Chapter 8 : 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap08-2.gif


This chapter provides an overview of the dynamic nature of malaria from the perspective of the development of merozoites within an infected erythrocyte and the release of infectious merozoites, through the initiation and completion of the reinvasion process. The chapter encompasses discoveries or observations obtained through studies of different species of , which together have greatly aided and refined our understanding of these events. These species include not only the human malarias and , but also the simian malaria , the chimpanzee malaria , bird malarias such as and , and the rodent malarias, principally and . Malaria merozoites have a plasma membrane and the basic cellular machinery of typical eukaryotic cells, including a nucleus, endoplasmic reticulum, Golgi network, ribosomes, and mitochondria. As a merozoite begins to invade an red blood cells (RBCs), an internal membrane-lined invasion pit develops. The whole process of merozoite invasion can be divided into three or four distinct phases with a number of ultrastructural alterations and molecular events attributed to each phase, with an untold number of others likely to be discovered in the future. Merozoites must first be released from the wornout, hemoglobin-depleted, and extensively altered erythrocyte that hosted their development. Although many proteins have been identified in the spheroidal dense bodies of , only a few proteins besides ring-infected erythrocyte surface antigen (RESA) have been located in the dense bodies of .

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8

Key Concept Ranking

Integral Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Generalized diagrammatic representation of a merozoite showing the main structural features and organelles and also depicting the process by which newly formed micronemes are translocated along the microtubules to their placement at the apical pole (Bannister et al., 2003).

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Electron micrographs of (a) and (b) merozoites, showing the main structural features and organelles, as also detailed in the schematic shown in Fig. 1 .The parasite was obtained from an infected rhesus macaque and prepared for EM morphology fixation at the Emory Vaccine Center at the Yerkes National Primate Research Center. (The photograph of was produced with assistance from Michael J. Stewart and is reprinted from Galinski and Barnwell [1996], with permission from the publisher.)

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

(a) EM featuring the triple membranes and surface coat of the merozoite shown in Fig. 2 with a tufted or spiked appearance. (b) Schematic representation of the merozoite membrane pellicle, consisting of the inner membrane complex, plasma membrane with connecting filaments, and a fibril bundled surface coat, as observed in .

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Electron micrograph of a mature schizont with merozoites surrounding the residual body and their apical ends facing outwards. Note that the PVM still appears intact at this late stage of development. Caveola vesicle complex structures (CVC; the basis of Schüffner's stippling) ( ) can also be observed at the surface of the infected red blood cell membrane.The parasite was obtained from an infected rhesus macaque and prepared for EM morphology fixation at the Emory Vaccine Center at Yerkes.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5

EM invasion sequence of merozoites. (a) Apically attached merozoite (cytochalasin B treated). (b) Invading merozoite with moving junction indicated. (c) Newly invaded, fully enveloped merozoite.The parasite preparations for panels a and c were generated for EM morphology fixation at the Emory Vaccine Center at the Yerkes National Primate Research Center. Figure 5b was contributed by Lawrence H. Bannister.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6

Schematic representing the DBL, RBL, and AMA-1 protein families. Several members of each family are depicted with their predominant features highlighted, as indicated by the key at the bottom of the figure.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adams, J. H.,, P. L. Blair,, O. Kaneko,, and D. S. Peterson. 2001.An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 17:297299.
2. Adams, J. H.,, D. E. Hudson,, M. Torii,, G. E. Ward,, T. E. Wellems,, M. Aikawa,, and L. H. Miller. 1990. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63:141153.
3. Adams, J. H.,, B. K. Sim,, S. A. Dolan,, X. Fang,, D. C. Kaslow,, and L. H. Miller. 1992.A family of erythrocyte binding proteins of malaria parasites. Proc. Natl.Acad. Sci. USA 89:70857089.
4. Aikawa, M. 1966.The fine structure of the erythrocytic stages of three avian malarial parasites, Plasmodium fallax, P. lophurae, and P. cathemerium. Am. J.Trop. Med. Hyg. 15:449471.
5. Aikawa, M. 1971. Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp.Parasitol. 30:284320.
6. Aikawa, M.,, P. K. Hepler,, C. G. Huff,, and H. Sprinz. 1966. The feeding mechanism of avian malarial parasites. J. Cell Biol. 28:355373.
7. Aikawa, M.,, C.G. Huff,, and H. Sprinz. 1967. Fine structure of the asexual stages of Plasmodium elongatum. J. Cell Biol. 34:229249.
8. Aikawa, M.,, and L. H. Miller. 1983. Structural alteration of the erythrocyte membrane during malarial parasite invasion and intraerythrocytic development. Ciba Found. Symp. 94:4563.
9. Aikawa, M.,, L. H. Miller,, J. Johnson,, and J. Rabbege. 1978. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77:7282.
10. Aikawa, M.,, L. H. Miller,, J. R. Rabbege,, and N. Epstein. 1981. Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion. J. Cell Biol. 91:5562.
11. Aikawa, M.,, and C. Sterling. 1974. High voltage electron microscopy on microgametogenesis of Haemoproteus columbae. Z. Zellforsch. Mikrosk. Anat. 147:353360.
12. Aikawa, M.,, M. Torii,, A. Sjolander,, K. Berzins,, P. Perlmann,, and L. H. Miller. 1990. Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp. Parasitol. 71:326329.
13. Aley, S. B.,, C.T. Atkinson,, M. Aikawa,, W. L. Maloy,, and M. R. Hollingdale. 1987. Ultrastructural localization of Plasmodium falciparum circumsporozoite protein in newly invaded hepatoma cells. J. Parasitol. 73:12411245.
14. Allary, M.,, J. Schrevel,, and I. Florent. 2002. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology 125:110.
15. Anamika, N. Srinivasan, and A. Krupa. 2005.A genomic perspective of protein kinases in Plasmodium falciparum. Proteins 58:180189.
