chandra,, B. K. Chandrasekhar Sagar,, P. N. Rangarajan,, and G. Padmanaban. 2004. Delta-aminolevulinic acid dehydratase from Plasmodium falciparum: indigenous versus imported. J. Biol. Chem. 279:69346942.
19. Diniz, J. A. P.,, E. O. Silva,, R. Lainson,, and W. de Souza. 2000.The fine structure of Garnia gonadati and its association with the host cell. Parasitol. Res. 86:971977.
20. Divo, A.,, A. Sartorelli,, C. Patton,, and F. Bia. 1988. Activity of fluoroqinolone antibiotics against Plasmodium falciparum in vitro. Antimicrob.Agents Chemother. 32:11821186.
21. Dzierszinski, F.,, M. Nishi,, L. Ouko,, and D. S. Roos. 2004. Dynamics of Toxoplasma gondii differentiation. Eukaryot. Cell 3:9921003.
22. Dzierszinski, F.,, O. Popescu,, C. Toursel,, C. Slomianny,, B. Yahiaoui,, and S. Tomavo. 1999.The protozoan parasite Toxoplasma gondii expresses two functional plant-like glycolytic enzymes—implications for evolutionary origin of apicomplexans. J. Biol. Chem. 274:2488824895.
23. Ellis, K. E.,, B. Clough,, J.W. Saldanha,, and R. J. Wilson. 2001. Nifs and Sufs in malaria. Mol. Microbiol. 41:973981.
24. Fast, N. M.,, J. C. Kissinger,, D. S. Roos,, and P. J. Keeling. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18:418426.
25. Fichera, M. E.,, M. K. Bhopale,, and D. S. Roos. 1995. In vitro assays elucidate peculiar kinetics of clindamycin action against Toxoplasma gondii. Antimicrob. Agents Chemother. 39:15301537.
26. Fichera, M. E.,, and D. S. Roos. 1997.A plastid organelle as a drug target in apicomplexan parasites. Nature 390:407409.
27. Fitzpatrick, T.,, S. Ricken,, M. Lanzer,, N. Amrhein,, P. MacHeroux,, and B. Kappes. 2001. Subcellular localization and characterization of chorismate synthase in the apicomplexan Plasmodium falciparum. Mol. Microbiol. 40:6575.
28. Foth, B. J.,, S. A. Ralph,, C. J. Tonkin,, N. S. Struck,, M. Fraunholz,, D. S. Roos,, A. F. Cowman,, and G. I. McFadden. 2003. Dissecting apicoplast targeting in the malaria parasite Plasmodium falciparum. Science 299:705708.
29. Foth, B. J.,, L. M. Stimmler,, E. Handman,, B. S. Crabb,, A. N. Hodder,, and G. I. McFadden. 2005.The malaria parasite Plasmodium falciparum has only one pyruvate dehydrogenase complex, which is located in the apicoplast. Mol. Microbiol. 55:3953.
30. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R. W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J.A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R. W. Davis,, C. M. Fraser,, and B. Barrell. 2002.Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498511.
31. Gardner, M. J.,, D. H. Williamson,, and R. J. M. Wilson. 1991.A circular DNA in malaria parasites encodes an RNA polymerase like that of prokaryotes and chloroplasts. Mol. Biochem.Parasitol. 44:11523.
32. Geary, T. G.,, and J. B. Jensen. 1983. Effects of antibiotics on Plasmodium falciparum in vitro. Am. J. Trop. Med. Hyg. 32:221225.
33. Gozar, M. M.,, and A. S. Bagnara. 1993. Identification of a Babesia bovis gene with homology to the small subunit ribosomal RNA gene from the 35- kilobase circular DNA of Plasmodium falciparum. Int. J. Parasitol. 23:145148.
34. Harb, O. S.,, B. Chatterjee,, M. J. Fraunholz,, M. J. Crawford,, M. Nishi,, and D. S. Roos. 2004.Multiple functionally redundant signals mediate targeting to the apicoplast in the apicomplexan parasite Toxoplasma gondii. Eukaryot. Cell 3:663674.
35. Harper, J.T.,, and P. J. Keeling. 2003. Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Mol. Biol.Evol. 20:17301735.
36. Harwood, J. 1996. Recent advances in the biosynthesis of plant fatty-acids. Biochim. Biophys.Acta 1301: 756.
37. He, C.Y.,, M. K. Shaw,, C. H. Pletcher,, B. Striepen,, L. G. Tilney,, and D. S. Roos. 2001a.A plastid segregation defect in the protozoan parasite Toxoplasma gondii. EMBO J. 20:330339.
