1887

Chapter 20 : New Permeation Pathways

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

New Permeation Pathways, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap20-2.gif

Abstract:

The Red blood cell (RBC) membrane is naturally endowed with a variety of membrane transporters, mainly geared to optimize the respiratory function and to maintain cell homeostasis at minimal metabolic cost. Therefore, to survive within a red blood cell, the malaria parasite must alter the permeability of the host’s plasma membrane by up-regulation of existing carriers or by creation of new permeation pathways (NPP).These pathways, indispensable for parasite growth, could be possible antimalarial targets for selective inhibition, as well as routes for drug delivery. Electrophysiological techniques, such as the patch clamp, are ideal for the study of channels that are permeable to charged solutes, even though the NPP are also used for transport of electroneutral and organic osmolytes in malaria infected RBCs. Red blood cells have proven to be extremely useful as a model system to study the different membrane transport pathways, and there is a plethora of publications aimed at a detailed description of pumps, cotransporters, and specific carriers in the red blood cell membrane. In the cell-attached and excised configurations, -infected RBCs show a very different pattern of channel activity from uninfected cells. It has been suggested that NPP could be used as therapeutic targets. However, the exact nature of the NPP remains to be resolved; part of the present confusion, due to discrepant results, comes from the lack of background information on the channels present in noninfected red blood cell membranes.

Citation: Thomas S, Egée S. 2005. New Permeation Pathways, p 384-396. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch20
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817558.chap20
1. Abraham, E. H.,, K.M. Sterling,, R. J. Kim,, A.Y. Salikhova,, H. B. Huffman,, M. A. Crockett,, N. Johnston,, H.W. Parker,, W.E. Boyle Jr.,, , A. Hartov,, E. Demidenko,, J. Efird,, J. Kahn,, S.A. Grubman,, D.M. Jefferson,, S.C. Robson,, J.H. Thakar,, A. Lorico,, G. Rappa,, A. C. Sartorelli,,and P. Okunieff. 2001. Erythrocyte membraneATP binding cassette (ABC) proteins: MRP1 and CFTR as well as CD39 (ecto-apyrase) involved in RBCATP transport and elevated blood plasmaATP of cystic fibrosis. Blood Cells Mol. Dis. 27: 165 180.
2. Alkhalil, A.,, J.V. Cohn,, M. A. Wagner,, J. S. Cabrera,, T. Rajapandi,,and S.A. Desai. 2004. Plasmodium falciparum likely encodes the principal anion channel on infected human erythrocytes. Blood 104: 4279 4286.
3. Allen, R. J.,, and K. Kirk. 2004. The membrane potential of the intraerythrocytic malaria parasite Plasmodium falciparum. J. Biol. Chem. 279: 11264 11272.
4. Ancelin, M. L.,, M. Parant,, M. J. Thuet,, J. R. Philipot,, and H. J. Vial. 1991. Increased permeability to choline in simian erythrocytes after Plasmodium knowlesi infection. Biochem. J. 273: 701 709.
5. Bernhardt, I.,, and J. C. Ellory. 2003. Red Cell Membrane Transport in Health and Disease. Springer Verlag, Berlin, Germany.
6. Biagini, G. A.,, E. M. Pasini,, R. Hughes,, H. P. De Koning,, H. J. Vial,, P. M. O’Neill,, S.A. Ward,, and P. G. Bray. 2004. Characterization of the choline carrier of Plasmodium falciparum:a route for the selective delivery of novel antimalarial drugs. Blood 104: 3372 3377.
7. Busse, R.,, A. Ogilvie,, and U. Pohl. 1988. Vasomotor activity of diadenosine triphosphate and diadenosine tetraphosphate in isolated arteries. Am. J. Physiol. 254: 823 828.
8. Chishti, A. H.,, G. J. Maalouf,, S. Marfatia,, J. Palek,, W. Wang,, D., Fisher,, and S. C. Liu. 1994. Phosphorylation of protein 4.1 in Plasmodium falciparum- infected human red blood cells. Blood 83: 3339 3345.
9. Christophersen, P.,, and P. Bennekou. 1991. Evidence for a voltage-gated, non-selective cation channel in the human red cell membrane. Biochim. Biophys. Acta 1065: 103 106.
10. Crandall, I.,, and I.W. Sherman. 1991. Plasmodium falciparum (human malaria)-induced modifications in human erythrocyte band 3 protein. Parasitology 3: 335 340.
11. Decherf, G. 2004. Identification et caractérisation de canaux CFTR-like dans la membrane des érythrocytes humains: rôle physiologique et implication dans la nouvelle voie de perméabilité induite au cours de l’infection par Plasmodium falciparum. Ph.D. thesis, University Pierre et Marie Curie, Paris, France.
