1887

Chapter 19 : Oxidative Stress and Antioxidant Defense in Malarial Parasites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Oxidative Stress and Antioxidant Defense in Malarial Parasites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap19-2.gif

Abstract:

This chapter summarizes the currently available knowledge on sources of oxidative and nitrosative stress in malarial parasites, the different available detoxification pathways, and the impact on mechanisms of drug action. -infected red blood cells ( IRBCs) appear to be under exogenous and endogenous oxidative stress. Malaria parasites induce oxidative stress in their host red blood cell. In the membrane of -parasitized cells, increasing amounts of hemichromes and band 3 aggregates have been demonstrated. Peroxidized IRBCs generate 4-hydroxyalk- 2-enals and alka-2,4-dienals, and these aldehydes are toxic to in vitro. Thus, the antioxidant capabilities of the parasite and RBC are of considerable significance. The majority of the peroxide-detoxifying capacity, however, seems to be provided by peroxiredoxins. Glutathione S-transferase exhibits glutathione peroxidase activity, which might contribute to the total peroxide-reducing capacity of the parasite, since the enzyme is present at very high concentrations. Superoxide dismutase (SOD) is the major enzyme involved in catabolizing the superoxide anion, resulting in production of molecular oxygen and hydrogen peroxide. possesses a classical 2-Cys glutaredoxin (PfGrx1) and a redox-active 1-Cys glutaredoxin-like protein (PfGLP-1). The glyoxalase system consists of glyoxalase I (GloI), glyoxalase II (GloII), and the coenzyme glutathione. It is a cyclic metabolic pathway removing toxic 2-oxoaldehydes like methylglyoxal by converting them to the corresponding nontoxic 2-hydroxycarboxylic acids like D-lactate. Artemisinin has been shown to react with glutathione (GSH) and to increase levels of lipid peroxidation.

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19

Key Concept Ranking

Reactive Oxygen Species
0.4343908
Tumor Necrosis Factor
0.42497128
0.4343908
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A schematic representation of the antioxidant defense in .

