1887

Chapter 19 : Oxidative Stress and Antioxidant Defense in Malarial Parasites

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Oxidative Stress and Antioxidant Defense in Malarial Parasites, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap19-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap19-2.gif

Abstract:

This chapter summarizes the currently available knowledge on sources of oxidative and nitrosative stress in malarial parasites, the different available detoxification pathways, and the impact on mechanisms of drug action. -infected red blood cells ( IRBCs) appear to be under exogenous and endogenous oxidative stress. Malaria parasites induce oxidative stress in their host red blood cell. In the membrane of -parasitized cells, increasing amounts of hemichromes and band 3 aggregates have been demonstrated. Peroxidized IRBCs generate 4-hydroxyalk- 2-enals and alka-2,4-dienals, and these aldehydes are toxic to in vitro. Thus, the antioxidant capabilities of the parasite and RBC are of considerable significance. The majority of the peroxide-detoxifying capacity, however, seems to be provided by peroxiredoxins. Glutathione S-transferase exhibits glutathione peroxidase activity, which might contribute to the total peroxide-reducing capacity of the parasite, since the enzyme is present at very high concentrations. Superoxide dismutase (SOD) is the major enzyme involved in catabolizing the superoxide anion, resulting in production of molecular oxygen and hydrogen peroxide. possesses a classical 2-Cys glutaredoxin (PfGrx1) and a redox-active 1-Cys glutaredoxin-like protein (PfGLP-1). The glyoxalase system consists of glyoxalase I (GloI), glyoxalase II (GloII), and the coenzyme glutathione. It is a cyclic metabolic pathway removing toxic 2-oxoaldehydes like methylglyoxal by converting them to the corresponding nontoxic 2-hydroxycarboxylic acids like D-lactate. Artemisinin has been shown to react with glutathione (GSH) and to increase levels of lipid peroxidation.

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19

Key Concept Ranking

Reactive Oxygen Species
0.4343908
Tumor Necrosis Factor
0.42497128
0.4343908
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

A schematic representation of the antioxidant defense in .

