Chapter 17 : Lipids: Metabolism and Function

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Lipids: Metabolism and Function, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap17-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap17-2.gif


This chapter reviews recent advances in understanding the pathways for membrane biogenesis in , presents new information in this field learned from the available genome sequence and its annotation, and discusses progress in lipid-based antimalarial chemotherapy. It focuses on the pathways of synthesis of phospholipids (PLs) and neutral lipids and their importance in parasite physiology, intracellular localization and trafficking of lipids, and newly identified pharmacological targets. Studies with parasites grown in vitro or isolated from patients with malaria have revealed profound changes in the membrane composition and structure of surrounding uninfected red blood cells. Glycerolipid metabolism in various organisms initiates with the acylation of glycerol-3-phosphate, which can be produced by the phosphorylation of glycerol by glycerokinase or the reduction of the glycolytic intermediate dihydroxyacetone-3-phosphate by dihydroxyacetone-3-phosphate dehydrogenase. The available genome has revealed the presence of only one putative acyl-CoA diacylglycerol acyltransferase gene named PfDGAT1. This gene encodes a polypeptide with a molecular mass of 78.1 kDa with a broad acyl-CoA specificity, localized to the microsomes. The de novo biosynthetic pathways of phatidylethanolamine (PE) and phosphatidylcholine (PC) initiate with the phosphorylation of ethanolamine and choline, conversion of the phosphoethanolamine and phosphocholine formed into CDP-ethanolamine and CDP-choline, and DAG-dependent acylation of the latter products into PE and PC, respectively. Subcellular fractionation of the malarial parasites remains a difficult task, and cellular localization of the various lipids and mechanisms mediating their intracellular trafficking remains to be elucidated.

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17

Key Concept Ranking

Amino Acid Decarboxylase
Plasmodium falciparum
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Pathways for the synthesis of phospholipids and neutral lipids in .The pathways shown include the relevant steps discussed in the text and the enzymes involved in these pathways are described in Table 1 . CL, cardiolipin; PGP, phosphatidylglycerol phosphate.

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Ancelin, M. L.,, M. Calas,, A. Bonhoure,, S. Herbute,, and H. J. Vial. 2003. In vivo antimalarial activities of mono- and bis quaternary ammonium salts interfering with Plasmodium phospholipid metabolism. Antimicrob.Agents Chemother. 47:25982605.
2. Ancelin, M. L.,, M. Parant,, M. J. Thuet,, J. R. Philippot,, and H. J. Vial. 1991. Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochem. J. 273:701709.
3. Ancelin, M. L.,, and H. J. Vial. 1989. Regulation of phosphatidylcholine biosynthesis in Plasmodium-infected erythrocytes.Biochim.Biophys.Acta 1001:8289.
4. Ansorge, I.,, D. Jeckel,, F. Wieland,, and K. Lingelbach. 1995. Plasmodium falciparum-infected erythrocytes utilize a synthetic truncated ceramide precursor for synthesis and secretion of truncated sphingomyelin. Biochem. J. 308:335341.
5. Ardail, D.,, F. Gasnier,, F. Lerme,, C. Simonot,, P. Louisot,, and O. Gateau-Roesch. 1993. Involvement of mitochondrial contact sites in the subcellular compartmentalization of phospholipid biosynthetic enzymes. J. Biol. Chem. 268:2598525992.
6. Baunaure, F.,, P. Eldin,, A.-M. Cathiard,, and H. Vial. 2004. Characterization of a non-mitochondrial type I phosphatidylserine decarboxylase in Plasmodium falciparum. Mol. Microbiol. 51:3346.
7. Beaumelle, B. D. 1987. Métabolisme des acides gras et dynamique des phospholipides dans l’érythrocyte infecté par le parasite du paludisme. Ph.D. Thesis. Université de Montpellier II, Montpellier, France.