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap19
1. Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. Am. J. Respir. Cell Mol. Biol. 22: 401 404.
2. Akoachere, M.,, R. Iozef,, S. Rahlfs,, M. Deponte,, B. Mannervik,, D. J. Creighton,, H. Schirmer,, and K. Becker. 2005. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem. 386: 41 52.
3. Atamna, H.,, and H. Ginsburg. 1997. The malaria parasite supplies glutathione to its host cell—investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur. J. Biochem. 250: 670 679.
4. Becker, K.,, S. M. Kanzok,, R. Iozef,, M. Fischer,, R. H. Schirmer,, and S. Rahlfs. 2003a. Plasmoredoxin,a novel redox-active protein unique for malarial parasites. Eur. J. Biochem. 270: 1057 1064.
5. Becker, K.,, S. Rahlfs,, C. Nickel,, and R. H. Schirmer. 2003b. Glutathione—function and metabolism in the malarial parasite Plasmodium falciparum. Biol. Chem. 348: 551 566.
6. Becker, K.,, L. Tilley,, J. L. Vennerstrom,, D. Roberts,, S. Rogerson,, and H. Ginsburg. 2004. Oxidative stress in malaria parasite-infected erythrocytes:hostparasite interactions. Int. J. Parasitol. 34: 163 189.
7. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39: 26 36.
8. Bozdech, Z.,, and H. Ginsburg. 2004. Antioxidant defense in Plasmodium falciparum—data mining of the transcriptome. Malar. J. 3: 23.
9. Bozdech, Z.,, M. Llinás,, B. L. Pulliam,, E. D. Wong,, J. Zhu,, and J. L. DeRisi. 2003. The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1: E5.
10. Buffinton, G. D.,, N. H. Hunt,, W. B. Cowden, and I A. Clark. 1988. Detection of short-chain carbonyl products of lipid peroxidation from malaria-infected erythrocytes exposed to oxidative stress. Biochem. J. 249: 63 68.
11. Campanale, N.,, C. Nickel,, C. Daubenberger,, D. Wehlan,, J. Gorman,, M. Foley,, N. Klonis,, K. Becker,, and L. Tilley. 2003. Identification and characterisation of a series of haem-interacting proteins of the malaria parasite, Plasmodium falciparum. J. Biol. Chem. 278: 27354 27361.
12. Clark, I. A.,, W. B. Cowden,, N. H. Hunt,, and E.J. Mackie. 1984. Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G-6-PD deficiency. Br. J. Haematol. 57: 479 487
13. Das, B. S.,, D. I. Thurnham,, and D. B. Das. 1996. Plasma alpha-tocopherol, retinol, and carotenoids in children with falciparum malaria. Am. J. Clin. Nutr. 64: 94 100.
14. Davioud-Charvet, E.,, S. Delarue,, C. Biot,, B. Schwobel,, C. C. Boehme,, A. Mussigbrodt,, L. Maes,, C. Sergheraert,, P. Grellier,, R. H. Schirmer,, and K. Becker. 2001. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J.Med. Chem. 44: 4268 4276.
15. De Macedo, C.S.,, M.L. Uhrig,, E.A. Kimura,,and A. M. Katzin. 2002. Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum. FEMS Microbiol. Lett. 207: 13 22.
16. Dive, D.,, S. Gratepanche,, H. Yera,, P. Becuwe,, W. Daher,, P. Delplace,, C. Odberg-Ferragut,, M. Capron,, and J. Khalife. 2003. Superoxide dismutase in Plasmodium: a current survey. Redox Rep. 8: 265 267.
17. Dondorp, A. M.,, M. Nyanoti,, P.A. Kager,, S. Mithwani,, J. Vreeken,, and K. Marsh. 2002. The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans. R. Soc.Trop. Med. Hyg. 96: 282 286.
18. Eaton, J.W.,, J. R. Eckman,, E. Berger,, and H. S. Jacob. 1976. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 264: 758 760.
19. Eda, S.,, and I.W. Sherman. 2002. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell. Physiol. Biochem. 12: 373 384.
20. Engwerda, C. R.,, T. L. Mynott,, S. Sawhney,, J. B. De Souza,, Q. D. Bickle,, and P. M. Kaye. 2002. Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195: 1371 1377.
21. Famin, O.,, and H. Ginsburg. 2003. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite’s 6-phosphogluconate dehydrogenase. Parasite 10: 39 50.
22. Favre, N.,, B. Ryffel,, and W. Rudin. 1999. Parasite killing in murine malaria does not require nitric oxide production. Parasitology 118: 139 143.
23. Fritz-Wolf, K.,, A. Becker,, S. Rahlfs,, P. Harwaldt,, R. H. Schirmer,, W. Kabsch,, and K. Becker. 2003. X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum. Proc. Natl.Acad. Sci. USA 100: 13821 13826.
24. Gamain, B.,, G. Langsley,, M. N. Fourmaux,, J. P. Touzel,, D. Camus,, D. Dive,, and C. Slomianny. 1996. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 78: 237 248.
25. Ginsburg, H.,,and H. Atamna. 1994. The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1: 5 13.
26. Golenser, J.,, J. Miller,, D.T. Spira,, T. Navok,, and M. Chevion. 1983. Inhibitory effect of a fava bean component on the in vitro development of Plasmodium falciparum in normal and glucose-6-phosphate dehydrogenase deficient erythrocytes. Blood 61: 507 510.