38. He, C.Y.,, B. Striepen,, C. H. Pletcher,, J. M. Murray,, and D. S. Roos. 2001b.Targeting and processing of nuclear-encoded apicoplast proteins in plastid segregation mutants of Toxoplasma gondii. J. Biol. Chem. 276:2843628442.
39. Hopkins, J.,, R. Fowler,, S. Krishna,, I. Wilson,, G. Mitchell,, and L. Bannister. 1999.The plastid in Plasmodium falciparum asexual blood stages: a threedimensional ultrastructural analysis. Protist 150:283295.
40. Howe, C. J. 1992. Plastid origin of an extrachromosomal DNA molecule from Plasmodium, the causative agent of malaria. J.Theor. Biol. 158:199205.
41. Huang, J.,, N. Mullapudi,, C. A. Lancto,, M. Scott,, M. S. Abrahamsen,, and J. C. Kissinger. 2004. Phylogenomic evidence supports past endosymbiosis, intracellular and horizontal gene transfer in Cryptosporidium parvum. Genome Biol. 5:R88.
42. Jomaa, H.,, J. Wiesner,, S. Sanderbrand,, B. Altincicek,, C. Weidemeyer,, M. Hintz,, I. Turbachova,, M. Eberl,, J. Zeidler,, H. K. Lichtenthaler,, D. Soldati,, and E. Beck. 1999. Inhibitors of the nonmevalonate pathway of isoprenoid biosynthesis as antimalarial drugs. Science 285:15731576.
43. Keeling, P. J.,, and J. D. Palmer. 2001. Lateral transfer at the gene and subgenic levels in the evolution of eukaryotic enolase. Proc. Natl.Acad. Sci. 98:1074510750.
44. Keeling, P. J.,, J.D. Palmer,, R. G. K. Donald,, D. S. Roos,, R. F. Waller,, and G. I. McFadden. 1998. Shikimate pathway in apicomplexan parasites. Nature 397:219220.
45. Kishore, G. M.,, and D. M. Shah. 1988.Amino acid biosynthesis inhibitors as herbicides. Annu. Rev. Biochem. 57:627663.
46. Köhler, S.,, C. F. Delwiche,, P. W. Denny,, L. G. Tilney,, P. Webster,, R. J. M. Wilson,, J.D. Palmer,, and D. S. Roos. 1997.A plastid of probable green algal origin in apicomplexan parasites. Science 275:14851488.
47. Lang-Unnasch, N.,, M. E. Reith,, J. Munholland,, and J. R. Barta. 1998. Plastids are widespread and ancient in parasites of the phylum Apicomplexa. Int. J. Parasitol. 28:17431754.
48. Li, J. N.,, J.A. Maga,, N. Cermakian,, R. Cedergren,, and J. E. Feagin. 2001. Identification and characterization of a Plasmodium falciparum RNA polymerase gene with similarity to mitochondrial RNA polymerases. Mol. Biochem. Parasitol. 113:261269.
49. Lichtenthaler, H. K.,, M. Rohmer,, and J. Schwender. 1997.Two independent biochemical pathways for isopentenyl diphosphate and isoprenoid biosynthesis in higher plants. Physiol. Plantarum 101:643652.
50. Martin, W.,, T. Rujan,, E. Richly,, A. Hansen,, S. Cornelsen,, T. Lins,, D. Leister,, B. Stoebe,, M. Hasegawa,, and D. Penny. 2002. Evolutionary analysis of Arabidopsis, cyanobacterial, and chloroplast genomes reveals plastid phylogeny and thousands of cyanobacterial genes in the nucleus. Proc. Natl.Acad. Sci. USA 99:1224612251.
51. Matsuzaki, M.,, T. Kikuchi,, K. Kita,, S. Kojima,, and T. Kuroiwa. 2001. Large amounts of apicoplast nucleoid DNA and its segregation in Toxoplasma gondii. Protoplasma 218:180191.
