1887

Chapter 8 : 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817558/9781555813307_Chap08-2.gif

Abstract:

This chapter provides an overview of the dynamic nature of malaria from the perspective of the development of merozoites within an infected erythrocyte and the release of infectious merozoites, through the initiation and completion of the reinvasion process. The chapter encompasses discoveries or observations obtained through studies of different species of , which together have greatly aided and refined our understanding of these events. These species include not only the human malarias and , but also the simian malaria , the chimpanzee malaria , bird malarias such as and , and the rodent malarias, principally and . Malaria merozoites have a plasma membrane and the basic cellular machinery of typical eukaryotic cells, including a nucleus, endoplasmic reticulum, Golgi network, ribosomes, and mitochondria. As a merozoite begins to invade an red blood cells (RBCs), an internal membrane-lined invasion pit develops. The whole process of merozoite invasion can be divided into three or four distinct phases with a number of ultrastructural alterations and molecular events attributed to each phase, with an untold number of others likely to be discovered in the future. Merozoites must first be released from the wornout, hemoglobin-depleted, and extensively altered erythrocyte that hosted their development. Although many proteins have been identified in the spheroidal dense bodies of , only a few proteins besides ring-infected erythrocyte surface antigen (RESA) have been located in the dense bodies of .

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8

Key Concept Ranking

Integral Membrane Proteins
0.40562275
0.40562275
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Generalized diagrammatic representation of a merozoite showing the main structural features and organelles and also depicting the process by which newly formed micronemes are translocated along the microtubules to their placement at the apical pole (Bannister et al., 2003).

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Electron micrographs of (a) and (b) merozoites, showing the main structural features and organelles, as also detailed in the schematic shown in Fig. 1 .The parasite was obtained from an infected rhesus macaque and prepared for EM morphology fixation at the Emory Vaccine Center at the Yerkes National Primate Research Center. (The photograph of was produced with assistance from Michael J. Stewart and is reprinted from Galinski and Barnwell [1996], with permission from the publisher.)

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(a) EM featuring the triple membranes and surface coat of the merozoite shown in Fig. 2 with a tufted or spiked appearance. (b) Schematic representation of the merozoite membrane pellicle, consisting of the inner membrane complex, plasma membrane with connecting filaments, and a fibril bundled surface coat, as observed in .

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Electron micrograph of a mature schizont with merozoites surrounding the residual body and their apical ends facing outwards. Note that the PVM still appears intact at this late stage of development. Caveola vesicle complex structures (CVC; the basis of Schüffner's stippling) ( ) can also be observed at the surface of the infected red blood cell membrane.The parasite was obtained from an infected rhesus macaque and prepared for EM morphology fixation at the Emory Vaccine Center at Yerkes.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

EM invasion sequence of merozoites. (a) Apically attached merozoite (cytochalasin B treated). (b) Invading merozoite with moving junction indicated. (c) Newly invaded, fully enveloped merozoite.The parasite preparations for panels a and c were generated for EM morphology fixation at the Emory Vaccine Center at the Yerkes National Primate Research Center. Figure 5b was contributed by Lawrence H. Bannister.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Schematic representing the DBL, RBL, and AMA-1 protein families. Several members of each family are depicted with their predominant features highlighted, as indicated by the key at the bottom of the figure.

Citation: Galinski M, Dluzewski A, Barnwell J. 2005. 8 A Mechanistic Approach to Merozoite Invasion of Red Blood Cells: Merozoite Biogenesis, Rupture, and Invasion of Erythrocytes, p 113-168. In Sherman I (ed), Molecular Approaches to Malaria. ASM Press, Washington, DC. doi: 10.1128/9781555817558.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817558.chap8
1. Adams, J. H.,, P. L. Blair,, O. Kaneko,, and D. S. Peterson. 2001. An expanding ebl family of Plasmodium falciparum. Trends Parasitol. 17: 297 299.
2. Adams, J. H.,, D. E. Hudson,, M. Torii,, G. E. Ward,, T. E. Wellems,, M. Aikawa,, and L. H. Miller. 1990. The Duffy receptor family of Plasmodium knowlesi is located within the micronemes of invasive malaria merozoites. Cell 63: 141 153.
3. Adams, J. H.,, B. K. Sim,, S. A. Dolan,, X. Fang,, D. C. Kaslow,, and L. H. Miller. 1992. A family of erythrocyte binding proteins of malaria parasites. Proc. Natl.Acad. Sci. USA 89: 7085 7089.
4. Aikawa, M. 1966. The fine structure of the erythrocytic stages of three avian malarial parasites, Plasmodium fallax, P. lophurae, and P. cathemerium. Am. J.Trop. Med. Hyg. 15: 449 471.
5. Aikawa, M. 1971. Parasitological review. Plasmodium: the fine structure of malarial parasites. Exp.Parasitol. 30: 284 320.
6. Aikawa, M.,, P. K. Hepler,, C. G. Huff,, and H. Sprinz. 1966. The feeding mechanism of avian malarial parasites. J. Cell Biol. 28: 355 373.
7. Aikawa, M.,, C.G. Huff,, and H. Sprinz. 1967. Fine structure of the asexual stages of Plasmodium elongatum. J. Cell Biol. 34: 229 249.
8. Aikawa, M.,, and L. H. Miller. 1983. Structural alteration of the erythrocyte membrane during malarial parasite invasion and intraerythrocytic development. Ciba Found. Symp. 94: 45 63.
9. Aikawa, M.,, L. H. Miller,, J. Johnson,, and J. Rabbege. 1978. Erythrocyte entry by malarial parasites. A moving junction between erythrocyte and parasite. J. Cell Biol. 77: 72 82.
10. Aikawa, M.,, L. H. Miller,, J. R. Rabbege,, and N. Epstein. 1981. Freeze-fracture study on the erythrocyte membrane during malarial parasite invasion. J. Cell Biol. 91: 55 62.
11. Aikawa, M.,, and C. Sterling. 1974. High voltage electron microscopy on microgametogenesis of Haemoproteus columbae. Z. Zellforsch. Mikrosk. Anat. 147: 353 360.
12. Aikawa, M.,, M. Torii,, A. Sjolander,, K. Berzins,, P. Perlmann,, and L. H. Miller. 1990. Pf155/RESA antigen is localized in dense granules of Plasmodium falciparum merozoites. Exp. Parasitol. 71: 326 329.