16. Anders, R. F.,, L. J. Murray,, L. M. Thomas,, K. M. Davern,, G.V. Brown,, and D. J. Kemp. 1987. Structure and function of candidate vaccine antigens in Plasmodium falciparum. Biochem. Soc.Symp. 53:103114.
17. Aoki, S.,, J. Li,, S. Itagaki,, B. A. Okech,, T. G. Egwang,, H. Matsuoka,, N. M. Palacpac,, T. Mitamura,, and T. Horii. 2002. Serine repeat antigen berghei and Plasmodium chabaudi: a neutral endopeptidase in parasite extracts and plasma of infected animals. Exp. Parasitol. 64:95103.
18. Badell, E.,, V. Pasquetto,, W. Eling,, A. Thomas, andP. Druilhe. 1995.Human Plasmodium liver stages inSCID mice: a feasible model? Parasitol.Today 11:169171.
19. Baldi, D. L.,, K. T. Andrews,, R. F. Waller, D. S., Roos, R. F. Howard, B. S. Crabb, and A. F.Cowman. 2000. RAP1 controls rhoptry targetingof RAP2 in the malaria parasite Plasmodium falciparum.EMBO J. 19:24352443.
20. Baldi, D. L.,, R. Good,, M. T. Duraisingh,, B. S. Crabb,, and A. F. Cowman. 2002. Identificationand disruption of the gene encoding the third memberof the low-molecular-mass rhoptry complex inPlasmodium falciparum. Infect.Immun. 70:52365245.
21. Bannister, L. H. 2001. Looking for the exit: how domalaria parasites escape from red blood cells? Proc.Natl.Acad. Sci. USA 98:383384.
22. Bannister, L. H.,, G.A. Butcher,, E.D. Dennis, andG. H. Mitchell. 1975. Structure and invasive behaviourof Plasmodium knowlesi merozoites in vitro.Parasitology 71:483491.
23. Bannister, L. H.,, and A. R. Dluzewski. 1990.Theultrastructure of red cell invasion in malaria infections:a review. Blood Cells 16:257292.
24. Bannister, L. H.,, J. M. Hopkins,, A. R. Dluzewski,, G. Margos,, I. T. Williams,, M. J. Blackman,, C. H. Kocken,, A. W. Thomas,, and G. H. Mitchell. 2003. Plasmodium falciparum apical membraneantigen 1 (PfAMA-1) is translocated withinmicronemes along subpellicular microtubules duringmerozoite development. J. Cell Sci. 116:38253834.
25. Bannister, L. H.,, J. M. Hopkins,, R. E. Fowler,, S. Krishna,, and G. H. Mitchell. 2000a. A brief illustratedguide to the ultrastructure of Plasmodium falciparumasexual blood stages. Parasitol.Today 16:427433.
26. Bannister, L. H.,, J. M. Hopkins,, R. E. Fowler,, S. Krishna,, and G. H. Mitchell. 2000b. Ultrastructureof rhoptry development in Plasmodium falciparumerythrocytic schizonts. Parasitology 121:273287.
27. Bannister, L.H.,, and G. H. Mitchell. 1989.The finestructure of secretion by Plasmodium knowlesi merozoitesduring red cell invasion. J. Protozool. 36:362367.
28. Bannister, L. H.,, and G. H. Mitchell. 1995.The roleof the cytoskeleton in Plasmodium falciparum merozoitebiology: an electron-microscopic view. Ann.Trop. Med. Parasitol. 89:105111.
29. Bannister, L. H.,, G. H. Mitchell,, G.A. Butcher, andE. D. Dennis. 1986a. Lamellar membranes associatedwith rhoptries in erythrocytic merozoites ofPlasmodium knowlesi: a clue to the mechanism of invasion.Parasitology 92:291303.
30. Bannister, L. H.,, G. H. Mitchell,, G. A. Butcher,, E.D. Dennis,, and S. Cohen. 1986b. Structure anddevelopment of the surface coat of erythrocyticmerozoites of Plasmodium knowlesi. Cell Tissue Res.245:281290.
31. Barale, J. C.,, T. Blisnick,, H. Fujioka,, P. M. Alzari,, M. Aikawa,, C. Braun-Breton,, and G. Langsley.1999. Plasmodium falciparum subtilisin-like protease 2,a merozoite candidate for the merozoite surface protein1-42 maturase. Proc. Natl. Acad. Sci. USA 96:64456450.
32. Barnwell, J.W.,, and M. R. Galinski. 1991.The adhesionof malaria merozoite proteins to erythrocytes:a reflection of function? Res. Immunol. 142:666672.
33. Barnwell, J.W.,, M. R. Galinski,, S. G. DeSimone,, F. Perler,, and P. Ingravallo. 1999. Plasmodium vivax,P. cynomolgi, and P. knowlesi: identification of homologueproteins associated with the surface ofmerozoites. Exp. Parasitol. 91:238249.
34. Barnwell, J.W.,, M. E. Nichols,, and P. Rubinstein.1989. In vitro evaluation of the role of the Duffyblood group in erythrocyte invasion by Plasmodiumvivax. J. Exp. Med. 169:17951802.
35. Barnwell, J.W.,, and S. P. Wertheimer. 1989. Plasmodiumvivax: merozoite antigens, the Duffy bloodgroup, and erythrocyte invasion. Prog. Clin. Biol. Res.313:111.
36. Baum, J.,, M. Pinder,, and D. J. Conway. 2003. Erythrocyteinvasion phenotypes of Plasmodium falciparumin The Gambia. Infect.Immun. 71:18561863.
37. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of geneexpression during asexual intraerythrocytic developmentof the human malaria parasite Plasmodium falciparumrevealed by microarray analysis. Mol. Microbiol.39:2636.