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap19
1. Abraham, E. 2000. Coagulation abnormalities in acute lung injury and sepsis. Am. J. Respir. Cell Mol. Biol. 22:401404.
2. Akoachere, M.,, R. Iozef,, S. Rahlfs,, M. Deponte,, B. Mannervik,, D. J. Creighton,, H. Schirmer,, and K. Becker. 2005. Characterization of the glyoxalases of the malarial parasite Plasmodium falciparum and comparison with their human counterparts. Biol. Chem. 386:4152.
3. Atamna, H.,, and H. Ginsburg. 1997. The malaria parasite supplies glutathione to its host cell—investigation of glutathione transport and metabolism in human erythrocytes infected with Plasmodium falciparum. Eur. J. Biochem. 250:670679.
4. Becker, K.,, S. M. Kanzok,, R. Iozef,, M. Fischer,, R. H. Schirmer,, and S. Rahlfs. 2003a. Plasmoredoxin,a novel redox-active protein unique for malarial parasites. Eur. J. Biochem. 270:10571064.
5. Becker, K.,, S. Rahlfs,, C. Nickel,, and R. H. Schirmer. 2003b. Glutathione—function and metabolism in the malarial parasite Plasmodium falciparum. Biol. Chem. 348:551566.
6. Becker, K.,, L. Tilley,, J. L. Vennerstrom,, D. Roberts,, S. Rogerson,, and H. Ginsburg. 2004. Oxidative stress in malaria parasite-infected erythrocytes:hostparasite interactions. Int. J. Parasitol. 34:163189.
7. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of gene expression during asexual intraerythrocytic development of the human malaria parasite Plasmodium falciparum revealed by microarray analysis. Mol. Microbiol. 39:2636.
8. Bozdech, Z.,, and H. Ginsburg. 2004. Antioxidant defense in Plasmodium falciparum—data mining of the transcriptome. Malar. J. 3:23.
9. Bozdech, Z.,, M. Llinás,, B. L. Pulliam,, E. D. Wong,, J. Zhu,, and J. L. DeRisi. 2003.The transcriptome of the intraerythrocytic developmental cycle of Plasmodium falciparum. PLoS Biol. 1:E5.
10. Buffinton, G. D.,, N. H. Hunt,, W. B. Cowden, and I A. Clark. 1988. Detection of short-chain carbonyl products of lipid peroxidation from malaria-infected erythrocytes exposed to oxidative stress. Biochem. J. 249:6368.
11. Campanale, N.,, C. Nickel,, C. Daubenberger,, D. Wehlan,, J. Gorman,, M. Foley,, N. Klonis,, K. Becker,, and L. Tilley. 2003. Identification and characterisation of a series of haem-interacting proteins of the malaria parasite, Plasmodium falciparum. J. Biol. Chem. 278:2735427361.
12. Clark, I. A.,, W. B. Cowden,, N. H. Hunt,, and E.J. Mackie. 1984. Activity of divicine in Plasmodium vinckei-infected mice has implications for treatment of favism and epidemiology of G-6-PD deficiency. Br. J. Haematol. 57:479487
13. Das, B. S.,, D. I. Thurnham,, and D. B. Das. 1996. Plasma alpha-tocopherol, retinol, and carotenoids in children with falciparum malaria. Am. J. Clin. Nutr. 64:94100.
14. Davioud-Charvet, E.,, S. Delarue,, C. Biot,, B. Schwobel,, C. C. Boehme,, A. Mussigbrodt,, L. Maes,, C. Sergheraert,, P. Grellier,, R. H. Schirmer,, and K. Becker. 2001. A prodrug form of a Plasmodium falciparum glutathione reductase inhibitor conjugated with a 4-anilinoquinoline. J.Med. Chem. 44:42684276.
15. De Macedo, C.S.,, M.L. Uhrig,, E.A. Kimura,,and A. M. Katzin. 2002. Characterization of the isoprenoid chain of coenzyme Q in Plasmodium falciparum. FEMS Microbiol. Lett. 207:1322.
16. Dive, D.,, S. Gratepanche,, H. Yera,, P. Becuwe,, W. Daher,, P. Delplace,, C. Odberg-Ferragut,, M. Capron,, and J. Khalife. 2003. Superoxide dismutase in Plasmodium: a current survey. Redox Rep. 8:265267.
17. Dondorp, A. M.,, M. Nyanoti,, P.A. Kager,, S. Mithwani,, J. Vreeken,, and K. Marsh. 2002.The role of reduced red cell deformability in the pathogenesis of severe falciparum malaria and its restoration by blood transfusion. Trans. R. Soc.Trop. Med. Hyg. 96:282286.
18. Eaton, J.W.,, J. R. Eckman,, E. Berger,, and H. S. Jacob. 1976. Suppression of malaria infection by oxidant-sensitive host erythrocytes. Nature 264:758760.