12. Decherf, G.,, S. Egée,, H. Staines,, J. C. Ellory,, and S. L. Thomas. 2004. Anionic channels in malariainfected human red blood cells. Blood Cells Mol. Dis. 32: 366 371.
13. Desai, S.A. 2004. Targeting ion channels of Plasmodium falciparum-infected human erythrocytes for antimalarial development. Curr. Drug Targets Infect. Disord. 4: 79 86.
14. Desai, S. A.,, S.M. Bezrukov,, and J. Zimmerberg. 2000. A voltage-dependent channel involved in nutrient uptake by red blood cells infected with the malaria parasite. Nature 406: 1001 1005.
15. Divo, A. A.,, T. G. Geary,, N. L. Davis,, and J. B. Jensen. 1985. Nutritional requirements of Plasmodium falciparum in culture. I.Exogenously supplied dialyzable components necessary for continuous growth. J. Protozool. 32: 59 64.
16. Droucheau, E.,, A. Primot,, V. Thomas,, D. Mattei,, M. Knockaert,, C. Richardson,, P. Sallicandro,, P. Alano,, A. Jafarshad,, B. Baratte,, C. Kunick,, D. Parzy,, L. Pearl,, C. Doerig,, and L. Meijer. 2004. Plasmodium falciparum glycogen synthase kinase-3: molecular model, expression, intracellular localisation and selective inhibitors. Biochim. Biophys. Acta 1697: 181 196.
17. Duranton, C.,, S. M. Huber,, and F. Lang. 2002. Oxidation induces a Cl--dependent cation conductance in human red blood cells. J. Physiol. 539: 847 855.
18. Egée, S.,, F. Lapaix,, G. Decherf,, H. M. Staines,, J. C. Ellory,, C. Doerig,, and S. L. Thomas. 2002. A stretch-activated anion channel is up-regulated by the malaria parasite Plasmodium falciparum. J. Physiol. 542: 795 801.
19. Egée, S.,, O. Mignen,, B. J. Harvey,, and S. Thomas. 1998. Chloride and non-selective cation channels in unstimulated trout red blood cells. J. Physiol. 511: 213 224.
20. Freedman, J.C.,, T. S. Novak,, J.D. Bisognano,, and P. R. Pratap. 1994. Voltage dependence of DIDS insensitive chloride conductance in human red blood cells treated with valinomycin or gramicidin. J. Gen. Physiol. 104: 961 983.
21. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I.T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S. A. Ralph,, G. I. Mc- Fadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R. W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511.
22. Gero, A. M.,, C. G. Dunn,, D. M. Brown,, K. Pulenthiran,, E. L. Gorovits,, T. Bakos,, and A. L. Weis. 2003. New malaria chemotherapy developed by utilization of a unique parasite transport system. Curr. Pharm. Des. 9: 867 877.
23. Ginsburg, H. 1994. Transport pathways in the malaria-infected erythrocyte.Their characterization and their use as potential targets for chemotherapy. Biochem. Pharmacol. 48: 1847 1856.
24. Ginsburg, H.,, and K. Kirk,. 1998. Membrane transport in the malaria-infected erythrocyte, p. 219 232. In I.W. Sherman (ed.), Malaria:Parasite Biology,Pathogenesis, and Protection. ASM Press, Washington,D.C.
25. Ginsburg, H.,, M. Krugliak,, O. Eidelman,, and Z. I. Cabantchick. 1983. New permeability pathways induced in membranes of Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 8: 177 190.
26. Ginsburg, H.,, S. Kutner,, M. Krugliak,, and Z. I. Cabantchick. 1985. Characterization of permeation pathways appearing in the host membrane of Plasmodium falciparum infected red blood cells. Mol. Biochem. Parasitol. 14: 185 199.
27. Ginsburg, H.,, and W. D. Stein. 1987. Biophysical analysis of novel transport pathways induced in red blood cell membranes. J. Membr. Biol. 96: 1 10.
28. Ginsburg, H.,, and W. D. Stein. 2004. The new permeability pathways induced by the malaria parasite in the membrane of the infected erythrocyte: comparison of results using different experimental techniques. J. Membr. Biol. 197: 113 122.
29. Grygorczyk, R.,, and W. Schwarz. 1983. Properties of the CA 2+-activated K + conductance of human red cells as revealed by the patch-clamp technique. Cell Calcium 4: 499 510.
30. Hamill, O. P. 1981. Potassium channel currents in human red blood cells. J. Physiol. 319: 97 98.
31. Hamill, O. P., 1983. Potassium and chloride channels in red blood cells, p. 501. In B. Sakmann, and E. Neher (ed.), Single-Channel Recording. Plenum Press, New York,N.Y.
32. Hamill, O. P.,, A. Marty,, E. Neher,, B. Sakmann,, and F. J. Sigworth. 1981. Improved patch-clamp techniques for high-resolution current recording from cells and cell-free membrane patches. Pflugers Arch. 391: 85 100.