38. Benet, A.,, L. Tavul,, J. C. Reeder,, and A. Cortes.2004.Diversity of Plasmodium falciparum vaccine candidatemerozoite surface protein 4 (MSP4) in a naturalpopulation. Mol. Biochem.Parasitol. 134:275280.
39. Bennett, V.,, and S. Lambert. 1991. The spectrinskeleton: from red cells to brain. J. Clin. Investig. 87:14831489.
40. Bergman, L.W.,, K. Kaiser,, H. Fujioka,, I. Coppens,, T. M. Daly,, S. Fox,, K. Matuschewski,, V. Nussenzweig,,and S. H. Kappe. 2003.Myosin A tail domaininteracting protein (MTIP) localizes to the innermembrane complex of Plasmodium sporozoites.J. Cell Sci. 116:3949.
41. Bernard, F.,, R. Mayer,, I. Picard,, A. Deguercy,, M. Monsigny,, and J. Schrevel. 1987. Plasmodium152 _ GALINSKI ET AL. berghei and Plasmodium chabaudi: a neutral endopeptidasein parasite extracts and plasma of infected animals.Exp. Parasitol. 64:95103.
42. Binks, R. H.,, and D. J. Conway. 1999.The major allelic dimorphisms in four Plasmodium falciparum merozoite proteins are not associated with alternative pathways of erythrocyte invasion. Mol. Biochem. Parasitol. 103:123127.
43. Black, C. G.,, J.W. Barnwell,, C. S. Huber,, M. R. Galinski,, and R. L. Coppel. 2002.The Plasmodium vivax homologues of merozoite surface proteins 4 and 5 from Plasmodium falciparum are expressed at different locations in the merozoite. Mol. Biochem. Parasitol. 120:215224.
44. Black, C.G.,, L. Wang,, A. R. Hibbs,, E. Werner,, and R. L. Coppel 1999. Identification of the Plasmodium chabaudi homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparum. Infect.Immun. 67:20752081.
45. Black, C.G.,, L. Wang,, A. E. Topolska,, D. I. Finkelstein,, M. K. Horne,, A.W. Thomas,, N. Mohandas,, and R. L. Coppel. 2004. Merozoite surface proteins 4 and 5 of Plasmodium knowlesi have differing cellular localisation and association with lipid rafts. Mol. Biochem. Parasitol. 138:153158.
46. Black, C. G.,, L. Wang,, T. Wu,, and R. L. Coppel. 2003.Apical location of a novel EGF-like domaincontaining protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 127:5968.
47. Black, C. G.,, T. Wu,, L. Wang,, A. R. Hibbs,, and R. L. Coppel. 2001. Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Mol. Biochem.Parasitol. 114:217226.
48. Blackman, M. J. 2004. Proteases in host cell invasion by the malaria parasite. Cell. Microbiol. 6:893903.
49. Blackman, M. J. 2000. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr. Drug Targets 1:5983.
50. Blackman, M. J.,, and L. H. Bannister. 2001. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol. Biochem. Parasitol. 117:1125.
51. Blackman, M. J.,, E.D. Dennis,, E. M. Hirst,, C. H. Kocken,, T. J. Scott-Finnigan,, and A. W. Thomas. 1996. Plasmodium knowlesi: secondary processing of the malaria merozoite surface protein-1. Exp. Parasitol.83:229239.
52. Blackman, M. J.,, H. Fujioka,, W. H. Stafford,, M. Sajid,, B. Clough,, S. L. Fleck,, M. Aikawa,, M. Grainger,, and F. Hackett. 1998.A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J. Biol. Chem. 273:2339823409.
53. Blackman, M. J.,, H. G. Heidrich,, S. Donachie,, J. S. McBride,, and A. A. Holder. 1990.A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172:379382.
54. Blackman, M. J.,, and A.A. Holder. 1992. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol. Biochem.Parasitol. 50:307315.
55. Blackman, M. J.,, H. Whittle,, and A. A. Holder. 1991. Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33- kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol. Biochem. Parasitol. 49:3544.
56. Blair, P. L.,, S. H. Kappe,, J. E. Maciel,, B. Balu,, and J. H. Adams. 2002a. Plasmodium falciparum MAEBL is a unique member of the ebl family. Mol. Biochem. Parasitol. 122:3544.
57. Blair, P. L.,, A. Witney,, J. D. Haynes,, J. K. Moch,, D. J. Carucci,, and J. H. Adams. 2002b.Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR.Nucleic Acids Res. 30:22242231.
58. Borre, M. B.,, C.A. Owen,, J. K. Keen,, K.A. Sinha,, and A. A. Holder. 1995. Multiple genes code for high-molecular-mass rhoptry proteins of Plasmodium yoelii. Mol. Biochem. Parasitol. 70:149155.
59. Bozdech, Z.,, J. Zhu,, M. P. Joachimiak,, F. E. Cohen,, B. Pulliam,, and J. L. DeRisi. 2003. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4:R9.
60. Braun-Breton, C.,, T. Blisnick,, M. E. Morales- Betoulle,, J. C. Barale,, and G. Langsley. 1994. Malaria parasites: enzymes involved in red blood cell invasion. Braz. J. Med. Biol. Res. 27:363367.
61. Braun-Breton, C.,, and L. Pereira da Silva. 1988. Activation of a Plasmodium falciparum protease correlated with merozoite maturation and erythrocyte invasion. Biol. Cell 64:223231.
62. Brown, D.A.,, and J. K. Rose. 1992. Sorting of GPIanchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68:533544.
63. Brown, H. J.,, and R. L. Coppel. 1991. Primary structure of a Plasmodium falciparum rhoptry antigen. Mol. Biochem. Parasitol. 49:99110.
64. Burkhard, P.,, J. Stetefeld,, and S.V. Strelkov. 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11:8288.
65. Burns, J. M.,, E. K. Adeeku,, C. C. Belk,, and P. D. Dunn. 2000. An unusual tryptophan-rich domain characterizes two secreted antigens of Plasmodium yoelii-infected erythrocytes. Mol. Biochem. Parasitol. 110:1121.