19. Eda, S.,, and I.W. Sherman. 2002. Cytoadherence of malaria-infected red blood cells involves exposure of phosphatidylserine. Cell. Physiol. Biochem. 12:373384.
20. Engwerda, C. R.,, T. L. Mynott,, S. Sawhney,, J. B. De Souza,, Q. D. Bickle,, and P. M. Kaye. 2002. Locally up-regulated lymphotoxin alpha, not systemic tumor necrosis factor alpha, is the principle mediator of murine cerebral malaria. J. Exp. Med. 195:13711377.
21. Famin, O.,, and H. Ginsburg. 2003. The treatment of Plasmodium falciparum-infected erythrocytes with chloroquine leads to accumulation of ferriprotoporphyrin IX bound to particular parasite proteins and to the inhibition of the parasite’s 6-phosphogluconate dehydrogenase. Parasite 10:3950.
22. Favre, N.,, B. Ryffel,, and W. Rudin. 1999. Parasite killing in murine malaria does not require nitric oxide production. Parasitology 118:139143.
23. Fritz-Wolf, K.,, A. Becker,, S. Rahlfs,, P. Harwaldt,, R. H. Schirmer,, W. Kabsch,, and K. Becker. 2003. X-ray structure of glutathione S-transferase from the malarial parasite Plasmodium falciparum.Proc. Natl.Acad. Sci. USA 100:1382113826.
24. Gamain, B.,, G. Langsley,, M. N. Fourmaux,, J. P. Touzel,, D. Camus,, D. Dive,, and C. Slomianny. 1996. Molecular characterization of the glutathione peroxidase gene of the human malaria parasite Plasmodium falciparum. Mol. Biochem. Parasitol. 78:237248.
25. Ginsburg, H.,,and H. Atamna. 1994. The redox status of malaria-infected erythrocytes: an overview with an emphasis on unresolved problems. Parasite 1:513.
26. Golenser, J.,, J. Miller,, D.T. Spira,, T. Navok,, and M. Chevion. 1983. Inhibitory effect of a fava bean component on the in vitro development of Plasmodium falciparum in normal and glucose-6-phosphate dehydrogenase deficient erythrocytes. Blood 61:507510.
27. Grellier, P.,, J. Sarlauskas,, Z. Anusevicius,, A. Maroziene,, C. Houee-Levin,, J. Schrevel,, and N. Cenas. 2001. Antiplasmodial activity of nitroaromatic and quinoidal compounds: redox potential vs. inhibition of erythrocyte glutathione reductase. Arch. Biochem. Biophys. 393:199206.
28. Griffiths, M. J.,, F. Ndungu,, K. L. Baird,, D. P. Muller,, K. Marsh,, and C. H. Newton. 2001. Oxidative stress and erythrocyte damage in Kenyan children with severe Plasmodium falciparum malaria. Br. J. Haematol. 113:486491.
29. Harada, M.,, M. Owhashi,, S. Suguri,, A. Kumatori,, M. Nakamura,, H. Kanbara,, H. Matsuoka,, and A. Ishii. 2001. Superoxide-dependent and -independent pathways are involved in the transmission blocking of malaria. Parasitol. Res. 87:605608.
30. Harwaldt, P.,, S. Rahlfs,, and K. Becker. 2002. Glutathione S-transferase of the malarial parasite Plasmodium falciparum: characterization of a potential drug target. Biol. Chem. 383:821830.
31. Iozef, R.,, S. Rahlfs,, T. Chang,, R. H. Schirmer,, and K. Becker. 2003. Glyoxalase 1 of the malarial parasite Plasmodium falciparum. Evidence for subunit fusion in glyoxalase I. FEBS Lett. 554:284288.
32. Kanzok, S. M.,, A. Fechner,, H. Bauer,, J. K. Ulschmid,, H. M. Muller,, J. Botella-Munoz,, S. Schneuwly,, R. Schirmer,, and K. Becker. 2001. Substitution of the thioredoxin system for glutathione reductase in Drosophila melanogaster. Science 291:643646.
33. Kita, K.,, K. Hirawake,, H. Miyadera,, H. Amino,, and S. Takeo. 2002. Role of complex II in anaerobic respiration of the parasite mitochondria from Ascaris suum and Plasmodium falciparum.Biochim.Biophys.Acta 1553:123139.
34. Komaki-Yasuda, K.,, S. Kawazu,, and S. Kano. 2003. Disruption of the Plasmodium falciparum 2-Cys peroxiredoxin gene renders parasites hypersensitive to reactive oxygen and nitrogen species. FEBS Lett. 547:140144.
