1887

Chapter 20 : New Permeation Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

New Permeation Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap20-2.gif

Abstract:

The Red blood cell (RBC) membrane is naturally endowed with a variety of membrane transporters, mainly geared to optimize the respiratory function and to maintain cell homeostasis at minimal metabolic cost. Therefore, to survive within a red blood cell, the malaria parasite must alter the permeability of the host’s plasma membrane by up-regulation of existing carriers or by creation of new permeation pathways (NPP).These pathways, indispensable for parasite growth, could be possible antimalarial targets for selective inhibition, as well as routes for drug delivery. Electrophysiological techniques, such as the patch clamp, are ideal for the study of channels that are permeable to charged solutes, even though the NPP are also used for transport of electroneutral and organic osmolytes in malaria infected RBCs. Red blood cells have proven to be extremely useful as a model system to study the different membrane transport pathways, and there is a plethora of publications aimed at a detailed description of pumps, cotransporters, and specific carriers in the red blood cell membrane. In the cell-attached and excised configurations, -infected RBCs show a very different pattern of channel activity from uninfected cells. It has been suggested that NPP could be used as therapeutic targets. However, the exact nature of the NPP remains to be resolved; part of the present confusion, due to discrepant results, comes from the lack of background information on the channels present in noninfected red blood cell membranes.

Citation: Thomas S, Egée S. 2005. New Permeation Pathways, p 384-396. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817558.chap20
1. Abraham, E. H.,, K.M. Sterling,, R. J. Kim,, A.Y. Salikhova,, H. B. Huffman,, M. A. Crockett,, N. Johnston,, H.W. Parker,, W.E. BoyleJr.,, , A. Hartov,, E. Demidenko,, J. Efird,, J. Kahn,, S.A. Grubman,, D.M. Jefferson,, S.C. Robson,, J.H. Thakar,, A. Lorico,, G. Rappa,, A. C. Sartorelli,,and P. Okunieff. 2001.Erythrocyte membraneATP binding cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (ecto-apyrase) involved in RBCATP transport and elevated blood plasmaATP of cystic fibrosis. Blood Cells Mol. Dis. 27:165180.
2. Alkhalil, A.,, J.V. Cohn,, M. A. Wagner,, J. S. Cabrera,, T. Rajapandi,,and S.A. Desai. 2004. Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104:42794286.
3. Allen, R. J.,, and K. Kirk. 2004.The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J. Biol. Chem. 279:1126411272.
4. Ancelin, M. L.,, M. Parant,, M. J. Thuet,, J. R. Philipot,, and H. J. Vial. 1991. Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochem. J. 273:701709.
5. Bernhardt, I.,, and J. C. Ellory. 2003. Red Cell Membrane Transport in Health and Disease. Springer Verlag, Berlin, Germany.
6. Biagini, G. A.,, E. M. Pasini,, R. Hughes,, H. P. De Koning,, H. J. Vial,, P. M. O’Neill,, S.A. Ward,, and P. G. Bray. 2004. Characterization of the choline carrier of Plasmodium falciparum:a route for the selective delivery of novel antimalarial drugs. Blood 104:33723377.
7. Busse, R.,, A. Ogilvie,, and U. Pohl. 1988.Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am. J. Physiol. 254:823828.
8. Chishti, A. H.,, G. J. Maalouf,, S. Marfatia,, J. Palek,, W. Wang,, D., Fisher,, and S. C. Liu. 1994. Phosphorylation of protein 4.1 in Plasmodium falciparum- infected human red blood cells. Blood 83:33393345.
9. Christophersen, P.,, and P. Bennekou. 1991. Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane. Biochim. Biophys. Acta 1065:103106.
10. Crandall, I.,, and I.W. Sherman. 1991. Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology 3:335340.
11. Decherf, G. 2004. Identification et caractérisation de canaux CFTR-like dans la membrane des érythrocytes humains: rôle physiologique et implication dans la nouvelle voie de perméabilité induite au cours de l’infection par Plasmodium falciparum. Ph.D. thesis, University Pierre et Marie Curie,Paris, France.