66. Buscaglia, C. A.,, I. Coppens,, W. G. Hol,, and V. Nussenzweig. 2003. Sites of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol. Biol. Cell 14:49474957.
67. Bushell, G. R.,, J. A. Cooper,, L. T. Ingram,, L. Schofield,, A. Saul,, R. J. Epping,, S. Chiu,, S. Jelacic,, and J.A. Upcroft. 1986. Identification of key antigens of Plasmodium falciparum as vaccine candidates. P. N. G. Med. J. 29:6973.
68. Butcher, G. A.,, G. H. Mitchell,, and S. Cohen. 1973. Mechanism of host specificity in malarial infection. Nature 244:4041. (Letter.)
69. Bzik, D. J.,, W.B. Li,, T. Horii,, and J. Inselburg. 1988. Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA. Mol. Biochem. Parasitol. 30:279288.
70. Camus, D.,, and T. J. Hadley. 1985.A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230:553556.
71. Carlton, J. M.,, S. V. Angiuoli,, B. B. Suh,, T.W. Kooij,, M. Pertea,, J. C. Silva,, M.D. Ermolaeva,, J. E. Allen,, J. D. Selengut,, H. L. Koo,, J. D. Peterson,, M. Pop,, D. S. Kosack,, M. F. Shumway,, S. L. Bidwell,, S. J. Shallom,, S. E. van Aken,, S. B. Riedmuller,, T.V. Feldblyum,, J. K. Cho,, J. Quackenbush,, M. Sedegah,, A. Shoaibi,, L. M. Cummings,, L. Florens,, J. R. Yates,, J.D. Raine,, R. E. Sinden,, M.A. Harris,, D.A. Cunningham,, P. R. Preiser,, L.W. Bergman,, A.B. Vaidya,, L. H. van Lin,, C. J. Janse,, A. P. Waters,, H. O. Smith,, O. R. White,, S. L. Salzberg,, J. C. Venter,, C.M. Fraser,, S. L. Hoffman,, M. J. Gardner,, and D. J. Carucci. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419:512519.
72. Carruthers, V. B.,, O. K. Giddings,, and L. D. Sibley. 1999. Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cell. Microbiol. 1:225235.
73. Cartron, J. P.,, O. Prou,, M. Luilier,, and J. P. Soulier. 1983. Susceptibility to invasion by Plasmodium falciparum of some human erythrocytes carrying rare blood group antigens. Br. J. Haematol. 55:639647.
74. Carvalho, T. G.,, and R. Menard. 2005. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7:3955.
75. Chaparro, J.,, A. R. Dluzewski,, G. Margos,, M. M. Wasserman,, G. H. Mitchell,, L. H. Bannister,, and J. C. Pinder. 2003.The multiple myosins of malaria: the smallest malaria myosin, Plasmodium falciparum myosin-B (Pfmyo-B) is expressed in latestage schizonts and merozoites. Eur. J. Protistol. 39:423427.
76. Chaparro-Olaya, J.,, G. Margos,, D. J. Coles,, A. R. Dluzewski,, G. H. Mitchell,, M. M. Wasserman,, and J. C. Pinder. 2005. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. Cell Motil. Cytoskeleton 60:200213.
77. Chaudhuri, A.,, J. Polyakova,, V. Zbrzezna,, K. Williams,, S. Gulati,, and A. O. Pogo. 1993. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl.Acad. Sci.USA 90:1079310797.
78. Chaudhuri, A.,, V. Zbrzezna,, J. Polyakova,, A. O. Pogo,, J. Hesselgesser,, and R. Horuk. 1994. Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. J. Biol. Chem. 269:78357838.
79. Chen, X. M.,, S. P. O’Hara,, B. Q. Huang,, J. B. Nelson,, J. J. Lin,, G. Zhu,, H.D. Ward,, and N. F. LaRusso. 2004.Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect. Immun. 72:68066816.
80. Cheng, Q.,, and A. Saul. 1994. Sequence analysis of the apical membrane antigen I (AMA-1) of Plasmodium vivax. Mol. Biochem. Parasitol. 65:183187.
81. Chitnis, C. E.,, A. Chaudhuri,, R. Horuk,, A. O. Pogo,, and L. H. Miller. 1996.The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184:15311536.
82. Chitnis, C. E.,, and L. H. Miller. 1994. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180:497506.
83. Clark, I. A.,, N. H. Hunt,, G.A. Butcher,, and W. B. Cowden. 1987. Inhibition of murine malaria (Plasmodium chabaudi) in vivo by recombinant interferongamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J. Immunol. 139:34933496.
84. Clark, J.T.,, S. Donachie,, R. Anand,, C. F. Wilson,, H.G. Heidrich,, and J. S. McBride. 1989. 46-53 kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites. Mol. Biochem.Parasitol. 32:1524.
85. Coatney, R. G.,, W. E. Collins,, M. Warren,, and P. G. Contacos. 1971. The Primate Malarias. U.S. Government Printing Office,Washington,D.C.
86. Cooke, B. M.,, K. Lingelbach,, L. H. Bannister,, and L. Tilley. 2004. Protein trafficking in Plasmodium falciparum- infected red blood cells. Trends Parasitol. 20:581589.
87. Cooper, J. A. 1987. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105:14731478.
88. Cooper, J. A.,, L.T. Ingram,, G. R. Bushell,, C. A. Fardoulys,, D. Stenzel,, L. Schofield,, and A. J. Saul. 1988. The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol. Biochem. Parasitol. 29:251260.
89. Coppens, I.,, and K. A. Joiner. 2003. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14:38043820.
90. Cortes, A.,, A. Benet,, B. M. Cooke,, J.W. Barnwell,, and J. C. Reeder. 2004.Ability of Plasmodium falciparum to invade southeast Asian ovalocytes varies between parasite lines. Blood 104:29612966.