52. Matsuzaki, M.,, O. Misumi,, I. T. Shin,, S. Maruyama,, M. Takahara,, S.Y. Miyagishima,, T. Mori,, K. Nishida,, F. Yagisawa,, Y. Yoshida,, Y. Nishimura,, S. Nakao,, T. Kobayashi,, Y. Momoyama,, T. Higashiyama,, A. Minoda,, M. Sano,, H. Nomoto,, K. Oishi,, H. Hayashi,, F. Ohta,, S. Nishizaka,, S. Haga,, S. Miura,, T. Morishita,, Y. Kabeya,, K. Terasawa,, Y. Suzuki,, Y. Ishii,, S. Asakawa,, H. Takano,, N. Ohta,, H. Kuroiwa,, K. Tanaka,, N. Shimizu,, S. Sugano,, N. Sato,, H. Nozaki,, N. Ogasawara,, Y. Kohara,, and T. Kuroiwa. 2004. Genome sequence of the ultrasmall unicellular red alga Cyanidioschyzon merolae 10D. Nature 428:653657.
53. McConkey, G. A.,, M. J. Rogers,, and T. F. Mc- Cutchan. 1997. Inhibition of Plasmodium falciparum protein synthesis: targeting the plastid-like organelle with thiostrepton. J. Biol. Chem. 272:20462049.
54. McFadden, G. I.,, M. Reith,, J. Munholland,, and N. Lang-Unnasch. 1996. Plastid in human parasites. Nature 381:482.
55. McFadden, G. I.,, and D. S. Roos. 1999. Apicomplexan plastids as drug targets. Trends Microbiol. 6:328333.
56. McFadden, G. I.,, and R. F. Waller. 1997. Plastids in parasites of humans. Bioessays 19:10331040.
57. McFadden, G. I.,, R. F. Waller,, M. Reith,, J. Munholland,, and N. Lang-Unnasch. 1997. Plastids in apicomplexan parasites. Plant Syst. Evol. 11(Suppl.):261287.
58. McMillan, P. J.,, L. M. Stimmler,, B. J. Foth,, G. I. McFadden,, and S. Müller. 2005. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol. Microbiol. 55:2738.
59. Missinou, M.A.,, S. Borrmann,, A. Schindler,, S. Issifou,, A. A. Adegnika,, P. B. Matsiegui,, R. Binder,, B. Lell,, J. Wiesner,, T. Baranek,, H. Jomaa,, and P. G. Kremsner. 2002. Fosmidomycin for malaria. Lancet 360:19411942.
60. Pfefferkorn, E. R.,, and S. E. Borotz. 1994. Comparison of mutants of Toxoplasma gondii selected for resistance to azithromycin, spiramycin, or clindamycin. Antimicrob. Agents Chemother. 338:3137.
61. Prasad, A. R. K.,, and H. A. Dailey. 1995. Generation of resistance to the diphenyl ether herbicide acifluorfen by mel cells. Biochem. Biophys. Res. Commun. 215:186191.
62. Prigge, S.T.,, X. He,, L. Gerena,, N. C. Waters,, and K. A. Reynolds. 2003. The initiating steps of a type II fatty acid synthase in Plasmodium falciparum are catalyzed by pfACP, pfMCAT, and pfKASIII. Biochemistry 42:11601169.
63. Ralph, S. A.,, G. G. Van Dooren,, R. F. Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2:203216.
64. Read, M.,, K. E. Hicks,, P. F. Sims,, and J. E. Hyde. 1994. Molecular characterisation of the enolase gene from the human malaria parasite Plasmodium falciparum. Evidence for ancestry within a photosynthetic lineage. Eur. J. Biochem. 220:513520.
65. Reichenberg, A.,, J. Wiesner,, C. Weidemeyer,, E. Dreiseidler,, S. Sanderbrand,, B. Altincicek,, E. Beck,, M. Schlitzer,, and H. Jomaa. 2001. Diaryl ester prodrugs of FR900098 with improved in vivo antimalarial activity. Bioorg. Med. Chem. Lett. 11: 833835.
66. Reuter, K.,, S. Sanderbrand,, H. Jomaa,, J. Wiesner,, I. Steinbrecher,, E. Beck,, M. Hintz,, G. Klebe,, and M. T. Stubbs. 2002. Crystal structure of 1- deoxy-D-xylulose-5-phosphate reductoisomerase, a crucial enzyme in the non-mevalonate pathway of isoprenoid biosynthesis. J. Biol. Chem. 277:53785384.
67. Roberts, F.,, C. Roberts,, J. Johnson,, D. Kyle,, T. Krell,, J. Coggins,, G. Coombs,, W. Milhous,, S. Tzipori,, D. Ferguson,, D. Chakrabarti,, and R. McLeod. 1998. Evidence for the shikimate pathway apicomplexan parasites. Nature 393:801806.
68. Rogers, M. J.,, Y.V. Burkham,, T. F. McCutchan,, and D. E. Draper. 1997. Interaction of thiostrepton with an RNA fragment derived from the plastid-encoded ribosomal RNA of the malaria parasite.RNA 3:815820.