27. Grellier, P.,, J. Sarlauskas,, Z. Anusevicius,, A. Maroziene,, C. Houee-Levin,, J. Schrevel,, and N. Cenas. 2001. Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase. Arch. Biochem. Biophys. 393: 199 206.
28. Griffiths, M. J.,, F. Ndungu,, K. L. Baird,, D. P. Muller,, K. Marsh,, and C. H. Newton. 2001. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br. J. Haematol. 113: 486 491.
29. Harada, M.,, M. Owhashi,, S. Suguri,, A. Kumatori,, M. Nakamura,, H. Kanbara,, H. Matsuoka,, and A. Ishii. 2001. Superoxide-dependent and -independent pathways are involved in the transmission blocking of malaria. Parasitol. Res. 87: 605 608.
30. Harwaldt, P.,, S. Rahlfs,, and K. Becker. 2002. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol. Chem. 383: 821 830.
31. Iozef, R.,, S. Rahlfs,, T. Chang,, R. H. Schirmer,, and K. Becker. 2003. Glyoxalase 1 of the malarial parasite Plasmodium falciparum. Evidence for subunit fusion in glyoxalase I. FEBS Lett. 554: 284 288.
32. Kanzok, S. M.,, A. Fechner,, H. Bauer,, J. K. Ulschmid,, H. M. Muller,, J. Botella-Munoz,, S. Schneuwly,, R. Schirmer,, and K. Becker. 2001. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291: 643 646.
33. Kita, K.,, K. Hirawake,, H. Miyadera,, H. Amino,, and S. Takeo. 2002. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum.Biochim.Biophys.Acta 1553: 123 139.
34. Komaki-Yasuda, K.,, S. Kawazu,, and S. Kano. 2003. Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett. 547: 140 144.
35. Le Roch, K. G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De la Vega,, A. A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
36. Lew, V. L.,, T. Tiffert,, and H. Ginsburg. 2003. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101: 4189 4194.
37. Liebau, E.,, B. Bergmann,, A. M. Campbell,, P. Teesdale-Spittle,, P. M. Brophy,, K. Luersen,, and R. D. Walter. 2002. The glutathione S-transferase from Plasmodium falciparum. Mol.Biochem.Parasitol. 124: 85 90.
38. McMillan, P. J.,, L. M. Stimmler,, B. J. Foth,, G. I. McFadden,, and S. Muller. 2005. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol. Microbiol. 55: 27 38.
39. Meierjohann, S.,, R. D. Walter,, and S. Muller. 2002. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum. Biochem. J. 368: 761 768.
40. Meshnick, S. R. 2002. Artemisinin: mechanisms of action, resistance and toxicity. Int.J.Parasitol. 32: 1655 1660.
41. Muller, S. 2004. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol.Microbiol. 53: 1291 1305.
42. Rahlfs, S.,, and K. Becker. 2001. Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur. J. Biochem. 268: 1404 1409.
43. Rahlfs, S.,, C. Nickel,, M. Deponte,, R. H. Schirmer,, and K. Becker. 2003. Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep. 8: 246 250.
44. Rahlfs, S.,, R. H. Schirmer,, and K. Becker. 2002. The thioredoxin system of Plasmodium falciparum and other parasites. Cell.Mol.Life Sci. 59: 1024 1041.
45. Sanni, L.A.,, S. Fu,, R.T. Dean,, G. Bloomfield,, R. Stocker,, G. Chaudhri,, M. C. Dinauer,, and N. H. Hunt. 1999. Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria ? J. Infect. Dis. 179: 217 222.
46. Sarma, G. N.,, S. N. Savvides,, K. Becker,, M. Schirmer,, R. H. Schirme, and P. A. Karplus. 2003. Glutathione reductase of the malarial parasite Plasmodium falciparum:crystal structure and inhibitor development. J. Mol. Biol. 328: 893 907.
47. Schirmer, R. H.,, H. Bauer,, and K. Becker,. 2002. Glutathione reductase, p. 1471 1476. In T. E. Creighton (ed.), Wiley Encyclopedia of Molecular Medicine. John Wiley and Sons, New York,N.Y.
48. Sienkiewicz, N.,, W. Daher,, D. Dive,, C. Wrenger,, E. Viscogliosi,, R. Wintjens,, H. Jouin,, M. Capron,, S. Muller,, and J. Khalife. 2004. Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol. Biochem. Parasitol. 137: 121 132.
49. Sullivan, D. J. 2002. Theories on malarial pigment formation and quinoline action. Int. J. Parasitol. 32: 1645 1653.
50. Sztajer, H.,, B. Gamain,, K. D. Aumann,, C. Slomianny,, K. Becker,, R. Brigelius-Flohé,, and L. Flohé. 2001. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem. 276: 7397 7403.
51. Thornalley, P. J.,, M. Strath,, and R. J. Wilson. 1994. Antimalarial activity in vitro of the glyoxalase I inhibitor diester, S-p-bromobenzylglutathione diethyl ester. Biochem. Pharmacol. 47: 418 420.
52. Tilley, L.,, P. Loria,, and M. Foley,. 2001. Chloroquine and other quinoline antimalarials, p. 87 122. In P. J. Rosenthal (ed.), Antimalarial Chemotherapy. Humana Press, Totowa, N.J.
53. Turrens, J. F. 2004. Oxidative stress and antioxidant defense:a target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med. 25: 211 220.

Tables

Generic image for table
TABLE 1

Overview of enzymes involved in redox metabolism

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error