91. Cowman, A. F.,, D. L. Baldi,, J. Healer,, K. E. Mills,, R. A. O’Donnell,, M. B. Reed,, T. Triglia,, M. E. Wickham,, and B. S. Crabb. 2000. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Lett. 476:8488.
92. Crabb, B. S.,, M. Rug,, T.W. Gilberger,, J.K. Thompson,, T. Triglia,, A.G. Maier,, and A. F. Cowman. 2004.Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol. Biol. 270:263276.
93. Crewther, P. E.,, J. G. Culvenor,, A. Silva,, J. A. Cooper,, and R. F. Anders. 1990. Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp. Parasitol. 70:193206.
94. Culvenor, J. G.,, K. P. Day,, and R. F. Anders. 1991. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect. Immun. 59: 11831187.
95. David, P. H.,, T. J. Hadley,, M. Aikawa,, and L. H. Miller. 1984. Processing of a major parasite surface glycoprotein during the ultimate stages of differentiation in Plasmodium knowlesi. Mol. Biochem.Parasitol. 11:267282.
96. Deans, J. A.,, T. Alderson,, A.W. Thomas,, G. H. Mitchell,, E. S. Lennox,, and S. Cohen. 1982. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin. Exp. Immunol. 49:297309.
97. Debrabant, A.,, P. Maes,, P. Delplace,, J. F. Dubremetz,, A. Tartar,, and D. Camus. 1992. Intramolecular mapping of Plasmodium falciparum P126 proteolytic fragments by N-terminal amino acid sequencing. Mol. Biochem. Parasitol. 53:8995.
98. Deguercy, A.,, M. Hommel,, and J. Schrevel. 1990. Purification and characterization of 37-kilodalton proteases from Plasmodium falciparum and Plasmodium berghei which cleave erythrocyte cytoskeletal components. Mol. Biochem. Parasitol. 38:233244.
99. Delplace, P.,, A. Bhatia,, M. Cagnard,, D. Camus,, G. Colombet,, A. Debrabant,, J. F. Dubremetz,, N. Dubreuil,, G. Prensier,, B. Fortier, et al. 1988. Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites. Biol. Cell 64:215221.
100. Delplace, P.,, B. Fortier,, G. Tronchin,, J. F. Dubremetz,, and A. Vernes. 1987. Localization, biosynthesis, processing and isolation of a major 126 kDa antigen of the parasitophorous vacuole of Plasmodium falciparum. Mol. Biochem. Parasitol. 23:193201.
101. Dluzewski, A. R.,, P. R. Fryer,, S. Griffiths,, R. J. Wilson,, and W. B. Gratzer. 1989. Red cell membrane protein distribution during malarial invasion. J. Cell Sci. 92:691699.
102. Dluzewski, A. R.,, and C. R. Garcia. 1996. Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. Experientia 52:621623.
103. Dluzewski, A. R.,, G. H. Mitchell,, P. R. Fryer,, S. Griffiths,, R. J. Wilson, andW. B. Gratzer. 1992. Origins of the parasitophorous vacuole membrane of the malaria parasite, Plasmodium falciparum, in human red blood cells. J. Cell Sci. 102:527532.
104. Dluzewski, A. R.,, K. Rangachari,, W. B. Gratzer,, and R. J. Wilson. 1983a. Inhibition of malarial invasion of red cells by chemical and immunochemical linking of spectrin molecules. Br. J. Haematol. 55:629637.
105. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1983b. Properties of red cell ghost preparations susceptible to invasion by malaria parasites. Parasitology 87:429438.
106. Dluzewski, A. R.,, K. Rangachari,, M. J. Tanner,, D. J. Anstee,, R. J. Wilson,, and W. B. Gratzer. 1986a. Inhibition of malarial invasion by intracellular antibodies against intrinsic membrane proteins in the red cell. Parasitology 93:427431.
107. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1986b. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp. Parasitol. 62:416422.
108. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1985. Relation of red cell membrane properties to invasion by Plasmodium falciparum. Parasitology 91:273280.
109. Dluzewski, A. R.,, D. Zicha,, G. A. Dunn,, and W. B. Gratzer. 1995. Origins of the parasitophorous vacuole membrane of the malaria parasite: surface area of the parasitized red cell. Eur. J. Cell Biol. 68:446449.
110. Dobrowolski, J. M.,, and L. D. Sibley. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84:933939.
111. Dolan, S.A.,, L. H. Miller,, and T. E. Wellems. 1990. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J. Clin. Investig. 86:618624.
112. Dolan, S.A.,, J. L. Proctor,, D.W. Alling,, Y. Okubo,, T. E. Wellems,, and L. H. Miller. 1994. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol. Biochem. Parasitol. 64:5563.
113. Donahue, C. G.,, V. B. Carruthers,, S. D. Gilk,, and G. E. Ward. 2000.The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol. Biochem. Parasitol. 111:1530.
114. Dua, M.,, P. Raphael,, P. S. Sijwali,, P. J. Rosenthal,, and M. Hanspal. 2001. Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol. Biochem. Parasitol. 116:9599.
115. Duraisingh, M.T.,, A.G. Maier,, T. Triglia,, and A. F. Cowman. 2003. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc. Natl.Acad. Sci. USA 100:47964801.
116. Dutta, S.,, J.D. Haynes,, J. K. Moch,, A. Barbosa,, and D. E. Lanar. 2003. Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc. Natl.Acad. Sci. USA 100:1229512300.
117. Dutta, S.,, P. Malhotra,, and V. S. Chauhan. 1995. Sequence analysis of apical membrane antigen 1 (AMA-1) of Plasmodium cynomolgi bastianelli. Mol. Biochem. Parasitol. 73:267270.
118. Dvorak, J. A.,, L. H. Miller,, W. C. Whitehouse,, and T. Shiroishi. 1975. Invasion of erythrocytes by malaria merozoites. Science 187:748750.