8. Beaumelle, B. D.,, and H. J. Vial. 1988a.Acyl-CoA synthetase activity in Plasmodium knowlesi-infected erythrocytes displays peculiar substrate specificities. Biochim. Biophys.Acta 958:19.
9. Beaumelle, B.D.,, and H. J. Vial. 1988b. Uninfected red cells from malaria-infected blood: alteration of fatty acid composition involving a serum protein: an in vivo and in vitro study. In Vitro Cell. Dev. Biol. 24:711718.
10. Beaumelle, B. D.,, H. J. Vial,, and A. Bienvenüe. 1988. Enhanced transbilayer mobility of phospholipids in malaria-infected monkey erythrocytes: a spin-label study. J. Cell. Physiol. 135:94100.
11. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39:2636.
12. Biagini, G. A.,, E. M. Pasini,, R. Hughes,, H. P. De Koning,, H. J. Vial,, P. M. O’Neill,, S.A. Ward,, and P. G. Bray. 2004. Characterization of the choline carrier of Plasmodium falciparum:a route for the selective delivery of novel antimalarial drugs. Blood 104:33723377.
13. Biagini, G.A.,, E. Richier,, P.G. Bray,, M. Calas,, H. Vial,, and S. A. Ward. 2003. Heme binding contributes to antimalarial activity of bis-quaternary ammoniums. Antimicrob.Agents Chemother. 47:25842589.
14. Bozdech, Z.,, M. Llinas,, B. L. Pulliam,, E.D. Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1:E5.
15. Brand, V.,, C. Sandu,, C. Duranton,, V. Tanneur,, K. Lang,, S. Huber,, and F. Lang. 2003. Dependence of Plasmodium falciparum in vitro growth on the cation permeability of the human host erythrocyte. Cell. Physiol. Biochem.13:347356.
16. Carman, G. M.,, and S. A. Henry. 1999. Phospholipid biosynthesis in the yeast Saccharomyces cerevisiae and interrelationship with other metabolic processes. Prog. Lipid Res. 38:361399.
17. Coleman, R.A.,, and D. P. Lee. 2004. Enzymes of triacylglycerol synthesis and their regulation. Prog. Lipid Res. 43:134176.
18. Das, I.,, J. De Belleroche,, C. J. Moore,, and F. C. Rose. 1986. Determination of free choline in plasma and erythrocyte samples and choline derived from membrane phosphatidylcholine by a chemioluminescent method. Anal. Biochem. 152: 178182.
19. Divo, A. A.,, T. G. Geary,, N. L. Davis,, and J. B. Jensen. 1985. Nutritional requirements of Plasmodium falciparum in culture. I.Exogenously supplied dialyzable components necessary for continuous growth. J. Protozool. 32:5964.
20. Dowhan, W. 1997. Molecular basis for membrane phospholipid diversity:why are there so many lipids? Annu. Rev. Biochem. 66:199232.
21. Eda, S.,, and I.W. Sherman. 2002. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell. Physiol. Biochem. 12:373384.
22. Elabbadi, N.,, M. L. Ancelin,, and H. J. Vial. 1997. Phospholipid metabolism of serine in Plasmodiuminfected erythrocytes involves phosphatidylserine and direct serine decarboxylation. Biochem. J. 324:435445.
23. Enjalbal, C.,, R. Roggero,, R. Cerdan,, J. Martinez,, H. Vial,, and J. L. Aubagnac. 2004. Automated monitoring of phosphatidylcholine biosyntheses in Plasmodium falciparum by electrospray ionization mass spectrometry through stable isotope labeling experiments. Anal. Chem. 76:45154521.
24. Faergeman, N. J.,, P.N. Black,, X.D. Zhao,, J. Knudsen,, and C. C. DiRusso. 2001. The acyl-CoA synthetases encoded within FAA1 and FAA4 in Saccharomyces cerevisiae function as components of the fatty acid transport system linking import, activation, and intracellular utilization. J. Biol. Chem. 276:3705137059.
25. Fitch, C.D. 2004. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 74:19571972.
26. Gerold, P.,, and R.T. Schwarz. 2001. Biosynthesis of glycosphingolipids de-novo by the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 112:2937.