13. Aley, S. B.,, C.T. Atkinson,, M. Aikawa,, W. L. Maloy,, and M. R. Hollingdale. 1987. Ultrastructural localization of Plasmodium falciparum circumsporozoite protein in newly invaded hepatoma cells. J. Parasitol. 73: 1241 1245.
14. Allary, M.,, J. Schrevel,, and I. Florent. 2002. Properties, stage-dependent expression and localization of Plasmodium falciparum M1 family zinc-aminopeptidase. Parasitology 125: 1 10.
15. Anamika, N. Srinivasan, and A. Krupa. 2005. A genomic perspective of protein kinases in Plasmodium falciparum. Proteins 58: 180 189.
16. Anders, R. F.,, L. J. Murray,, L. M. Thomas,, K. M. Davern,, G.V. Brown,, and D. J. Kemp. 1987. Structure and function of candidate vaccine antigens in Plasmodium falciparum. Biochem. Soc.Symp. 53: 103 114.
17. Aoki, S.,, J. Li,, S. Itagaki,, B. A. Okech,, T. G. Egwang,, H. Matsuoka,, N. M. Palacpac,, T. Mitamura,, and T. Horii. 2002. Serine repeat antigen berghei and Plasmodium chabaudi: a neutral endopeptidase in parasite extracts and plasma of infected animals. Exp. Parasitol. 64: 95 103.
18. Badell, E.,, V. Pasquetto,, W. Eling,, A. Thomas, andP. Druilhe. 1995. Human Plasmodium liver stages inSCID mice: a feasible model? Parasitol.Today 11: 169 171.
19. Baldi, D. L.,, K. T. Andrews,, R. F. Waller, D. S., Roos, R. F. Howard, B. S. Crabb, and A. F.Cowman. 2000. RAP1 controls rhoptry targetingof RAP2 in the malaria parasite Plasmodium falciparum. EMBO J. 19: 2435 2443.
20. Baldi, D. L.,, R. Good,, M. T. Duraisingh,, B. S. Crabb,, and A. F. Cowman. 2002. Identificationand disruption of the gene encoding the third memberof the low-molecular-mass rhoptry complex in Plasmodium falciparum. Infect.Immun. 70: 5236 5245.
21. Bannister, L. H. 2001. Looking for the exit: how domalaria parasites escape from red blood cells? Proc.Natl.Acad. Sci. USA 98: 383 384.
22. Bannister, L. H.,, G.A. Butcher,, E.D. Dennis, andG. H. Mitchell. 1975. Structure and invasive behaviourof Plasmodium knowlesi merozoites in vitro. Parasitology 71: 483 491.
23. Bannister, L. H.,, and A. R. Dluzewski. 1990. Theultrastructure of red cell invasion in malaria infections:a review. Blood Cells 16: 257 292.
24. Bannister, L. H.,, J. M. Hopkins,, A. R. Dluzewski,, G. Margos,, I. T. Williams,, M. J. Blackman,, C. H. Kocken,, A. W. Thomas,, and G. H. Mitchell. 2003. Plasmodium falciparum apical membraneantigen 1 (PfAMA-1) is translocated withinmicronemes along subpellicular microtubules duringmerozoite development. J. Cell Sci. 116: 3825 3834.
25. Bannister, L. H.,, J. M. Hopkins,, R. E. Fowler,, S. Krishna,, and G. H. Mitchell. 2000a. A brief illustratedguide to the ultrastructure of Plasmodium falciparumasexual blood stages. Parasitol.Today 16: 427 433.
26. Bannister, L. H.,, J. M. Hopkins,, R. E. Fowler,, S. Krishna,, and G. H. Mitchell. 2000b. Ultrastructureof rhoptry development in Plasmodium falciparumerythrocytic schizonts. Parasitology 121: 273 287.
27. Bannister, L.H.,, and G. H. Mitchell. 1989. The finestructure of secretion by Plasmodium knowlesi merozoitesduring red cell invasion. J. Protozool. 36: 362 367.
28. Bannister, L. H.,, and G. H. Mitchell. 1995. The roleof the cytoskeleton in Plasmodium falciparum merozoitebiology: an electron-microscopic view. Ann.Trop. Med. Parasitol. 89: 105 111.
29. Bannister, L. H.,, G. H. Mitchell,, G.A. Butcher, andE. D. Dennis. 1986a. Lamellar membranes associatedwith rhoptries in erythrocytic merozoites of Plasmodium knowlesi: a clue to the mechanism of invasion. Parasitology 92: 291 303.
30. Bannister, L. H.,, G. H. Mitchell,, G. A. Butcher,, E.D. Dennis,, and S. Cohen. 1986b. Structure anddevelopment of the surface coat of erythrocyticmerozoites of Plasmodium knowlesi. Cell Tissue Res. 245: 281 290.
31. Barale, J. C.,, T. Blisnick,, H. Fujioka,, P. M. Alzari,, M. Aikawa,, C. Braun-Breton,, and G. Langsley. 1999. Plasmodium falciparum subtilisin-like protease 2,a merozoite candidate for the merozoite surface protein1-42 maturase. Proc. Natl. Acad. Sci. USA 96: 6445 6450.
32. Barnwell, J.W.,, and M. R. Galinski. 1991. The adhesionof malaria merozoite proteins to erythrocytes:a reflection of function? Res. Immunol. 142: 666 672.
33. Barnwell, J.W.,, M. R. Galinski,, S. G. DeSimone,, F. Perler,, and P. Ingravallo. 1999. Plasmodium vivax,P. cynomolgi, and P. knowlesi: identification of homologueproteins associated with the surface ofmerozoites. Exp. Parasitol. 91: 238 249.
34. Barnwell, J.W.,, M. E. Nichols,, and P. Rubinstein. 1989. In vitro evaluation of the role of the Duffyblood group in erythrocyte invasion by Plasmodiumvivax. J. Exp. Med. 169: 1795 1802.
35. Barnwell, J.W.,, and S. P. Wertheimer. 1989. Plasmodiumvivax: merozoite antigens, the Duffy bloodgroup, and erythrocyte invasion. Prog. Clin. Biol. Res. 313: 1 11.
36. Baum, J.,, M. Pinder,, and D. J. Conway. 2003. Erythrocyteinvasion phenotypes of Plasmodium falciparumin The Gambia. Infect.Immun. 71: 1856 1863.