69. Rohmer, M.,, M. Knani,, P. Simonin,, B. Sutter,, and H. Sahm. 1993. Isoprenoid biosynthesis in bacteria: a novel pathway for the early steps leading to isopentenyl diphosphate. Biochem. J. 295:517524.
70. Sato, S.,, B. Clough,, L. Coates,, and R. J. Wilson. 2004. Enzymes for heme biosynthesis are found in both the mitochondrion and plastid of the malaria parasite Plasmodium falciparum.Protist 155:117125.
71. Sato, S.,, I. Tews,, and R. J. M. Wilson. 2000. Impact of a plastid-bearing endocytobiont on apicomplexan genomes. Int. J. Parasitol. 30:427439.
72. Sato, S.,, and R. J. Wilson. 2002.The genome of Plasmodium falciparum encodes an active delta-aminolevulinic acid dehydratase. Curr. Genet. 40:391398.
73. Seeber, F. 2002. Biogenesis of iron-sulphur clusters in amitochondriate and apicomplexan protists. Int. J.Parasitol. 32:12071217.
74. Strath, M.,, F.T. Scott,, M. Gardner,, D. Williamson,, and I. Wilson. 1993. Antimalarial activity of rifampicin in vitro and in rodent models. Trans. R. Soc.Trop. Med. Hyg. 87:211216.
75. Striepen, B.,, M. J. Crawford,, M. K. Shaw,, L. G. Tilney,, F. Seeber,, and D. S. Roos. 2000. The plastid ofToxoplasma gondii is divided by association with the centrosomes. J. Cell Biol. 151:14231434.
76. Sullivan, M.,, J. Li,, S. Kumar,, M. J. Rogers,, and T. F. McCutchan. 2000. Effects of interruption of apicoplast function on malaria infection, development, and transmission. Mol. Biochem.Parasitol. 109: 1723.
77. Surolia, N.,, and G. Pasmanaban. 1992. De novo biosynthesis of heme offers a new chemotherapeutic target in the human malarial parasite. Biochem. Biophys. Res Commun. 187:744750.
78. Surolia, N.,, S. P. RamachandraRao,, and A. Surolia. 2002. Paradigm shifts in malaria parasite biochemistry and anti-malarial chemotherapy. Bioessays 24:192196.
79. Surolia, N.,, and A. Surolia. 2001.Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat. Med. 7:167173.
80. Tetley, L.,, S. M. Brown,, V. McDonald,, and G. H. Coombs. 1998. Ultrastructural analysis of the sporozoite of Cryptosporidium parvum. Microbiology 144:32493255.
81. Van de Peer, Y.,, and R. De Wachter. 1997. Evolutionary relationships among the eukaryotic crown taxa taking into account site-to-site rate variation in 18S rRNA. J. Mol. Evol. 45:619630.
82. van Dooren, G. G.,, V. Su,, M. C. DiOmbrain,, and G. I. McFadden. 2002. Processing of an apicoplast leader sequence in Plasmodium falciparum, and the identification of a putative leader cleavage enzyme. J. Biol. Chem. 277:2361223619.
83. van Dooren, G. G.,, R. F. Walker,, K.A. Joiner,, D. S. Roos,, and G. I. McFadden. 2000.Traffic jams: protein transport in Plasmodium falciparum.Parasitol. Today 16:421427.
84. Waller, R. F.,, P. J. Keeling,, R. G. K. Donald,, B. Striepen,, E. Handman,, N. Lang-Unnasch,, A. F. Cowman,, G. S. Besra,, D. S. Roos,, and G. I. Mc- Fadden. 1998. Nuclear-encoded proteins target to the plastid in Toxoplasma gondii and Plasmodium falciparum. Proc. Natl.Acad. Sci.USA 95:1235212357.
85. Waller, R. F.,, M. B. Reed,, A. F. Cowman,, and G. I. McFadden. 2000. Protein trafficking to the plastid of Plasmodium falciparum is via the secretory pathway. EMBO J. 19:17941802.
86. Waters, N. C.,, K. M. Kopydlowski,, T. Guszczynski,, L. Wei,, P. Sellers,, J.T. Ferlan,, P. J. Lee,, Z. Li,, C. L. Woodard,, S. Shallom,, M. J. Gardner,, and S.T. Prigge. 2002. Functional characterization of the acyl carrier protein (PfACP) and beta-ketoacyl ACP synthase III (PfKASIII) from Plasmodium falciparum. Mol. Biochem. Parasitol. 123:8594.