33. Hoffman, J. F.,, and P.C. Laris. 1974. Determination of membrane potentials in human and Amphiuma red blood cells by means of a fluorescent probe. J. Physiol. 239: 519 552.
34. Homewood, C.A.,, and K.D. Neame. 1974. Malaria and the permeability of the host erythrocyte. Nature 252: 718 719.
35. Huber, S. M.,, C. Duranton,, G. Henke, van de C. Sand,V. Heussler, E. Shumilina, C. D. Sandu, V. Tanneur,V. Brand, R. S. Kasinathan, K. S. Lang, P. G. Kremsner, C. A. Hübner, M. B. Rust, K. Dedek,T. Jentsch, and F. Lang. 2004. Plasmodium induces swelling-activated ClC-2 anion channels in the host erythrocyte. J. Biol. Chem. 279: 41444 41452.
36. Huber, S. M.,, A. C. Uhlemann,, N. L. Gamper,, C. Duranton,, P. G. Kremsner,, and F. Lang. 2002. Plasmodium falciparum activates endogenous Cl- channels of human erythrocytes by membrane oxidation. EMBO J. 21: 22 30.
37. Jentsch, T. J. 2002. Chloride channels are different. Nature 415: 276 277.
38. Kappes, B.,, C.D. Doerig,, and R. Graeser. 1999. An overview of Plasmodium protein kinases. Parasitol.Today 15: 449 454.
39. Kirk, K. 2001. Membrane transport in the malaria-infected erythrocyte. Physiol. Rev. 81: 495 537.
40. Kirk, K.,, B. C. Elford,, and J. C. Ellory. 1992. The increased K + leak of malaria-infected erythrocytes is not via a Ca 2+-activated K + channel. Biochim. Biophys.Acta 1135: 8 12.
41. Kirk, K.,, and H. A. Horner. 1995. In search of a selective inhibitor of the induced transport of small solutes in Plasmodium falciparum-infected erythrocytes: effects of arylaminobenzoates. Biochem. J. 311: 761 768.
42. Kirk, K.,, H. A. Horner,, B. C. Elford,, J. C. Ellory,, and C. I. Newbold. 1994. Transport of diverse substrates into malaria-infected erythrocytes via a pathway showing functional characteristics of a chloride channel. J. Biol. Chem. 269: 3339 3347.
43. Kirk, K.,, and K. Strange. 1998. Functional properties and physiological roles of organic solute channels. Annu. Rev. Physiol. 60: 719 739.
44. Kirk, K.,, L. Tilley,, and H. Ginsburg. 1999. Transport and trafficking in the malaria-infected erythrocyte. Parasitol.Today 15: 355 357.
45. Krishna, S.,, U. Eckstein-Ludwig,, T. Joet,, A. C. Uhlemann,, C. Morin,, R. Webb,, C. Woodrow,, J. F. Kun,, and P. G. Kremsner. 2002. Transport processes in Plasmodium falciparum-infected erythrocytes: potential as new drug targets. Int. J. Parasitol. 32: 1567 1573.
46. Krugliak, M.,, J. Zhang,, and H. Ginsburg. 2002. Intraerythrocytic Plasmodium falciparum utilizes only a fraction of the amino acids derived from the digestion of host cell cytosol for the biosynthesis of its proteins. Mol. Biochem. Parasitol. 119: 249 256.
47. Lapaix, F.,, S. Egée,, L. Gibert,, G. Decherf,, and S. L. Thomas. 2002. ATP-sensitive K + and Ca 2+-activated K + channels in lamprey (Petromyzon marinus) red blood cell membrane. Pflugers Arch. 445: 152 160.
48. Lassen, U.V.,, and O. Sten-Knudsen. 1968. Direct measurement of membrane potential and membrane resistance of human red cells. J. Physiol. 195: 681 696.
49. Lew, V. L.,, T. Tiffert,, and H. Ginsburg. 2003. Excess hemoglobin digestion and the osmotic stability of Plasmodium falciparum-infected red blood cells. Blood 101: 4189 4194.
50. Nilius, B.,, and G. Droogmans. 2003. Amazing chloride channels: an overview. Acta Physiol. Scand. 177: 119 147.
51. Poole, R.C.,, and A. P. Halestrap. 1993. Transport of lactate and other monocarboxylates across mammalian plasma membranes. Am.J.Physiol. 264: C761 C782.
52. Rosenthal, P. J.,, and S. R. Meshnick,. 1998. Hemoglobin processing and the metabolism of amino acids, heme and iron, p. 145 159. In I.W. Sherman (ed.), Malaria: Parasite Biology, Pathogenesis, and Protection. ASM Press, Washington,D.C.