37. Ben Mamoun, C.,, I.Y. Gluzman,, C. Hott,, S. K. MacMillan,, A. S. Amarakone,, D. L. Anderson,, J. M. Carlton,, J. B. Dame,, D. Chakrabarti,, R. K. Martin,, B. H. Brownstein,, and D. E. Goldberg. 2001. Co-ordinated programme of geneexpression during asexual intraerythrocytic developmentof the human malaria parasite Plasmodium falciparumrevealed by microarray analysis. Mol. Microbiol. 39: 26 36.
38. Benet, A.,, L. Tavul,, J. C. Reeder,, and A. Cortes. 2004. Diversity of Plasmodium falciparum vaccine candidatemerozoite surface protein 4 (MSP4) in a naturalpopulation. Mol. Biochem.Parasitol. 134: 275 280.
39. Bennett, V.,, and S. Lambert. 1991. The spectrinskeleton: from red cells to brain. J. Clin. Investig. 87: 1483 1489.
40. Bergman, L.W.,, K. Kaiser,, H. Fujioka,, I. Coppens,, T. M. Daly,, S. Fox,, K. Matuschewski,, V. Nussenzweig,,and S. H. Kappe. 2003. Myosin A tail domaininteracting protein (MTIP) localizes to the innermembrane complex of Plasmodium sporozoites. J. Cell Sci. 116: 39 49.
41. Bernard, F.,, R. Mayer,, I. Picard,, A. Deguercy,, M. Monsigny,, and J. Schrevel. 1987. Plasmodium152 _ GALINSKI ET AL. berghei and Plasmodium chabaudi: a neutral endopeptidasein parasite extracts and plasma of infected animals. Exp. Parasitol. 64: 95 103.
42. Binks, R. H.,, and D. J. Conway. 1999. The major allelic dimorphisms in four Plasmodium falciparum merozoite proteins are not associated with alternative pathways of erythrocyte invasion. Mol. Biochem. Parasitol. 103: 123 127.
43. Black, C. G.,, J.W. Barnwell,, C. S. Huber,, M. R. Galinski,, and R. L. Coppel. 2002. The Plasmodium vivax homologues of merozoite surface proteins 4 and 5 from Plasmodium falciparum are expressed at different locations in the merozoite. Mol. Biochem. Parasitol. 120: 215 224.
44. Black, C.G.,, L. Wang,, A. R. Hibbs,, E. Werner,, and R. L. Coppel 1999. Identification of the Plasmodium chabaudi homologue of merozoite surface proteins 4 and 5 of Plasmodium falciparum. Infect.Immun. 67: 2075 2081.
45. Black, C.G.,, L. Wang,, A. E. Topolska,, D. I. Finkelstein,, M. K. Horne,, A.W. Thomas,, N. Mohandas,, and R. L. Coppel. 2004. Merozoite surface proteins 4 and 5 of Plasmodium knowlesi have differing cellular localisation and association with lipid rafts. Mol. Biochem. Parasitol. 138: 153 158.
46. Black, C. G.,, L. Wang,, T. Wu,, and R. L. Coppel. 2003. Apical location of a novel EGF-like domaincontaining protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 127: 59 68.
47. Black, C. G.,, T. Wu,, L. Wang,, A. R. Hibbs,, and R. L. Coppel. 2001. Merozoite surface protein 8 of Plasmodium falciparum contains two epidermal growth factor-like domains. Mol. Biochem.Parasitol. 114: 217 226.
48. Blackman, M. J. 2004. Proteases in host cell invasion by the malaria parasite. Cell. Microbiol. 6: 893 903.
49. Blackman, M. J. 2000. Proteases involved in erythrocyte invasion by the malaria parasite: function and potential as chemotherapeutic targets. Curr. Drug Targets 1: 59 83.
50. Blackman, M. J.,, and L. H. Bannister. 2001. Apical organelles of Apicomplexa: biology and isolation by subcellular fractionation. Mol. Biochem. Parasitol. 117: 11 25.
51. Blackman, M. J.,, E.D. Dennis,, E. M. Hirst,, C. H. Kocken,, T. J. Scott-Finnigan,, and A. W. Thomas. 1996. Plasmodium knowlesi: secondary processing of the malaria merozoite surface protein-1. Exp. Parasitol. 83: 229 239.
52. Blackman, M. J.,, H. Fujioka,, W. H. Stafford,, M. Sajid,, B. Clough,, S. L. Fleck,, M. Aikawa,, M. Grainger,, and F. Hackett. 1998. A subtilisin-like protein in secretory organelles of Plasmodium falciparum merozoites. J. Biol. Chem. 273: 23398 23409.
53. Blackman, M. J.,, H. G. Heidrich,, S. Donachie,, J. S. McBride,, and A. A. Holder. 1990. A single fragment of a malaria merozoite surface protein remains on the parasite during red cell invasion and is the target of invasion-inhibiting antibodies. J. Exp. Med. 172: 379 382.
54. Blackman, M. J.,, and A.A. Holder. 1992. Secondary processing of the Plasmodium falciparum merozoite surface protein-1 (MSP1) by a calcium-dependent membrane-bound serine protease: shedding of MSP133 as a noncovalently associated complex with other fragments of the MSP1. Mol. Biochem.Parasitol. 50: 307 315.
55. Blackman, M. J.,, H. Whittle,, and A. A. Holder. 1991. Processing of the Plasmodium falciparum major merozoite surface protein-1: identification of a 33- kilodalton secondary processing product which is shed prior to erythrocyte invasion. Mol. Biochem. Parasitol. 49: 35 44.
56. Blair, P. L.,, S. H. Kappe,, J. E. Maciel,, B. Balu,, and J. H. Adams. 2002a. Plasmodium falciparum MAEBL is a unique member of the ebl family. Mol. Biochem. Parasitol. 122: 35 44.
57. Blair, P. L.,, A. Witney,, J. D. Haynes,, J. K. Moch,, D. J. Carucci,, and J. H. Adams. 2002b. Transcripts of developmentally regulated Plasmodium falciparum genes quantified by real-time RT-PCR. Nucleic Acids Res. 30: 2224 2231.
58. Borre, M. B.,, C.A. Owen,, J. K. Keen,, K.A. Sinha,, and A. A. Holder. 1995. Multiple genes code for high-molecular-mass rhoptry proteins of Plasmodium yoelii. Mol. Biochem. Parasitol. 70: 149 155.