12. Decherf, G.,, S. Egée,, H. Staines,, J. C. Ellory,, and S. L. Thomas. 2004.Anionic channels in malariainfected human red blood cells. Blood Cells Mol. Dis. 32:366371.
13. Desai, S.A. 2004.Targeting ion channels of Plasmodium falciparum-infected human erythrocytes for antimalarial development. Curr. Drug Targets Infect. Disord. 4:7986.
14. Desai, S. A.,, S.M. Bezrukov,, and J. Zimmerberg. 2000.A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406:10011005.
15. Divo, A. A.,, T. G. Geary,, N. L. Davis,, and J. B. Jensen. 1985. Nutritional requirements of Plasmodium falciparum in culture. I.Exogenously supplied dialyzable components necessary for continuous growth. J. Protozool. 32:5964.
16. Droucheau, E.,, A. Primot,, V. Thomas,, D. Mattei,, M. Knockaert,, C. Richardson,, P. Sallicandro,, P. Alano,, A. Jafarshad,, B. Baratte,, C. Kunick,, D. Parzy,, L. Pearl,, C. Doerig,, and L. Meijer. 2004. Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim. Biophys. Acta 1697:181196.
17. Duranton, C.,, S. M. Huber,, and F. Lang. 2002. Oxidation induces a Cl--dependent cation conductance in human red blood cells. J. Physiol. 539: 847855.
18. Egée, S.,, F. Lapaix,, G. Decherf,, H. M. Staines,, J. C. Ellory,, C. Doerig,, and S. L. Thomas. 2002. A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J. Physiol. 542:795801.
19. Egée, S.,, O. Mignen,, B. J. Harvey,, and S. Thomas. 1998. Chloride and non-selective cation channels in unstimulated trout red blood cells. J. Physiol. 511: 213224.
20. Freedman, J.C.,, T. S. Novak,, J.D. Bisognano,, and P. R. Pratap. 1994.Voltage dependence of DIDS insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. J. Gen. Physiol. 104:961983.
21. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I.T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S. A. Ralph,, G. I. Mc- Fadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R. W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498511.
22. Gero, A. M.,, C. G. Dunn,, D. M. Brown,, K. Pulenthiran,, E. L. Gorovits,, T. Bakos,, and A. L. Weis. 2003.New malaria chemotherapy developed by utilization of a unique parasite transport system. Curr. Pharm. Des. 9:867877.
23. Ginsburg, H. 1994.Transport pathways in the malaria-infected erythrocyte.Their characterization and their use as potential targets for chemotherapy. Biochem. Pharmacol. 48:18471856.
24. Ginsburg, H.,, and K. Kirk,. 1998. Membrane transport in the malaria-infected erythrocyte, p. 219232. In I.W. Sherman (ed.), Malaria:Parasite Biology,Pathogenesis, and Protection. ASM Press,Washington,D.C.
25. Ginsburg, H.,, M. Krugliak,, O. Eidelman,, and Z. I. Cabantchick. 1983.New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 8:177190.
26. Ginsburg, H.,, S. Kutner,, M. Krugliak,, and Z. I. Cabantchick. 1985. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol. Biochem. Parasitol. 14:185199.
27. Ginsburg, H.,, and W. D. Stein. 1987. Biophysical analysis of novel transport pathways induced in red blood cell membranes. J. Membr. Biol. 96:110.
28. Ginsburg, H.,, and W. D. Stein. 2004.The new permeability pathways induced by the malaria parasite in the membrane of the infected erythrocyte: comparison of results using different experimental techniques. J. Membr. Biol. 197:113122.
29. Grygorczyk, R.,, and W. Schwarz. 1983. Properties of the CA2+-activated K+ conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4:499510.