119. Eakin, A. E.,, A. A. Mills,, G. Harth,, J. H. McKerrow,, and C. S. Craik. 1992.The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem. 267:74117420.
120. Escalante, A.A.,, O. E. Cornejo,, D. E. Freeland,, A. C. Poe,, E. Durrego,, W. E. Collins,, and A.A. Lal. 2005.A monkey’s tale: the origin of Plasmodium vivax as a human malaria parasite. Proc. Natl.Acad. Sci. USA 102:19801985.
121. Escalante, A. A.,, H. M. Grebert,, S. C. Chaiyaroj,, M. Magris,, S. Biswas,, B. L. Nahlen,, and A. A. Lal. 2001.Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. Mol. Biochem. Parasitol. 113:279287.
122. Facer, C.A. 1983. Erythrocyte sialoglycoproteins and Plasmodium falciparum invasion. Trans. R. Soc.Trop. Med. Hyg. 77:524530.
123. Fang, X.D.,, D. C. Kaslow,, J. H. Adams,, and L. H. Miller. 1991. Cloning of the Plasmodium vivax Duffy receptor. Mol. Biochem. Parasitol. 44:125132.
124. Fast, N. M.,, J. C. Kissinger,, D. S. Roos,, and P. J. Keeling. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18:418426.
125. Fenton, B.,, J.T. Clark,, C. M. Khan,, J.V. Robinson,, D. Walliker,, R. Ridley,, J. G. Scaife,, and J. S. McBride. 1991. Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Mol. Cell. Biol. 11:963971.
126. Field, S. J.,, J. C. Pinder,, B. Clough,, A. R. Dluzewski,, R. J. Wilson,, and W. B. Gratzer. 1993.Actin in the merozoite of the malaria parasite, Plasmodium falciparum. Cell Motil. Cytoskeleton 25: 4348.
127. Florens, L.,, X. Liu,, Y. Wang,, S. Yang,, O. Schwartz,, M. Peglar,, D. J. Carucci,, J. R. Yates III,, and Y. Wub. 2004.Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol. Biochem. Parasitol. 135:111.
128. Fraser, T. S.,, S. H. Kappe,, D. L. Narum,, K. M. Van- Buskirk,, and J. H. Adams. 2001. Erythrocytebinding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol. Biochem. Parasitol. 117:4959.
129. Freeman, R. R.,, A. J. Trejdosiewicz,, and G. A. Cross. 1980. Protective monoclonal antibodies recognising stage-specific merozoite antigens of a rodent malaria parasite. Nature 284:366368.
130. Gaffar, F. R.,, A. P. Yatsuda,, F. F. Franssen,, and E. de Vries. 2004. A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Mol. Biochem.Parasitol. 136:2534.
131. Galinski, M. R.,, and J.W. Barnwell. 1996. Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitol. Today 12:2029.
132. Galinski, M. R.,, and V. Corredor. 2004.Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. Mol. Biochem. Parasitol. 134:1725.
133. Galinski, M. R.,, C. Corredor-Medina,, M. Povoa,, J. Crosby,, P. Ingravallo,, and J.W. Barnwell. 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol. Biochem. Parasitol. 101:131147.
134. Galinski, M. R.,, P. Ingravallo,, C. Corredor- Medina,, B. Al-Khedery,, M. Povoa,, and J.W. Barnwell. 2001. Plasmodium vivax merozoite surface proteins-3β and -3γ share structural similarities with P. vivax merozoite surface protein-3_ and define a new gene family. Mol. Biochem.Parasitol. 115:4153.
135. Galinski, M. R.,, C. C. Medina,, P. Ingravallo,, and J.W. Barnwell. 1992.A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69:12131226.
136. Galinski, M. R.,, M. Xu,, and J.W. Barnwell. 2000. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Mol. Biochem. Parasitol. 108:257262.
137. Gardiner, D. L.,, T. Spielmann,, M.W. Dixon,, P. L. Hawthorne,, M. R. Ortega,, K. L. Anderson,, T. S. Skinner-Adams,, D. J. Kemp,, and K. R. Trenholme. 2004.CLAG 9 is located in the rhoptries of Plasmodium falciparum. Parasitol. Res. 93:6467.
138. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419:498511.
139. Garnham, P. C. 1966. Malaria Parasites and Other Haemosporidia. Blackwell Press, London, United Kingdom.
140. Gaskins, E.,, S. Gilk,, N. DeVore,, T. Mann,, G. Ward,, and C. Beckers. 2004. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165:383393.
141. Gaur, D.,, J. R. Storry,, M. E. Reid,, J.W. Barnwell,, and L. H. Miller. 2003. Plasmodium falciparum is able to invade erythrocytes through a trypsin-resistant pathway independent of glycophorin B. Infect. Immun. 71:67426746.
142. Gerold, P.,, A. Dieckmann-Schuppert,, and R.T. Schwarz. 1994. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J. Biol. Chem. 269:25972606.
143. Ghai, M.,, S. Dutta,, T. Hall,, D. Freilich,, and C. F. Ockenhouse. 2002. Identification, expression, and functional characterization of MAEBL, a sporozoite and asexual blood stage chimeric erythrocytebinding protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 123:3545.
144. Gibson, H. L.,, J. E. Tucker,, D. C. Kaslow,, A. U. Krettli,, W. E. Collins,, M. C. Kiefer,, I. C. Bathurst,, and P. J. Barr. 1992. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol. Biochem.Parasitol. 50:325333.
145. Gilberger, T. W.,, J. K. Thompson,, M. B. Reed,, R. T. Good,, and A. F. Cowman. 2003a.The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J. Cell Biol. 162:317327.
146. Gilberger, T.W.,, J. K. Thompson,, T. Triglia,, R.T. Good,, M.T. Duraisingh,, and A. F. Cowman. 2003b. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J. Biol. Chem. 278:1448014486.