59. Bozdech, Z.,, J. Zhu,, M. P. Joachimiak,, F. E. Cohen,, B. Pulliam,, and J. L. DeRisi. 2003. Expression profiling of the schizont and trophozoite stages of Plasmodium falciparum with a long-oligonucleotide microarray. Genome Biol. 4: R9.
60. Braun-Breton, C.,, T. Blisnick,, M. E. Morales- Betoulle,, J. C. Barale,, and G. Langsley. 1994. Malaria parasites: enzymes involved in red blood cell invasion. Braz. J. Med. Biol. Res. 27: 363 367.
61. Braun-Breton, C.,, and L. Pereira da Silva. 1988. Activation of a Plasmodium falciparum protease correlated with merozoite maturation and erythrocyte invasion. Biol. Cell 64: 223 231.
62. Brown, D.A.,, and J. K. Rose. 1992. Sorting of GPIanchored proteins to glycolipid-enriched membrane subdomains during transport to the apical cell surface. Cell 68: 533 544.
63. Brown, H. J.,, and R. L. Coppel. 1991. Primary structure of a Plasmodium falciparum rhoptry antigen. Mol. Biochem. Parasitol. 49: 99 110.
64. Burkhard, P.,, J. Stetefeld,, and S.V. Strelkov. 2001. Coiled coils: a highly versatile protein folding motif. Trends Cell Biol. 11: 82 88.
65. Burns, J. M.,, E. K. Adeeku,, C. C. Belk,, and P. D. Dunn. 2000. An unusual tryptophan-rich domain characterizes two secreted antigens of Plasmodium yoelii-infected erythrocytes. Mol. Biochem. Parasitol. 110: 11 21.
66. Buscaglia, C. A.,, I. Coppens,, W. G. Hol,, and V. Nussenzweig. 2003. Sites of interaction between aldolase and thrombospondin-related anonymous protein in Plasmodium. Mol. Biol. Cell 14: 4947 4957.
67. Bushell, G. R.,, J. A. Cooper,, L. T. Ingram,, L. Schofield,, A. Saul,, R. J. Epping,, S. Chiu,, S. Jelacic,, and J.A. Upcroft. 1986. Identification of key antigens of Plasmodium falciparum as vaccine candidates. P. N. G. Med. J. 29: 69 73.
68. Butcher, G. A.,, G. H. Mitchell,, and S. Cohen. 1973. Mechanism of host specificity in malarial infection. Nature 244: 40 41. (Letter.)
69. Bzik, D. J.,, W.B. Li,, T. Horii,, and J. Inselburg. 1988. Amino acid sequence of the serine-repeat antigen (SERA) of Plasmodium falciparum determined from cloned cDNA. Mol. Biochem. Parasitol. 30: 279 288.
70. Camus, D.,, and T. J. Hadley. 1985. A Plasmodium falciparum antigen that binds to host erythrocytes and merozoites. Science 230: 553 556.
71. Carlton, J. M.,, S. V. Angiuoli,, B. B. Suh,, T.W. Kooij,, M. Pertea,, J. C. Silva,, M.D. Ermolaeva,, J. E. Allen,, J. D. Selengut,, H. L. Koo,, J. D. Peterson,, M. Pop,, D. S. Kosack,, M. F. Shumway,, S. L. Bidwell,, S. J. Shallom,, S. E. van Aken,, S. B. Riedmuller,, T.V. Feldblyum,, J. K. Cho,, J. Quackenbush,, M. Sedegah,, A. Shoaibi,, L. M. Cummings,, L. Florens,, J. R. Yates,, J.D. Raine,, R. E. Sinden,, M.A. Harris,, D.A. Cunningham,, P. R. Preiser,, L.W. Bergman,, A.B. Vaidya,, L. H. van Lin,, C. J. Janse,, A. P. Waters,, H. O. Smith,, O. R. White,, S. L. Salzberg,, J. C. Venter,, C.M. Fraser,, S. L. Hoffman,, M. J. Gardner,, and D. J. Carucci. 2002. Genome sequence and comparative analysis of the model rodent malaria parasite Plasmodium yoelii yoelii. Nature 419: 512 519.
72. Carruthers, V. B.,, O. K. Giddings,, and L. D. Sibley. 1999. Secretion of micronemal proteins is associated with toxoplasma invasion of host cells. Cell. Microbiol. 1: 225 235.
73. Cartron, J. P.,, O. Prou,, M. Luilier,, and J. P. Soulier. 1983. Susceptibility to invasion by Plasmodium falciparum of some human erythrocytes carrying rare blood group antigens. Br. J. Haematol. 55: 639 647.
74. Carvalho, T. G.,, and R. Menard. 2005. Manipulating the Plasmodium genome. Curr. Issues Mol. Biol. 7: 39 55.
75. Chaparro, J.,, A. R. Dluzewski,, G. Margos,, M. M. Wasserman,, G. H. Mitchell,, L. H. Bannister,, and J. C. Pinder. 2003. The multiple myosins of malaria: the smallest malaria myosin, Plasmodium falciparum myosin-B (Pfmyo-B) is expressed in latestage schizonts and merozoites. Eur. J. Protistol. 39: 423 427.
76. Chaparro-Olaya, J.,, G. Margos,, D. J. Coles,, A. R. Dluzewski,, G. H. Mitchell,, M. M. Wasserman,, and J. C. Pinder. 2005. Plasmodium falciparum myosins: transcription and translation during asexual parasite development. Cell Motil. Cytoskeleton 60: 200 213.
77. Chaudhuri, A.,, J. Polyakova,, V. Zbrzezna,, K. Williams,, S. Gulati,, and A. O. Pogo. 1993. Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. Proc. Natl.Acad. Sci.USA 90: 10793 10797.
78. Chaudhuri, A.,, V. Zbrzezna,, J. Polyakova,, A. O. Pogo,, J. Hesselgesser,, and R. Horuk. 1994. Expression of the Duffy antigen in K562 cells. Evidence that it is the human erythrocyte chemokine receptor. J. Biol. Chem. 269: 7835 7838.
79. Chen, X. M.,, S. P. O’Hara,, B. Q. Huang,, J. B. Nelson,, J. J. Lin,, G. Zhu,, H.D. Ward,, and N. F. LaRusso. 2004. Apical organelle discharge by Cryptosporidium parvum is temperature, cytoskeleton, and intracellular calcium dependent and required for host cell invasion. Infect. Immun. 72: 6806 6816.