27. Grellier, P.,, D. Rigomier,, V. Clavey,, J.C. Fruchart,, and J. Schrével. 1991. Lipid traffic between high density lipoproteins and Plasmodium falciparuminfected red blood cells. J. Cell Biol. 112:267277.
28. Haldar, K. 1996. Sphingolipid synthesis and membrane formation by Plasmodium. Trends Cell Biol. 6:398405.
29. Haldar, K.,, A. F. De Amorim,, and G.A. M. Cross. 1989. Transport of fluorescent phospholipid analogues from the erythrocyte membrane to the parasite in Plasmodium falciparum-infected cells. J. Cell Biol. 108:21832192.
30. Haldar, K.,, N. Mohandas,, B. U. Samuel,, T. Harrison,, N. L. Hiller,, T. Akompong,, and P. Cheresh. 2002. Protein and lipid trafficking induced in erythrocytes infected by malaria parasites. Cell. Microbiol. 4:383395.
31. Hanada, K.,, T. Mitamura,, M. Fukasawa,, P.A. Magistrado,, T. Horii,, and M. Nishijima. 2000.Neutral sphingomyelinase activity dependent on Mg2+ and anionic phospholipids in the intraerythrocytic malaria parasite Plasmodium falciparum. Biochem. J. 346:671677.
32. Hanada, K.,, N. M. Palacpac,, P.A. Magistrado,, K. Kurokawa,, G. Rai,, D. Sakata,, T. Hara,, T. Horii,, M. Nishijima,, and T. Mitamura. 2002. Plasmodium falciparum phospholipase C hydrolyzing sphingomyelin and lysocholinephospholipids is a possible target for malaria chemotherapy. J. Exp. Med. 195:2334.
33. Hannun, Y. A. 1994. The sphingomyelin cycle and second messenger function of ceramide. J. Biol.Chem. 269:31253128.
34. Holz, G.G. 1977. Lipids and the malaria parasite. Bull. W. H. O. 55:237248.
35. Huitema, K.,, J. van den Dikkenberg,, J. F. Brouwers,, and J. C. Holthuis. 2004. Identification of a family of animal sphingomyelin synthases.EMBO J. 23:3344.
36. Jackson, K. E.,, N. Klonis,, D. J. Ferguson,, A. Adisa,, C. Dogovski,, and L. Tilley. 2004. Food vacuoleassociated lipid bodies and heterogeneous lipid environments in the malaria parasite, Plasmodium falciparum. Mol. Microbiol. 54:109122.
37. Joshi, P.,, G. P. Dutta,, and C. M. Crupta. 1987.An intracellular siman malarial parasite (Plasmodium knowlesi) induces stage-dependent alterations in membrane phospholipid organization of its host erythrocyte. Biochem. J. 146:103108.
38. Kent, C. 1995. Eukaryotic phospholipid biosynthesis. Annu. Rev. Biochem. 64:315343.
39. Krishnegowda, G.,, and D. C. Gowda. 2003. Intraerythrocytic Plasmodium falciparum incorporates extraneous fatty acids to its lipids without any structural modification. Mol. Biochem. Parasitol. 132:55].
40. Krugliak, M.,, Z. Waldman,, and H. Ginsburg. 1987. Gentamicin and amikacin repress the growth of Plasmodium falciparum in culture, probably by inhibiting a parasite acid phospholipase. Life Sci. 40:12531257.
41. Lang, F.,, P.A. Lang,, K. S. Lang,, V. Brand,, V. Tanneur,, C. Duranton,, T. Wieder,, and S. M. Huber. 2004. Channel-induced apoptosis of infected host cells—the case of malaria. Pflugers Arch. 448:319324.
42. Larvor, M. P.,, R. Cerdan,, C. Gumila,, L. Maurin,, P. Seta,, C. Roustan,, and H. Vial. 2003. Characterization of the lipid-binding domain of the Plasmodium falciparum CTP:phosphocholine cytidylyltransferase through synthetic-peptide studies. Biochem. J. 375:653661.