147. Goel, V. K.,, X. Li,, H. Chen,, S.C. Liu,, A. H. Chishti,, and S. S. Oh. 2003. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc. Natl. Acad. Sci. USA 100:51645169.
148. Gor, D.O.,, A.C. Li,, and P. J. Rosenthal. 1998. Protective immune responses against protease-like antigens of the murine malaria parasite Plasmodium vinckei. Vaccine 16:11931202.
149. Gratzer, W. B.,, and A. R. Dluzewski. 1993.The red blood cell and malaria parasite invasion. Semin.Hematol. 30:232247.
150. Grellier, P.,, I. Picard,, F. Bernard,, R. Mayer,, H. G. Heidrich,, M. Monsigny,, and J. Schrevel. 1989. Purification and identification of a neutral endopeptidase in Plasmodium falciparum schizonts and merozoites. Parasitol. Res. 75:455460.
151. Gruner, A. C.,, G. Snounou,, K. Brahimi,, F. Letourneur,, L. Renia,, and P. Druilhe. 2003. Preerythrocytic antigens of Plasmodium falciparum: from rags to riches? Trends Parasitol. 19:7478.
152. Hackett, F.,, M. Sajid,, C. Withers-Martinez,, M. Grainger,, and M. J. Blackman. 1999. PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol. Biochem. Parasitol. 103:183195.
153. Hadley, T.,, M. Aikawa,, and L. H. Miller. 1983. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp. Parasitol. 55:306311.
154. Hadley, T. J. 1986. Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Annu. Rev. Microbiol. 40:451477.
155. Hadley, T. J.,, F.W. Klotz,, G. Pasvol,, J. D. Haynes,, M. H. McGinniss,, Y. Okubo,, and L. H. Miller. 1987. Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Strain differences indicate receptor heterogeneity and two pathways for invasion. J. Clin. Investig. 80:11901193.
156. Hakansson, S.,, A. J. Charron,, and L. D. Sibley. 2001. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20:31323144.
157. Haldar, K.,, M.A. Ferguson,, and G.A. Cross. 1985. Acylation of a Plasmodium falciparum merozoite surface antigen via sn-1,2-diacyl glycerol. J. Biol. Chem. 260:49694974.
158. Haldar, K.,, and L. Uyetake. 1992.The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 50:161177.
159. Hanspal, M.,, M. Dua,, Y. Takakuwa,, A. H. Chishti,, and A. Mizuno. 2002. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100:10481054.
160. Harrison, T.,, B. U. Samuel,, T. Akompong,, H. Hamm,, N. Mohandas,, J.W. Lomasney,, and K. Haldar. 2003. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301: 17341736.
161. Haynes, J. D.,, J. P. Dalton,, F. W. Klotz,, M. H. McGinniss,, T. J. Hadley,, D. E. Hudson,, and L. H. Miller. 1988. Receptor-like specificity of a Plasmodium knowlesi malarial protein that binds to Duffy antigen ligands on erythrocytes. J. Exp. Med. 167: 18731881.
162. Healer, J.,, S. Crawford,, S. Ralph,, G. McFadden,, and A. F. Cowman. 2002. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infect. Immun. 70: 57515758.
163. Healer, J.,, V. Murphy,, A. N. Hodder,, R. Masciantonio,, A.W. Gemmill,, R. F. Anders,, A. F. Cowman,, and A. Batchelor. 2004. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol. Microbiol. 52: 159168.
164. Heidrich, H.G.,, W. Strych,, and J. E. Mrema. 1983. Identification of surface and internal antigens from spontaneously released Plasmodium falciparum merozoites by radio-iodination and metabolic labelling. Z. Parasitenkd. 69:715725.
165. Heintzelman, M.B.,, and J.D. Schwartzman. 1997. A novel class of unconventional myosins from Toxoplasma gondii. J. Mol. Biol. 271:139146.
166. Hettmann, C.,, A. Herm,, A. Geiter,, B. Frank,, E. Schwarz,, T. Soldati,, and D. Soldati. 2000. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol. Biol. Cell 11:13851400.
167. Higgins, D.G.,, D. J. McConnell,, and P. M. Sharp. 1989. Malarial proteinase? Nature 340:604.
168. Higgins, D. L.,, M. C. Lamb,, S. L. Young,, D. B. Powers,, and S. Anderson. 1990.The effect of the one-chain to two-chain conversion in tissue plasminogen activator: characterization of mutations at position 275. Thromb. Res. 57:527539.
169. Hiller, N. L.,, T. Akompong,, J. S. Morrow,, A. A. Holder,, and K. Haldar. 2003. Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis. J. Biol. Chem. 278:4841348421.
170. Hodder, A. N.,, P. E. Crewther,, M. L. Matthew,, G. E. Reid,, R. L. Moritz,, R. J. Simpson,, and R. F. Anders. 1996.The disulfide bond structure of Plasmodium apical membrane antigen-1. J. Biol.Chem. 271:2944629452.
171. Hodder, A. N.,, D. R. Drew,, V. C. Epa,, M. Delorenzi,, R. Bourgon,, S. K. Miller,, R. L. Moritz,, D. F. Frecklington,, R. J. Simpson,, T. P. Speed,, R.N. Pike,, and B. S. Crabb. 2003. Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J. Biol. Chem. 278:4816948177.
172. Holder, A. A. 1988. The precursor to major merozoite surface antigens: structure and role in immunity. Prog.Allergy 41:7297.
173. Holder, A. A. 1994. Parasitology 108(Suppl):S5S18.
174. Holder, A. A.,, and M. J. Blackman. 1994.What is the function of MSP-I on the malaria merozoite? Parasitol.Today 10:182184.
175. Holder, A. A.,, and R. R. Freeman. 1984a. Protective antigens of rodent and human bloodstage malaria. Philos.Trans. R. Soc. Lond. B Biol. Sci. 307: 171177.