30. Hamill, O. P. 1981.Potassium channel currents in human red blood cells. J. Physiol. 319:9798.
31. Hamill, O. P., 1983. Potassium and chloride channels in red blood cells, p. 501. In B. Sakmann, and E. Neher (ed.), Single-Channel Recording. Plenum Press, New York,N.Y.
32. Hamill, O. P.,, A. Marty,, E. Neher,, B. Sakmann,, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391:85100.
33. Hoffman, J. F.,, and P.C. Laris. 1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239:519552.
34. Homewood, C.A.,, and K.D. Neame. 1974. Malaria and the permeability of the host erythrocyte. Nature 252:718719.
35. Huber, S. M.,, C. Duranton,, G. Henke, van de C. Sand,V. Heussler, E. Shumilina, C. D. Sandu, V. Tanneur,V. Brand, R. S. Kasinathan, K. S. Lang, P. G. Kremsner, C. A. Hübner, M. B. Rust, K. Dedek,T. Jentsch, and F. Lang. 2004. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J. Biol. Chem. 279:4144441452.
36. Huber, S. M.,, A. C. Uhlemann,, N. L. Gamper,, C. Duranton,, P. G. Kremsner,, and F. Lang. 2002. Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. EMBO J. 21:2230.
37. Jentsch, T. J. 2002. Chloride channels are different. Nature 415:276277.
38. Kappes, B.,, C.D. Doerig,, and R. Graeser. 1999.An overview of Plasmodium protein kinases. Parasitol.Today 15:449454.
39. Kirk, K. 2001. Membrane transport in the malaria-infected erythrocyte. Physiol. Rev. 81:495537.
40. Kirk, K.,, B. C. Elford,, and J. C. Ellory. 1992.The increased K+ leak of malaria-infected erythrocytes is not via a Ca2+-activated K+ channel. Biochim. Biophys.Acta 1135:812.
41. Kirk, K.,, and H. A. Horner. 1995. In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum-infected erythrocytes: effects of arylaminobenzoates. Biochem. J. 311:761768.
42. Kirk, K.,, H. A. Horner,, B. C. Elford,, J. C. Ellory,, and C. I. Newbold. 1994. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J. Biol. Chem. 269:33393347.
43. Kirk, K.,, and K. Strange. 1998. Functional properties and physiological roles of organic solute channels. Annu. Rev. Physiol. 60:719739.
44. Kirk, K.,, L. Tilley,, and H. Ginsburg. 1999.Transport and trafficking in the malaria-infected erythrocyte. Parasitol.Today 15:355357.
45. Krishna, S.,, U. Eckstein-Ludwig,, T. Joet,, A. C. Uhlemann,, C. Morin,, R. Webb,, C. Woodrow,, J. F. Kun,, and P. G. Kremsner. 2002. Transport processes in Plasmodium falciparum-infected erythrocytes: potential as new drug targets. Int. J. Parasitol. 32:15671573.
46. Krugliak, M.,, J. Zhang,, and H. Ginsburg. 2002. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 119:249256.
47. Lapaix, F.,, S. Egée,, L. Gibert,, G. Decherf,, and S. L. Thomas. 2002.ATP-sensitive K+ and Ca2+-activated K+ channels in lamprey (Petromyzon marinus) red blood cell membrane. Pflugers Arch. 445: 152160.
48. Lassen, U.V.,, and O. Sten-Knudsen. 1968. Direct measurement of membrane potential and membrane resistance of human red cells. J. Physiol. 195:681696.
49. Lew, V. L.,, T. Tiffert,, and H. Ginsburg. 2003. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101:41894194.
50. Nilius, B.,, and G. Droogmans. 2003.Amazing chloride channels: an overview. Acta Physiol. Scand. 177:119147.
51. Poole, R.C.,, and A. P. Halestrap. 1993.Transport of lactate and other monocarboxylates across mammalian plasma membranes.Am.J.Physiol. 264:C761C782.
52. Rosenthal, P. J.,, and S. R. Meshnick,. 1998.Hemoglobin processing and the metabolism of amino acids, heme and iron, p. 145159. In I.W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press,Washington,D.C.