43. Lauer, S.,, J. VanWye,, T. Harrison,, H. McManus,, B. U. Samuel,, N. L. Hiller,, N. Mohandas,, and K. Haldar. 2000.Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19:35563564.
44. Lauer, S.A.,, N. Ghori,, and K. Haldar. 1995. Sphingolipid synthesis as a target for chemotherapy against malaria parasites. Proc. Natl.Acad. Sci.USA 92:91819185.
45. Lehane, A. M.,, K. J. Saliba,, R. J. Allen,, and K. Kirk. 2004. Choline uptake into the malaria parasite is energized by the membrane potential. Biochem. Biophys. Res. Commun. 320:311317.
46. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A.A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:15031508.
47. Maguire, P.A.,, J. Prudhomme,, and I.W. Sherman. 1991. Alterations in erythrocyte membrane phospholipid organization due to the intracellular growth of the human malaria parasite, Plasmodium falciparum. Parasitology 102:179186.
48. Maguire, P. A.,, and I.W. S. Sherman. 1990. Phospholipid composition, cholesterol content and cholesterol exchange in Plasmodium falciparum-infected red cells. Mol. Biochem. Parasitol. 38:105112.
49. Marechal, E.,, N. Azzouz,, C. S. de Macedo,, M.A. Block,, J. E. Feagin,, R.T. Schwarz,, and J. Joyard. 2002. Synthesis of chloroplast galactolipids in apicomplexan parasites. Eukaryot. Cell 1:653656.
50. Martin, D.,, L. Gannoun-Zaki,, S. Bonnefoy,, P. Eldin,, K. Wengelnik,, and H. Vial. 2000. Characterization of Plasmodium falciparum CDP-diacylglycerol synthase, a proteolytically cleaved enzyme. Mol. Biochem. Parasitol. 110:93105.
51. Matesanz, F.,, M.M. Tellez,, and A. Alcina. 2003.The Plasmodium falciparum fatty acyl-CoA synthetase family (PfACS) and differential stage-specific expression in infected erythrocytes. Mol. Biochem. Parasitol. 126:109112.
52. Mitamura, T.,, K. Hanada,, E. P. Ko-Mitamura,, M. Nishijima,, and T. Horii. 2000. Serum factors governing intraerythrocytic development and cell cycle progression of Plasmodium falciparum. Parasitol. Int. 49:219229.
53. Moll, G. N.,, H. J. Vial,, M. L. Ancelin,, J. A. Op den Kamp,, B. Roelofsen,, and L. L. van Deenen. 1988. Phospholipid uptake by Plasmodium knowlesi infected erythrocytes. FEBS Lett. 232:341346.
54. Moll, G. N.,, H. J. Vial,, F. C. vanderWiele,, M. L. Ancelin,, B. Roelofsen,, A. J. Slotboom,, G. H. de Haas,, L. L. van Deenen,, and J. A. Op den Kamp. 1990. Selective elimination of malaria infected erythrocytes by a modified phospholipase A2 in vitro. Biochim. Biophys.Acta 1024:189192.
55. Murphy, S. C.,, B. U. Samuel,, T. Harrison,, K. D. Speicher,, D.W. Speicher,, M. E. Reid,, R. Prohaska,, P. S. Low,, M. J. Tanner,, N. Mohandas,, and K. Haldar. 2004. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 103:19201928.
56. Nagao, E.,, K. B. Seydel,, and J. A. Dvorak. 2002. Detergent-resistant erythrocyte membrane rafts are modified by a Plasmodium falciparum infection. Exp. Parasitol. 102:5759.