80. Cheng, Q.,, and A. Saul. 1994. Sequence analysis of the apical membrane antigen I (AMA-1) of Plasmodium vivax. Mol. Biochem. Parasitol. 65: 183 187.
81. Chitnis, C. E.,, A. Chaudhuri,, R. Horuk,, A. O. Pogo,, and L. H. Miller. 1996. The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes. J. Exp. Med. 184: 1531 1536.
82. Chitnis, C. E.,, and L. H. Miller. 1994. Identification of the erythrocyte binding domains of Plasmodium vivax and Plasmodium knowlesi proteins involved in erythrocyte invasion. J. Exp. Med. 180: 497 506.
83. Clark, I. A.,, N. H. Hunt,, G.A. Butcher,, and W. B. Cowden. 1987. Inhibition of murine malaria ( Plasmodium chabaudi) in vivo by recombinant interferongamma or tumor necrosis factor, and its enhancement by butylated hydroxyanisole. J. Immunol. 139: 3493 3496.
84. Clark, J.T.,, S. Donachie,, R. Anand,, C. F. Wilson,, H.G. Heidrich,, and J. S. McBride. 1989. 46-53 kilodalton glycoprotein from the surface of Plasmodium falciparum merozoites. Mol. Biochem.Parasitol. 32: 15 24.
85. Coatney, R. G.,, W. E. Collins,, M. Warren,, and P. G. Contacos. 1971. The Primate Malarias. U.S. Government Printing Office, Washington,D.C.
86. Cooke, B. M.,, K. Lingelbach,, L. H. Bannister,, and L. Tilley. 2004. Protein trafficking in Plasmodium falciparum- infected red blood cells. Trends Parasitol. 20: 581 589.
87. Cooper, J. A. 1987. Effects of cytochalasin and phalloidin on actin. J. Cell Biol. 105: 1473 1478.
88. Cooper, J. A.,, L.T. Ingram,, G. R. Bushell,, C. A. Fardoulys,, D. Stenzel,, L. Schofield,, and A. J. Saul. 1988. The 140/130/105 kilodalton protein complex in the rhoptries of Plasmodium falciparum consists of discrete polypeptides. Mol. Biochem. Parasitol. 29: 251 260.
89. Coppens, I.,, and K. A. Joiner. 2003. Host but not parasite cholesterol controls Toxoplasma cell entry by modulating organelle discharge. Mol. Biol. Cell 14: 3804 3820.
90. Cortes, A.,, A. Benet,, B. M. Cooke,, J.W. Barnwell,, and J. C. Reeder. 2004. Ability of Plasmodium falciparum to invade southeast Asian ovalocytes varies between parasite lines. Blood 104: 2961 2966.
91. Cowman, A. F.,, D. L. Baldi,, J. Healer,, K. E. Mills,, R. A. O’Donnell,, M. B. Reed,, T. Triglia,, M. E. Wickham,, and B. S. Crabb. 2000. Functional analysis of proteins involved in Plasmodium falciparum merozoite invasion of red blood cells. FEBS Lett. 476: 84 88.
92. Crabb, B. S.,, M. Rug,, T.W. Gilberger,, J.K. Thompson,, T. Triglia,, A.G. Maier,, and A. F. Cowman. 2004. Transfection of the human malaria parasite Plasmodium falciparum. Methods Mol. Biol. 270: 263 276.
93. Crewther, P. E.,, J. G. Culvenor,, A. Silva,, J. A. Cooper,, and R. F. Anders. 1990. Plasmodium falciparum: two antigens of similar size are located in different compartments of the rhoptry. Exp. Parasitol. 70: 193 206.
94. Culvenor, J. G.,, K. P. Day,, and R. F. Anders. 1991. Plasmodium falciparum ring-infected erythrocyte surface antigen is released from merozoite dense granules after erythrocyte invasion. Infect. Immun. 59: 1183 1187.
95. David, P. H.,, T. J. Hadley,, M. Aikawa,, and L. H. Miller. 1984. Processing of a major parasite surface glycoprotein during the ultimate stages of differentiation in Plasmodium knowlesi. Mol. Biochem.Parasitol. 11: 267 282.
96. Deans, J. A.,, T. Alderson,, A.W. Thomas,, G. H. Mitchell,, E. S. Lennox,, and S. Cohen. 1982. Rat monoclonal antibodies which inhibit the in vitro multiplication of Plasmodium knowlesi. Clin. Exp. Immunol. 49: 297 309.
97. Debrabant, A.,, P. Maes,, P. Delplace,, J. F. Dubremetz,, A. Tartar,, and D. Camus. 1992. Intramolecular mapping of Plasmodium falciparum P126 proteolytic fragments by N-terminal amino acid sequencing. Mol. Biochem. Parasitol. 53: 89 95.
98. Deguercy, A.,, M. Hommel,, and J. Schrevel. 1990. Purification and characterization of 37-kilodalton proteases from Plasmodium falciparum and Plasmodium berghei which cleave erythrocyte cytoskeletal components. Mol. Biochem. Parasitol. 38: 233 244.
99. Delplace, P.,, A. Bhatia,, M. Cagnard,, D. Camus,, G. Colombet,, A. Debrabant,, J. F. Dubremetz,, N. Dubreuil,, G. Prensier,, B. Fortier, et al. 1988. Protein p126: a parasitophorous vacuole antigen associated with the release of Plasmodium falciparum merozoites. Biol. Cell 64: 215 221.
100. Delplace, P.,, B. Fortier,, G. Tronchin,, J. F. Dubremetz,, and A. Vernes. 1987. Localization, biosynthesis, processing and isolation of a major 126 kDa antigen of the parasitophorous vacuole of Plasmodium falciparum. Mol. Biochem. Parasitol. 23: 193 201.
101. Dluzewski, A. R.,, P. R. Fryer,, S. Griffiths,, R. J. Wilson,, and W. B. Gratzer. 1989. Red cell membrane protein distribution during malarial invasion. J. Cell Sci. 92: 691 699.
102. Dluzewski, A. R.,, and C. R. Garcia. 1996. Inhibition of invasion and intraerythrocytic development of Plasmodium falciparum by kinase inhibitors. Experientia 52: 621 623.
103. Dluzewski, A. R.,, G. H. Mitchell,, P. R. Fryer,, S. Griffiths,, R. J. Wilson, andW. B. Gratzer. 1992. Origins of the parasitophorous vacuole membrane of the malaria parasite, Plasmodium falciparum, in human red blood cells. J. Cell Sci. 102: 527 532.