87. Weissig, V.,, T. Vetro-Widenhouse,, and T. Rowe. 1997.Topoisomerase II inhibitors induce cleavage of nuclear and 35-kb plastid DNAs in the malarial parasite Plasmodium falciparum. DNA Cell Biol. 16:14831492.
88. Wiesner, J.,, D. Henschker,, D. B. Hutchinson,, E. Beck,, and H. Jomaa. 2002. In vitro and in vivo synergy of fosmidomycin, a novel antimalarial drug, with clindamycin. Antimicrob. Agents Chemother. 46:28892894.
89. Williamson, D. H.,, P.W. Denny,, P.W. Moore,, S. Sato,, S. McCready,, and R. J. Wilson. 2001.The in vivo conformation of the plastid DNA of Toxoplasma gondii: implications for replication. J. Mol. Biol. 306:159168.
90. Williamson, D. H.,, M. J. Gardner,, P. Preiser,, D. J. Moore,, K. Rangachari,, and R. J. Wilson. 1994. The evolutionary origin of the 35 kb circular DNA of Plasmodium falciparum: new evidence supports a possible rhodophyte ancestry. Mol. Gen. Genet. 243: 249252.
91. Williamson, D. H.,, P. R. Preiser,, P.W. Moore,, S. McCready,, M. Strath,, and R. J. Wilson. 2002. The plastid DNA of the malaria parasite Plasmodium falciparum is replicated by two mechanisms. Mol. Microbiol. 45:533542.
92. Wilson, C. M.,, A. B. Smith,, and R. V. Baylon. 1996a. Characterization of the delta-aminolevulinate synthase gene homologue in P. falciparum.Mol. Biochem. Parasitol. 75:271276.
93. Wilson, R. J. M.,, P.W. Denny,, P. R. Preiser,, K. Rangachari,, K. Roberts,, A. Roy,, A. Whyte,, M. Strath,, D. J. Moore,, P.W. Moore,, and D. H. Williamson. 1996b. Complete gene map of the plastid-like DNA of the malaria parasite Plasmodium falciparum. J. Mol. Biol. 261:155172.
94. Wilson, R. J. M.,, M. J. Gardner,, J. E. Feagin,, and D. H. Williamson. 1991. Have malaria parasites three genomes? Parasitol.Today 7:134136.
95. Wolters, J. 1991.The troublesome parasites: molecular and morphological evidence that Apicomplexa belong to the dinoflagellate-ciliate clade. Biosystems 25:7584.
96. Xu, P.,, G. Widmer,, Y. Wang,, L. S. Ozaki,, J. M. Alves,, M. G. Serrano,, D. Puiu,, P. Manque,, D. Akiyoshi,, A. J. Mackey,, W. R. Pearson,, P. H. Dear,, A.T. Bankier,, D. L. Peterson,, M. S. Abrahamsen,, V. Kapur,, S. Tzipori,, and G. A. Buck. 2004. The genome of Cryptosporidium hominis. Nature 431:11071112.
97. Yoon, H. S.,, J.D. Hackett,, G. Pinto,, and D. Bhattacharya. 2002. The single, ancient origin of chromist plastids. Proc. Natl. Acad. Sci.USA 99:1550715512.
98. Yung, S.,, T. R. Unnasch,, and N. Lang-Unnasch. 2001. Analysis of apicoplast targeting and transit peptide processing in Toxoplasma gondii by deletional and insertional mutagenesis. Mol. Biochem. Parasitol. 118:1121.
99. Yung, S. C.,, T. R. Unnasch,, and N. Lang- Unnasch. 2003. cis and trans factors involved in apicoplast targeting in Toxoplasma gondii. J. Parasitol. 89:767776.
100. Zhang, Z.,, B. R. Green,, and T. Cavalier-Smith. 2000. Phylogeny of ultra-rapidly evolving dinoflagellate chloroplast genes: a possible common origin for sporozoan and dinoflagellate plastids. J. Mol. Evol. 51:2640.
101. Zhu, G.,, M. J. Marchewka,, and J. S. Keithly. 2000. Cryptosporidium parvum appears to lack a plastid genome. Microbiology 146:315321.
102. Zuegge, J.,, S. Ralph,, M. Schmuker,, G. I. McFadden,, and G. Schneider. 2001. Deciphering apicoplast targeting signals—feature extraction from nuclear-encoded precursors of Plasmodium falciparum apicoplast proteins. Gene 280:1926.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error