57. Naik, R. S.,, O. H. Branch,, A. S. Woods,, M. Vijaykumar,, D. J. Perkins,, B. L. Nahlen,, A. A. Lal,, R. J. Cotter,, C. E. Costello,, C. F. Ockenhouse,, E.A. Davidson,, and D.C. Gowda. 2000. Glycosylphosphatidylinositol anchors of Plasmodium falciparum: molecular characterization and naturally elicited antibody response that may provide immunity to malaria pathogenesis. J. Exp. Med. 192: 15631576.
58. Nawabi, P.,, A. Lykidis,, D. Ji,, and K. Haldar. 2003. Neutral-lipid analysis reveals elevation of acylglycerols and lack of cholesterol esters in Plasmodium falciparum- infected erythrocytes. Eukaryot. Cell 2: 11281131.
59. Omodeo-Sale, F.,, A. Motti,, N. Basilico,, S. Parapini,, P. Olliaro,, and D. Taramelli. 2003. Accelerated senescence of human erythrocytes cultured with Plasmodium falciparum. Blood 102:705711.
60. Palacpac, N. M. Q.,, Y. Hiramine,, F. Mi-Ichi,, M. Torii,, K. Kita,, R. Hiramatsu,, T. Horii,, and T. Mitamura. 2004.Developmental-stage-specific triacylglycerol biosynthesis, degradation and trafficking as lipid bodies in Plasmodium falciparum-infected erythrocytes. J. Cell Sci. 117:14691480.
61. Pandey, A.V.,, V.K. Babbarwal,, J.N. Okoyeh,, R. M. Joshi,, S. K. Puri,, R. L. Singh, andV. S. Chauhan. 2003. Hemozoin formation in malaria: a two-step process involving histidine-rich proteins and lipids. Biochem. Biophys. Res.Commun. 308:736743.
62. Pessi, G.,, G. Kociubinski,, and C. B. Mamoun. 2004. A pathway for phosphatidylcholine biosynthesis in Plasmodium falciparum involving phosphoethanolamine methylation. Proc. Natl. Acad. Sci. USA 101:62066211.
63. Ralph, S. A.,, G. G. Van Dooren,, R. F. Waller,, M. J. Crawford,, M. J. Fraunholz,, B. J. Foth,, C. J. Tonkin,, D. S. Roos,, and G. I. McFadden. 2004. Tropical infectious diseases: metabolic maps and functions of the Plasmodium falciparum apicoplast. Nat. Rev. Microbiol. 2:203216.
64. Roggero, R.,, R. Zufferey,, M. Minca,, E. Richier,, M. Calas,, H. Vial,, and C. Ben Mamoun. 2004. Unraveling the mode of action of the antimalarial choline analog G25 in Plasmodium falciparum and Saccharomyces cerevisiae. Antimicrob.Agents Chemother. 48:28162824.
65. Rontein, D.,, I. Nishida,, G. Tashiro,, K. Yoshioka,, W. I. Wu,, D. R. Voelker,, G. Basset,, and A.D. Hanson. 2001. Plants synthesize ethanolamine by direct decarboxylation of serine using a pyridoxal phosphate enzyme. J. Biol. Chem. 276:3552335529.
66. Salom-Roig, X.,, H. Hamzé,, M. Calas,, and H. Vial.2005. Dual molecules as new antimalarials. Comb. Chem. High Throughput Screen. 8:4962.
67. Samuel, B.U.,, N. Mohandas,, T. Harrison,, H. Mc- Manus,, W. Rosse,, M. Reid,, and K. Haldar. 2001. The role of cholesterol and glycosylphosphatidylinositol- anchored proteins of erythrocyte rafts in regulating raft protein content and malarial infection. J. Biol. Chem. 276:2931929329.
68. Santiago, T. C.,, R. Zufferey,, R. S. Mehra,, R. A. Coleman,, and C. Ben Mamoun. 2004.The Plasmodium falciparum PfGatp is an endoplasmic reticulum membrane protein important for the initial step of malarial glycerolipid synthesis. J. Biol. Chem.279:92229232.
69. Sherman, I.W.,, S. Eda,, and E. Winograd. 2003.Cytoadherence and sequestration in Plasmodium falciparum: defining the ties that bind. Microbes Infect. 5:897909.