53. Saliba, K. J.,, and K. Kirk. 1998. Uptake of an antiplasmodial protease inhibitor into Plasmodium falciparum- infected human erythrocytes via a parasite- induced pathway. Mol. Biochem.Parasitol. 94: 297 301.
54. Schwartz, R. S.,, A. C. Rybicki,, and R. L. Nagel. 1997. Molecular cloning and expression of a chloride channel-associated protein pICln in human young red blood cells: association with actin. Biochem. J. 327: 609 616.
55. Schwartz, W.,, R. Gryorczyk,, and D. Hof. 1989. Recording single-channel currents from human red cells. Methods Enzymol. 173: 112 121.
56. Sherman, I.W. 1977. Transport of amino acids and nucleic acid precursors in malarial parasites. Bull. W. H. O. 55: 211 225.
57. Sprague, R. S.,, M. L. Ellsworth,, A. H. Stephenson,, M. E. Kleinhenz,, and A. J. Lonigro. 1998. Deformation- induced ATP release from red blood cells requires CFTR activity. Am.J. Physiol. 275: H1726 H1732.
58. Sprague, R. S.,, M. L. Ellsworth,, A. H. Stephenson,, and A. J. Lonigro. 2001. Participation of cAMP in a signal-transduction pathway relating erythrocyte deformation to ATP release. Am.J. Physiol. Cell Physiol. 281: C1158 C1164.
59. Staines, H. M.,, B.C. Dee, O’Brien, M., H. J. Lang, H. A. Horner, J. C. Ellory, and K. Kirk. 2004. Furosemide analogues as potent inhibitors of the new permeability pathways of Plasmodium falciparum- infected human erythrocytes. Mol. Biochem.Parasitol. 133: 315 318.
60. Staines, H. M.,, J. C. Ellory,, and K. Kirk. 2001. Perturbation of the pump-leak balance for Na + and K + in malaria- infected erythrocytes. Am. J. Physiol. Cell Physiol. 280: C1576 C1587.
61. Staines, H. M.,, E. M. Godfrey,, F. Lapaix,, S. Egée,, S. Thomas,, and J. C. Ellory. 2002. Two functionally distinct organic osmolyte pathways in Plasmodium gallinaceum-infected chicken red blood cells. Biochim. Biophys.Acta 1561: 98 108.
62. Staines, H. M.,, and K. Kirk. 1998. Increased choline transport in erythrocytes from mice infected with the malaria parasite Plasmodium vinckei vinckei. Biochem. J. 334: 525 530.
63. Staines, H. M.,, T. Powell,, J. C. Ellory,, S. Egée,, F. Lapaix,, G. Decherf,, S. L.Y. Thomas,, C. Duranton,, F. Lang,, and S. Huber. 2003. Modulation of whole-cell currents in Plasmodium falciparum-infected human red blood cells by holding potential and serum. J. Physiol. 552: 177 183.
64. Su, X. Z.,, V. M. Heatwole,, S. P. Wertheimer,, F. Guinet,, J. A. Herrfeldt,, D. S. Peterson,, J. A. Ravetch,, and T. E. Wellems. 1995. The large diverse gene family var encodes proteins involved in cytoadherence and antigenic variation of Plasmodium falciparum-infected erythrocytes. Cell 82: 89 100.
65. Syin, C.,, D. Parzy,, F. Traincard,, I. Boccaccio,, M. B. Joshi,, D.T. Lin,, X. M. Yang,, K. Assemat,, C. Doerig,,and G. Langsley. 2001. The H89 cAMP-dependent protein kinase inhibitor blocks Plasmodium falciparum development in infected erythrocytes. Eur. J. Biochem. 268: 4842 4849.
66. Tabcharani, J.A.,, X. B. Chang,, J. R. Riordan,, and J. W. Hanrahan. 1991. Phosphorylation-regulated Cl- channel in CHO cells stably expressing the cystic fibrosis gene. Nature 352: 628 631.
67. Thomas, S. L.,, S. Egée,, F. Lapaix,, L. Kaestner,, H. M. Staines,, and J. C. Ellory. 2001. Malaria parasite Plasmodium gallinaceum up-regulates host red blood cell channels. FEBS Lett. 500: 45 51.
68. Verloo, P.,, C. H. Kocken,, A. Van Der Wel,, B. C. Tilly,, B. M. Hogema,, M. Sinaasappel,, A.W. Thomas,, and H. R. De Jonge. 2004. Plasmodium falciparum-activated chloride channels are defective in erythrocytes from cystic fibrosis patients. J. Biol. Chem. 279: 10316 10322.
69. Vial, H. J.,, and M. L. Ancelin. 1998. Malaria lipids, p. 159-175. In I.W. Sherman (ed.), Malaria: Parasite Biology,Pathogenesis, and Protection.ASM Press, Washington, D.C.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error