104. Dluzewski, A. R.,, K. Rangachari,, W. B. Gratzer,, and R. J. Wilson. 1983a. Inhibition of malarial invasion of red cells by chemical and immunochemical linking of spectrin molecules. Br. J. Haematol. 55: 629 637.
105. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1983b. Properties of red cell ghost preparations susceptible to invasion by malaria parasites. Parasitology 87: 429 438.
106. Dluzewski, A. R.,, K. Rangachari,, M. J. Tanner,, D. J. Anstee,, R. J. Wilson,, and W. B. Gratzer. 1986a. Inhibition of malarial invasion by intracellular antibodies against intrinsic membrane proteins in the red cell. Parasitology 93: 427 431.
107. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1986b. Plasmodium falciparum: protease inhibitors and inhibition of erythrocyte invasion. Exp. Parasitol. 62: 416 422.
108. Dluzewski, A. R.,, K. Rangachari,, R. J. Wilson,, and W. B. Gratzer. 1985. Relation of red cell membrane properties to invasion by Plasmodium falciparum. Parasitology 91: 273 280.
109. Dluzewski, A. R.,, D. Zicha,, G. A. Dunn,, and W. B. Gratzer. 1995. Origins of the parasitophorous vacuole membrane of the malaria parasite: surface area of the parasitized red cell. Eur. J. Cell Biol. 68: 446 449.
110. Dobrowolski, J. M.,, and L. D. Sibley. 1996. Toxoplasma invasion of mammalian cells is powered by the actin cytoskeleton of the parasite. Cell 84: 933 939.
111. Dolan, S.A.,, L. H. Miller,, and T. E. Wellems. 1990. Evidence for a switching mechanism in the invasion of erythrocytes by Plasmodium falciparum. J. Clin. Investig. 86: 618 624.
112. Dolan, S.A.,, J. L. Proctor,, D.W. Alling,, Y. Okubo,, T. E. Wellems,, and L. H. Miller. 1994. Glycophorin B as an EBA-175 independent Plasmodium falciparum receptor of human erythrocytes. Mol. Biochem. Parasitol. 64: 55 63.
113. Donahue, C. G.,, V. B. Carruthers,, S. D. Gilk,, and G. E. Ward. 2000. The Toxoplasma homolog of Plasmodium apical membrane antigen-1 (AMA-1) is a microneme protein secreted in response to elevated intracellular calcium levels. Mol. Biochem. Parasitol. 111: 15 30.
114. Dua, M.,, P. Raphael,, P. S. Sijwali,, P. J. Rosenthal,, and M. Hanspal. 2001. Recombinant falcipain-2 cleaves erythrocyte membrane ankyrin and protein 4.1. Mol. Biochem. Parasitol. 116: 95 99.
115. Duraisingh, M.T.,, A.G. Maier,, T. Triglia,, and A. F. Cowman. 2003. Erythrocyte-binding antigen 175 mediates invasion in Plasmodium falciparum utilizing sialic acid-dependent and -independent pathways. Proc. Natl.Acad. Sci. USA 100: 4796 4801.
116. Dutta, S.,, J.D. Haynes,, J. K. Moch,, A. Barbosa,, and D. E. Lanar. 2003. Invasion-inhibitory antibodies inhibit proteolytic processing of apical membrane antigen 1 of Plasmodium falciparum merozoites. Proc. Natl.Acad. Sci. USA 100: 12295 12300.
117. Dutta, S.,, P. Malhotra,, and V. S. Chauhan. 1995. Sequence analysis of apical membrane antigen 1 (AMA-1) of Plasmodium cynomolgi bastianelli. Mol. Biochem. Parasitol. 73: 267 270.
118. Dvorak, J. A.,, L. H. Miller,, W. C. Whitehouse,, and T. Shiroishi. 1975. Invasion of erythrocytes by malaria merozoites. Science 187: 748 750.
119. Eakin, A. E.,, A. A. Mills,, G. Harth,, J. H. McKerrow,, and C. S. Craik. 1992. The sequence, organization, and expression of the major cysteine protease (cruzain) from Trypanosoma cruzi. J. Biol. Chem. 267: 7411 7420.
120. Escalante, A.A.,, O. E. Cornejo,, D. E. Freeland,, A. C. Poe,, E. Durrego,, W. E. Collins,, and A.A. Lal. 2005. A monkey’s tale: the origin of Plasmodium vivax as a human malaria parasite. Proc. Natl.Acad. Sci. USA 102: 1980 1985.
121. Escalante, A. A.,, H. M. Grebert,, S. C. Chaiyaroj,, M. Magris,, S. Biswas,, B. L. Nahlen,, and A. A. Lal. 2001. Polymorphism in the gene encoding the apical membrane antigen-1 (AMA-1) of Plasmodium falciparum. X. Asembo Bay Cohort Project. Mol. Biochem. Parasitol. 113: 279 287.
122. Facer, C.A. 1983. Erythrocyte sialoglycoproteins and Plasmodium falciparum invasion. Trans. R. Soc.Trop. Med. Hyg. 77: 524 530.
123. Fang, X.D.,, D. C. Kaslow,, J. H. Adams,, and L. H. Miller. 1991. Cloning of the Plasmodium vivax Duffy receptor. Mol. Biochem. Parasitol. 44: 125 132.
124. Fast, N. M.,, J. C. Kissinger,, D. S. Roos,, and P. J. Keeling. 2001. Nuclear-encoded, plastid-targeted genes suggest a single common origin for apicomplexan and dinoflagellate plastids. Mol. Biol. Evol. 18: 418 426.
125. Fenton, B.,, J.T. Clark,, C. M. Khan,, J.V. Robinson,, D. Walliker,, R. Ridley,, J. G. Scaife,, and J. S. McBride. 1991. Structural and antigenic polymorphism of the 35- to 48-kilodalton merozoite surface antigen (MSA-2) of the malaria parasite Plasmodium falciparum. Mol. Cell. Biol. 11: 963 971.
126. Field, S. J.,, J. C. Pinder,, B. Clough,, A. R. Dluzewski,, R. J. Wilson,, and W. B. Gratzer. 1993. Actin in the merozoite of the malaria parasite, Plasmodium falciparum. Cell Motil. Cytoskeleton 25: 43 48.