70. Sherman, I.W.,, J. Prudhomme,, and J. F. Tait. 1997. Altered membrane phospholipid asymmetry in Plasmodium falciparum-infected erythrocytes. Parasitol. Today 13:242243.
71. Sherman, L. 1979. Biochemistry of Plasmodium (malarial parasites). Microbiol. Rev. 43:453495.
72. Shibuya, I. 1992. Metabolic regulations and biological functions of phospholipids in Escherichia coli. Prog. Lipid Res. 31:245299.
73. Shohet, S. B. 1971.The apparent transfer of fatty acid from phosphatidylcholine to phosphatidylethanolamine in human erythrocytes.J.Lipid Res. 12:139141.
74. Simões, A. P.,, S. Fiebig,, F. Wunderlich,, H. Vial,, B. Roelofsen,, and J.A. Op den Kamp. 1993. Plasmodium chabaudi-parasitized erythrocytes: phosphatidylcholine species of parasites and host cell membranes. Mol. Biochem. Parasitol. 57:345348.
75. Simões, A. P.,, G.N. Moll,, B. Beaumelle,, H. J. Vial,, B. Roelofsen,, and J. A. Op den Kamp. 1990. Plasmodium knowlesi induces alterations in phosphatidylcholine and phosphatidylethanolamine molecular species composition of parasitized monkey erythrocytes. Biochim. Biophys.Acta 1022:135145.
76. Smith, J. D. 1993. Phospholipid biosynthesis in protozoa. Prog. Lipid Res. 32:4760.
77. Sohlenkamp, C.,, I. M. Lopez-Lara,, and O. Geiger. 2003. Biosynthesis of phosphatidylcholine in bacteria. Prog. Lipid Res. 42:115162.
78. Stahl, U.,, A. S. Carlsson,, M. Lenman,, A. Dahlqvist,, B. Huang,, W. Banas,, A. Banas,, and S. Stymne. 2004. Cloning and functional characterization of a phospholipid:diacylglycerol acyltransferase from Arabidopsis. Plant Physiol. 135:13241335.
79. Staines, H. M.,, and K. Kirk. 1998. Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei. Biochem. J. 334:525530.
80. Surolia, A.,, T. Ramya,, V. Ramya,, and N. Surolia. 2004. ‘FAS’t inhibition of malaria. Biochem. J. 383: 401412.
81. Surolia, N.,, and A. Surolia. 2001.Triclosan offers protection against blood stages of malaria by inhibiting enoyl-ACP reductase of Plasmodium falciparum. Nat. Med. 7:167173.
82. Tellez, M.,, F. Matesanz,, and A. Alcina. 2003.The C-terminal domain of the Plasmodium falciparum acyl-CoA synthetases PfACS1 and PfACS3 functions as ligand for ankyrin. Mol. Biochem. Parasitol. 129:191198.
83. Van Deenen, L. L. M.,, and J. De Gier,. 1975. Lipids of the red cell membrane, p. 147211. In G. Surgenor (ed.), The Red Blood Cell.Academic Press,New York, N.Y.
84. Van der Schaft, P. H.,, B. Beaumelle,, H. Vial,, B. Roelofsen,, J. A. Op den Kamp,, and L. L. Van Deenen. 1987. Phospholipid organization in monkey erythrocytes upon Plasmodium knowlesi infection. Biochim. Biophys.Acta 901:114.
85. Vial, H.,, S. Wein,, C. Farenc,, F. Bressolle,, C. Kocken,, A. Thomas,, and M. Calas. 2004. Prodrugs of bisthiazolium salts are orally potent antimalarials. Proc. Natl.Acad. Sci.USA 101:1545815463.
86. Vial, H. J.,, and M. L. Ancelin. 1992. Malarial lipids. An overview. Subcell. Biochem. 18:259306.
87. Vial, H. J.,, M. L. Ancelin,, J. R. Philippot,, and M. J. Thuet. 1990. Biosynthesis and dynamics of lipids in Plasmodium-infected mature mammalian erythrocytes. Blood Cells 16:531555.