53. Saliba, K. J.,, and K. Kirk. 1998. Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum- infected human erythrocytes via a parasite- induced pathway. Mol. Biochem.Parasitol. 94:297301.
54. Schwartz, R. S.,, A. C. Rybicki,, and R. L. Nagel. 1997. Molecular cloning and expression of a chloride channel-associated protein pICln in human young red blood cells: association with actin. Biochem. J. 327:609616.
55. Schwartz, W.,, R. Gryorczyk,, and D. Hof. 1989. Recording single-channel currents from human red cells. Methods Enzymol. 173:112121.
56. Sherman, I.W. 1977.Transport of amino acids and nucleic acid precursors in malarial parasites. Bull. W. H. O. 55:211225.
57. Sprague, R. S.,, M. L. Ellsworth,, A. H. Stephenson,, M. E. Kleinhenz,, and A. J. Lonigro. 1998. Deformation- induced ATP release from red blood cells requires CFTR activity.Am.J. Physiol. 275:H1726H1732.
58. Sprague, R. S.,, M. L. Ellsworth,, A. H. Stephenson,, and A. J. Lonigro. 2001.Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release.Am.J. Physiol. Cell Physiol. 281:C1158C1164.
59. Staines, H. M.,, B.C. Dee, O’Brien, M., H. J. Lang, H. A. Horner, J. C. Ellory, and K. Kirk. 2004. Furosemide analogues as potent inhibitors of the new permeability pathways of Plasmodium falciparum- infected human erythrocytes. Mol. Biochem.Parasitol. 133:315318.
60. Staines, H. M.,, J. C. Ellory,, and K. Kirk. 2001. Perturbation of the pump-leak balance for Na+ and K+ in malaria- infected erythrocytes. Am. J. Physiol. Cell Physiol. 280:C1576C1587.
61. Staines, H. M.,, E. M. Godfrey,, F. Lapaix,, S. Egée,, S. Thomas,, and J. C. Ellory. 2002.Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochim. Biophys.Acta 1561:98108.
62. Staines, H. M.,, and K. Kirk. 1998. Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei. Biochem. J. 334:525530.
63. Staines, H. M.,, T. Powell,, J. C. Ellory,, S. Egée,, F. Lapaix,, G. Decherf,, S. L.Y. Thomas,, C. Duranton,, F. Lang,, and S. Huber. 2003. Modulation of whole-cell currents in Plasmodium falciparum-infected human red blood cells by holding potential and serum. J. Physiol. 552:177183.
64. Su, X. Z.,, V. M. Heatwole,, S. P. Wertheimer,, F. Guinet,, J. A. Herrfeldt,, D. S. Peterson,, J. A. Ravetch,, and T. E. Wellems. 1995.The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82:89100.
65. Syin, C.,, D. Parzy,, F. Traincard,, I. Boccaccio,, M. B. Joshi,, D.T. Lin,, X. M. Yang,, K. Assemat,, C. Doerig,,and G. Langsley. 2001.The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur. J. Biochem. 268:48424849.
66. Tabcharani, J.A.,, X. B. Chang,, J. R. Riordan,, and J. W. Hanrahan. 1991. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352:628631.
67. Thomas, S. L.,, S. Egée,, F. Lapaix,, L. Kaestner,, H. M. Staines,, and J. C. Ellory. 2001. Malaria parasite Plasmodium gallinaceum up-regulates host red blood cell channels. FEBS Lett. 500:4551.
68. Verloo, P.,, C. H. Kocken,, A. Van Der Wel,, B. C. Tilly,, B. M. Hogema,, M. Sinaasappel,, A.W. Thomas,, and H. R. De Jonge. 2004. Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J. Biol. Chem. 279:1031610322.
69. Vial, H. J.,, and M. L. Ancelin. 1998. Malaria lipids, p. 159-175. In I.W. Sherman (ed.), Malaria: Parasite Biology,Pathogenesis, and Protection.ASM Press, Washington, D.C.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error