35. Le Roch, K. G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De la Vega,, A. A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003.Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301:15031508.
36. Lew, V. L.,, T. Tiffert,, and H. Ginsburg. 2003. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101:41894194.
37. Liebau, E.,, B. Bergmann,, A. M. Campbell,, P. Teesdale-Spittle,, P. M. Brophy,, K. Luersen,, and R. D. Walter. 2002. The glutathione S-transferase from Plasmodium falciparum.Mol.Biochem.Parasitol. 124:8590.
38. McMillan, P. J.,, L. M. Stimmler,, B. J. Foth,, G. I. McFadden,, and S. Muller. 2005. The human malaria parasite Plasmodium falciparum possesses two distinct dihydrolipoamide dehydrogenases. Mol. Microbiol. 55:2738.
39. Meierjohann, S.,, R. D. Walter,, and S. Muller. 2002. Regulation of intracellular glutathione levels in erythrocytes infected with chloroquine-sensitive and chloroquine-resistant Plasmodium falciparum.Biochem. J. 368:761768.
40. Meshnick, S. R. 2002. Artemisinin: mechanisms of action, resistance and toxicity. Int.J.Parasitol. 32:16551660.
41. Muller, S. 2004. Redox and antioxidant systems of the malaria parasite Plasmodium falciparum. Mol.Microbiol. 53:12911305.
42. Rahlfs, S.,, and K. Becker. 2001. Thioredoxin peroxidases of the malarial parasite Plasmodium falciparum. Eur. J. Biochem. 268:14041409.
43. Rahlfs, S.,, C. Nickel,, M. Deponte,, R. H. Schirmer,, and K. Becker. 2003. Plasmodium falciparum thioredoxins and glutaredoxins as central players in redox metabolism. Redox Rep. 8:246250.
44. Rahlfs, S.,, R. H. Schirmer,, and K. Becker. 2002. The thioredoxin system of Plasmodium falciparum and other parasites. Cell.Mol.Life Sci. 59:10241041.
45. Sanni, L.A.,, S. Fu,, R.T. Dean,, G. Bloomfield,, R. Stocker,, G. Chaudhri,, M. C. Dinauer,, and N. H. Hunt. 1999. Are reactive oxygen species involved in the pathogenesis of murine cerebral malaria? J. Infect. Dis. 179:217222.
46. Sarma, G. N.,, S. N. Savvides,, K. Becker,, M. Schirmer,, R. H. Schirme, and P. A. Karplus. 2003. Glutathione reductase of the malarial parasite Plasmodium falciparum:crystal structure and inhibitor development. J. Mol. Biol. 328:893907.
47. Schirmer, R. H.,, H. Bauer,, and K. Becker,. 2002. Glutathione reductase, p. 14711476. In T. E. Creighton (ed.), Wiley Encyclopedia of Molecular Medicine.John Wiley and Sons,New York,N.Y.
48. Sienkiewicz, N.,, W. Daher,, D. Dive,, C. Wrenger,, E. Viscogliosi,, R. Wintjens,, H. Jouin,, M. Capron,, S. Muller,, and J. Khalife. 2004. Identification of a mitochondrial superoxide dismutase with an unusual targeting sequence in Plasmodium falciparum. Mol. Biochem. Parasitol. 137:121132.
49. Sullivan, D. J. 2002. Theories on malarial pigment formation and quinoline action. Int. J. Parasitol. 32:16451653.
50. Sztajer, H.,, B. Gamain,, K. D. Aumann,, C. Slomianny,, K. Becker,, R. Brigelius-Flohé,, and L. Flohé. 2001. The putative glutathione peroxidase gene of Plasmodium falciparum codes for a thioredoxin peroxidase. J. Biol. Chem. 276:73977403.
51. Thornalley, P. J.,, M. Strath,, and R. J. Wilson. 1994. Antimalarial activity in vitro of the glyoxalase I inhibitor diester, S-p-bromobenzylglutathione diethyl ester. Biochem. Pharmacol. 47:418420.
52. Tilley, L.,, P. Loria,, and M. Foley,. 2001. Chloroquine and other quinoline antimalarials, p. 87122. In P. J. Rosenthal (ed.), Antimalarial Chemotherapy. Humana Press, Totowa, N.J.
53. Turrens, J. F. 2004.Oxidative stress and antioxidant defense:a target for the treatment of diseases caused by parasitic protozoa. Mol. Aspects Med. 25:211220.

Tables

Generic image for table
TABLE 1

Overview of enzymes involved in redox metabolism

Citation: Becker K, Koncarevic S, Hunt N. 2005. Oxidative Stress and Antioxidant Defense in Malarial Parasites, p 365-383. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch19

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error