88. Vial, H. J.,, M. L. Ancelin,, M. J. Thuet,, and J. R. Philippot. 1989. Phospholipid metabolism in Plasmodium- infected erythrocytes: guidelines for further studies using radioactive precursor incorporation. Parasitology 98:351357.
89. Vial, H. J.,, and M. Calas,. 2001. Inhibitors of phospholipid metabolism, p. 347365. In P. Rosenthal (ed.), Antimalarial Chemotherapy, Mechanisms of Action, Modes of Resistance, and New Directions in Drug Development. Humana Press,Totowa,N.J.
90. Vial, H. J.,, P. Eldin,, A. G. Tielens,, and J. J. van Hellemond. 2003. Phospholipids in parasitic protozoa. Mol. Biochem. Parasitol. 126:143154.
91. Vial, H. J.,, M. J. Thuet,, M. L. Ancelin,, J. R. Philippot,, and C. Chavis. 1984a. Phospholipid metabolism as a new target for malaria chemotherapy. Mechanism of action of D-2-amino-1-butanol. Biochem. Pharmacol. 33:27612770.
92. Vial, H. J.,, M. J. Thuet,, J. L. Broussal,, and J. R. Philippot. 1982a. Phospholipid biosynthesis by Plasmodium knowlesi-infected erythrocytes: the incorporation of phospholipid precursors and the identification of previously undetected metabolic pathways. J. Parasitol. 68:379391.
93. Vial, H. J.,, M. J. Thuet,, and J. R. Philippot. 1984b. Cholinephosphotransferase and ethanolaminephosphotransferase activities in Plasmodium knowlesi-infected erythrocytes. Their use as parasite-specific markers. Biochim. Biophys.Acta 795:372383.
94. Vial, H. J.,, M. J. Thuet,, and J. R. Philippot. 1982b. Phospholipid biosynthesis in synchronous Plasmodium falciparum cultures. J. Protozool. 29:258263.
95. Vielemeyer, O.,, M.T. McIntosh,, K.A. Joiner,, and I. Coppens. 2004. Neutral lipid synthesis and storage in the intraerythrocytic stages of Plasmodium falciparum. Mol. Biochem. Parasitol. 135:197209.
96. Wang, L.,, N. Mohandas,, A. Thomas,, and R. L. Coppel. 2003.Detection of detergent-resistant membranes in asexual blood-stage parasites of Plasmodium falciparum.Mol.Biochem.Parasitol. 130:149153.
97. Wang, Q.,, S. Brown,, D. S. Roos,, V. Nussenzweig,, and P. Bhanot. 2004.Transcriptome of axenic liver stages of Plasmodium yoelii. Mol. Biochem. Parasitol. 137:161168.
98. Wengelnik, K.,, V. Vidal,, M. L. Ancelin,, A. M. Cathiard,, J. L. Morgat,, C. H. Kocken,, M. Calas,, S. Herrera,, A.W. Thomas,, and H. J. Vial. 2002. A class of potent antimalarials and their specific accumulation in infected erythrocytes. Science 295:13111314.
99. Yeo, H. J.,, M. P. Larvor,, M. L. Ancelin,, and H. J. Vial. 1997. Plasmodium falciparum CTP:phosphocholine cytidylyltransferase expressed in Escherichia coli: purification, characterization and lipid regulation. Biochem. J. 324:903910.
100. Yeo, H. J.,, J. Sri Widada,, O. Mercereau-Puijalon,, and H. J. Vial. 1995. Molecular cloning of CTP:phosphocholine cytidylyltransferase from Plasmodium falciparum. Eur. J. Biochem. 233:6272.


Generic image for table

Known and putative phospholipid and neutral lipid enzymes of

Citation: Vial H, Ben Mamoun C. 2005. Lipids: Metabolism and Function, p 327-352. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch17

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error