127. Florens, L.,, X. Liu,, Y. Wang,, S. Yang,, O. Schwartz,, M. Peglar,, D. J. Carucci,, J. R. Yates III,, and Y. Wub. 2004. Proteomics approach reveals novel proteins on the surface of malaria-infected erythrocytes. Mol. Biochem. Parasitol. 135: 1 11.
128. Fraser, T. S.,, S. H. Kappe,, D. L. Narum,, K. M. Van- Buskirk,, and J. H. Adams. 2001. Erythrocytebinding activity of Plasmodium yoelii apical membrane antigen-1 expressed on the surface of transfected COS-7 cells. Mol. Biochem. Parasitol. 117: 49 59.
129. Freeman, R. R.,, A. J. Trejdosiewicz,, and G. A. Cross. 1980. Protective monoclonal antibodies recognising stage-specific merozoite antigens of a rodent malaria parasite. Nature 284: 366 368.
130. Gaffar, F. R.,, A. P. Yatsuda,, F. F. Franssen,, and E. de Vries. 2004. A Babesia bovis merozoite protein with a domain architecture highly similar to the thrombospondin-related anonymous protein (TRAP) present in Plasmodium sporozoites. Mol. Biochem.Parasitol. 136: 25 34.
131. Galinski, M. R.,, and J.W. Barnwell. 1996. Plasmodium vivax: merozoites, invasion of reticulocytes and considerations for malaria vaccine development. Parasitol. Today 12: 20 29.
132. Galinski, M. R.,, and V. Corredor. 2004. Variant antigen expression in malaria infections: posttranscriptional gene silencing, virulence and severe pathology. Mol. Biochem. Parasitol. 134: 17 25.
133. Galinski, M. R.,, C. Corredor-Medina,, M. Povoa,, J. Crosby,, P. Ingravallo,, and J.W. Barnwell. 1999. Plasmodium vivax merozoite surface protein-3 contains coiled-coil motifs in an alanine-rich central domain. Mol. Biochem. Parasitol. 101: 131 147.
134. Galinski, M. R.,, P. Ingravallo,, C. Corredor- Medina,, B. Al-Khedery,, M. Povoa,, and J.W. Barnwell. 2001. Plasmodium vivax merozoite surface proteins-3β and -3γ share structural similarities with P. vivax merozoite surface protein-3_ and define a new gene family. Mol. Biochem.Parasitol. 115: 41 53.
135. Galinski, M. R.,, C. C. Medina,, P. Ingravallo,, and J.W. Barnwell. 1992. A reticulocyte-binding protein complex of Plasmodium vivax merozoites. Cell 69: 1213 1226.
136. Galinski, M. R.,, M. Xu,, and J.W. Barnwell. 2000. Plasmodium vivax reticulocyte binding protein-2 (PvRBP-2) shares structural features with PvRBP-1 and the Plasmodium yoelii 235 kDa rhoptry protein family. Mol. Biochem. Parasitol. 108: 257 262.
137. Gardiner, D. L.,, T. Spielmann,, M.W. Dixon,, P. L. Hawthorne,, M. R. Ortega,, K. L. Anderson,, T. S. Skinner-Adams,, D. J. Kemp,, and K. R. Trenholme. 2004. CLAG 9 is located in the rhoptries of Plasmodium falciparum. Parasitol. Res. 93: 64 67.
138. Gardner, M. J.,, N. Hall,, E. Fung,, O. White,, M. Berriman,, R.W. Hyman,, J. M. Carlton,, A. Pain,, K. E. Nelson,, S. Bowman,, I. T. Paulsen,, K. James,, J. A. Eisen,, K. Rutherford,, S. L. Salzberg,, A. Craig,, S. Kyes,, M. S. Chan,, V. Nene,, S. J. Shallom,, B. Suh,, J. Peterson,, S. Angiuoli,, M. Pertea,, J. Allen,, J. Selengut,, D. Haft,, M.W. Mather,, A. B. Vaidya,, D. M. Martin,, A. H. Fairlamb,, M. J. Fraunholz,, D. S. Roos,, S.A. Ralph,, G. I. McFadden,, L. M. Cummings,, G. M. Subramanian,, C. Mungall,, J. C. Venter,, D. J. Carucci,, S. L. Hoffman,, C. Newbold,, R.W. Davis,, C. M. Fraser,, and B. Barrell. 2002. Genome sequence of the human malaria parasite Plasmodium falciparum. Nature 419: 498 511.
139. Garnham, P. C. 1966. Malaria Parasites and Other Haemosporidia. Blackwell Press, London, United Kingdom.
140. Gaskins, E.,, S. Gilk,, N. DeVore,, T. Mann,, G. Ward,, and C. Beckers. 2004. Identification of the membrane receptor of a class XIV myosin in Toxoplasma gondii. J. Cell Biol. 165: 383 393.
141. Gaur, D.,, J. R. Storry,, M. E. Reid,, J.W. Barnwell,, and L. H. Miller. 2003. Plasmodium falciparum is able to invade erythrocytes through a trypsin-resistant pathway independent of glycophorin B. Infect. Immun. 71: 6742 6746.
142. Gerold, P.,, A. Dieckmann-Schuppert,, and R.T. Schwarz. 1994. Glycosylphosphatidylinositols synthesized by asexual erythrocytic stages of the malarial parasite, Plasmodium falciparum. Candidates for plasmodial glycosylphosphatidylinositol membrane anchor precursors and pathogenicity factors. J. Biol. Chem. 269: 2597 2606.
143. Ghai, M.,, S. Dutta,, T. Hall,, D. Freilich,, and C. F. Ockenhouse. 2002. Identification, expression, and functional characterization of MAEBL, a sporozoite and asexual blood stage chimeric erythrocytebinding protein of Plasmodium falciparum. Mol. Biochem. Parasitol. 123: 35 45.
144. Gibson, H. L.,, J. E. Tucker,, D. C. Kaslow,, A. U. Krettli,, W. E. Collins,, M. C. Kiefer,, I. C. Bathurst,, and P. J. Barr. 1992. Structure and expression of the gene for Pv200, a major blood-stage surface antigen of Plasmodium vivax. Mol. Biochem.Parasitol. 50: 325 333.
145. Gilberger, T. W.,, J. K. Thompson,, M. B. Reed,, R. T. Good,, and A. F. Cowman. 2003a. The cytoplasmic domain of the Plasmodium falciparum ligand EBA-175 is essential for invasion but not protein trafficking. J. Cell Biol. 162: 317 327.