176. Holder, A.A.,, and R. R. Freeman. 1984b.The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J. Exp. Med. 160: 624629.
177. Holder, A. A.,, M. J. Blackman,, M. Borre,, P. A. Burghaus,, J.A. Chappel,, J. K. Keen,, I.T. Ling,, S.A. Ogun,, C.A. Owen,, and K.A. Sinha. 1994. Malaria parasites and erythrocyte invasion. Biochem. Soc.Trans. 22:291295.
178. Holder, A. A.,, R. R. Freeman,, S. Uni,, and M. Aikawa. 1985a. Isolation of a Plasmodium falciparum rhoptry protein. Mol. Biochem.Parasitol. 14:293303.
179. Holder, A. A.,, M. J. Lockyer,, K. G. Odink,, J. S. Sandhu,, V. Riveros-Moreno,, S. C. Nicholls,, Y. Hillman,, L. S. Davey,, M. L. Tizard,, R. T. Schwarz, et al. 1985b.Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature 317:270273.
180. Holder, A.A.,, J. S. Sandhu,, Y. Hillman,, L. S. Davey,, S. C. Nicholls,, H. Cooper,, and M. J. Lockyer. 1987. Processing of the precursor to the major merozoite surface antigens of Plasmodium falciparum. Parasitology 94:199208.
181. Holt, D. C.,, D. L. Gardiner,, E. A. Thomas,, M. Mayo,, P. F. Bourke,, C. J. Sutherland,, R. Carter,, G. Myers,, D. J. Kemp,, and K. R. Trenholme. 1999.The cytoadherence linked asexual gene family of Plasmodium falciparum: are there roles other than cytoadherence? Int. J. Parasitol. 29:939944.
182. Holt, E. H.,, M. E. Nichols,, Z. Etzion,, and M. E. Perkins. 1989. Erythrocyte invasion by two Plasmodium falciparum isolates differing in sialic acid dependency in the presence of glycophorin A antibodies. Am. J.Trop. Med. Hyg. 40:245251.
183. Hopkins, J.,, R. Fowler,, S. Krishna,, I. Wilson,, G. Mitchell,, and L. Bannister. 1999.The plastid in Plasmodium falciparum asexual blood stages: a threedimensional ultrastructural analysis. Protist 150: 283295.
184. Horuk, R.,, C. E. Chitnis,, W. C. Darbonne,, T. J. Colby,, A. Rybicki,, T. J. Hadley,, and L. H. Miller. 1993.A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261:11821184.
185. Howard, R. F. 1990.The lower-molecular-weight protein complex (RI) of the Plasmodium falciparum rhoptries lacks the glycolytic enzyme aldolase. Mol. Biochem. Parasitol. 42:235240.
186. Howard, R. F.,, D. L. Narum,, M. Blackman,, and J. Thurman. 1998. Analysis of the processing of Plasmodium falciparum rhoptry-associated protein 1 and localization of Pr86 to schizont rhoptries and p67 to free merozoites. Mol. Biochem. Parasitol. 92: 111122.
187. Howard, R. F.,, and R.T. Reese. 1984. Synthesis of merozoite proteins and glycoproteins during the schizogony of Plasmodium falciparum. Mol. Biochem. Parasitol. 10:319334.
188. Howell, S.A.,, I. Well,, S. L. Fleck,, C. Kettleborough,, C. R. Collins,, and M. J. Blackman. 2003.A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J. Biol. Chem. 278:2389023898.
189. Howell, S.A.,, C. Withers-Martinez,, C. H. Kocken,, A.W. Thomas,, and M. J. Blackman. 2001. Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J. Biol. Chem. 276:3131131320.
190. Hudson-Taylor, D. E.,, S.A. Dolan,, F.W. Klotz,, H. Fujioka,, M. Aikawa,, E.V. Koonin,, and L. H. Miller. 1995. Plasmodium falciparum protein associated with the invasion junction contains a conserved oxidoreductase domain. Mol. Microbiol. 15:463471.
191. Irion, A.,, I. Felger,, S. Abdulla,, T. Smith,, R. Mull,, M. Tanner,, C. Hatz,, and H. P. Beck. 1998. Distinction of recrudescences from new infections by PCR-RFLP analysis in a comparative trial of CGP 56 697 and chloroquine in Tanzanian children.Trop. Med. Int. Health 3:490497.
192. Iwamoto, S.,, T. Omi,, E. Kajii,, and S. Ikemoto. 1995. Genomic organization of the glycoprotein D gene: Duffy blood group Fya/Fyb alloantigen system is associated with a polymorphism at the 44-amino acid residue. Blood 85:622626.
193. Jaikaria, N. S.,, C. Rozario,, R.G. Ridley,, and M.E. Perkins. 1993. Biogenesis of rhoptry organelles in Plasmodium falciparum. Mol. Biochem. Parasitol. 57: 269279.
194. Jay, D.G. 1996. Role of band 3 in homeostasis and cell shape. Cell 86:853854.
195. Jewett, T. J.,, and L. D. Sibley. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11:885894.
196. Johnson, J. G.,, N. Epstein,, T. Shiroishi,, and L. H. Miller. 1980. Factors affecting the ability of isolated Plasmodium knowlesi merozoites to attach to and invade erythrocytes. Parasitology 80:539550.
197. Johnson, J. G.,, N. Epstein,, T. Shiroishi,, and L. H. Miller. 1981. Identification of surface proteins on viable Plasmodium knowlesi merozoites. J. Protozool. 28:160164.
198. Kaneko, O.,, D. A. Fidock,, O. M. Schwartz,, and L. H. Miller. 2000. Disruption of the C-terminal region of EBA-175 in the Dd2/Nm clone of Plasmodium falciparum does not affect erythrocyte invasion. Mol. Biochem. Parasitol. 110:135146.