146. Gilberger, T.W.,, J. K. Thompson,, T. Triglia,, R.T. Good,, M.T. Duraisingh,, and A. F. Cowman. 2003b. A novel erythrocyte binding antigen-175 paralogue from Plasmodium falciparum defines a new trypsin-resistant receptor on human erythrocytes. J. Biol. Chem. 278: 14480 14486.
147. Goel, V. K.,, X. Li,, H. Chen,, S.C. Liu,, A. H. Chishti,, and S. S. Oh. 2003. Band 3 is a host receptor binding merozoite surface protein 1 during the Plasmodium falciparum invasion of erythrocytes. Proc. Natl. Acad. Sci. USA 100: 5164 5169.
148. Gor, D.O.,, A.C. Li,, and P. J. Rosenthal. 1998. Protective immune responses against protease-like antigens of the murine malaria parasite Plasmodium vinckei. Vaccine 16: 1193 1202.
149. Gratzer, W. B.,, and A. R. Dluzewski. 1993. The red blood cell and malaria parasite invasion. Semin.Hematol. 30: 232 247.
150. Grellier, P.,, I. Picard,, F. Bernard,, R. Mayer,, H. G. Heidrich,, M. Monsigny,, and J. Schrevel. 1989. Purification and identification of a neutral endopeptidase in Plasmodium falciparum schizonts and merozoites. Parasitol. Res. 75: 455 460.
151. Gruner, A. C.,, G. Snounou,, K. Brahimi,, F. Letourneur,, L. Renia,, and P. Druilhe. 2003. Preerythrocytic antigens of Plasmodium falciparum: from rags to riches? Trends Parasitol. 19: 74 78.
152. Hackett, F.,, M. Sajid,, C. Withers-Martinez,, M. Grainger,, and M. J. Blackman. 1999. PfSUB-2: a second subtilisin-like protein in Plasmodium falciparum merozoites. Mol. Biochem. Parasitol. 103: 183 195.
153. Hadley, T.,, M. Aikawa,, and L. H. Miller. 1983. Plasmodium knowlesi: studies on invasion of rhesus erythrocytes by merozoites in the presence of protease inhibitors. Exp. Parasitol. 55: 306 311.
154. Hadley, T. J. 1986. Invasion of erythrocytes by malaria parasites: a cellular and molecular overview. Annu. Rev. Microbiol. 40: 451 477.
155. Hadley, T. J.,, F.W. Klotz,, G. Pasvol,, J. D. Haynes,, M. H. McGinniss,, Y. Okubo,, and L. H. Miller. 1987. Falciparum malaria parasites invade erythrocytes that lack glycophorin A and B (MkMk). Strain differences indicate receptor heterogeneity and two pathways for invasion. J. Clin. Investig. 80: 1190 1193.
156. Hakansson, S.,, A. J. Charron,, and L. D. Sibley. 2001. Toxoplasma evacuoles: a two-step process of secretion and fusion forms the parasitophorous vacuole. EMBO J. 20: 3132 3144.
157. Haldar, K.,, M.A. Ferguson,, and G.A. Cross. 1985. Acylation of a Plasmodium falciparum merozoite surface antigen via sn-1,2-diacyl glycerol. J. Biol. Chem. 260: 4969 4974.
158. Haldar, K.,, and L. Uyetake. 1992. The movement of fluorescent endocytic tracers in Plasmodium falciparum infected erythrocytes. Mol. Biochem. Parasitol. 50: 161 177.
159. Hanspal, M.,, M. Dua,, Y. Takakuwa,, A. H. Chishti,, and A. Mizuno. 2002. Plasmodium falciparum cysteine protease falcipain-2 cleaves erythrocyte membrane skeletal proteins at late stages of parasite development. Blood 100: 1048 1054.
160. Harrison, T.,, B. U. Samuel,, T. Akompong,, H. Hamm,, N. Mohandas,, J.W. Lomasney,, and K. Haldar. 2003. Erythrocyte G protein-coupled receptor signaling in malarial infection. Science 301: 1734 1736.
161. Haynes, J. D.,, J. P. Dalton,, F. W. Klotz,, M. H. McGinniss,, T. J. Hadley,, D. E. Hudson,, and L. H. Miller. 1988. Receptor-like specificity of a Plasmodium knowlesi malarial protein that binds to Duffy antigen ligands on erythrocytes. J. Exp. Med. 167: 1873 1881.
162. Healer, J.,, S. Crawford,, S. Ralph,, G. McFadden,, and A. F. Cowman. 2002. Independent translocation of two micronemal proteins in developing Plasmodium falciparum merozoites. Infect. Immun. 70: 5751 5758.
163. Healer, J.,, V. Murphy,, A. N. Hodder,, R. Masciantonio,, A.W. Gemmill,, R. F. Anders,, A. F. Cowman,, and A. Batchelor. 2004. Allelic polymorphisms in apical membrane antigen-1 are responsible for evasion of antibody-mediated inhibition in Plasmodium falciparum. Mol. Microbiol. 52: 159 168.
164. Heidrich, H.G.,, W. Strych,, and J. E. Mrema. 1983. Identification of surface and internal antigens from spontaneously released Plasmodium falciparum merozoites by radio-iodination and metabolic labelling. Z. Parasitenkd. 69: 715 725.
165. Heintzelman, M.B.,, and J.D. Schwartzman. 1997. A novel class of unconventional myosins from Toxoplasma gondii. J. Mol. Biol. 271: 139 146.
166. Hettmann, C.,, A. Herm,, A. Geiter,, B. Frank,, E. Schwarz,, T. Soldati,, and D. Soldati. 2000. A dibasic motif in the tail of a class XIV apicomplexan myosin is an essential determinant of plasma membrane localization. Mol. Biol. Cell 11: 1385 1400.
167. Higgins, D.G.,, D. J. McConnell,, and P. M. Sharp. 1989. Malarial proteinase? Nature 340: 604.
168. Higgins, D. L.,, M. C. Lamb,, S. L. Young,, D. B. Powers,, and S. Anderson. 1990. The effect of the one-chain to two-chain conversion in tissue plasminogen activator: characterization of mutations at position 275. Thromb. Res. 57: 527 539.
169. Hiller, N. L.,, T. Akompong,, J. S. Morrow,, A. A. Holder,, and K. Haldar. 2003. Identification of a stomatin orthologue in vacuoles induced in human erythrocytes by malaria parasites. A role for microbial raft proteins in apicomplexan vacuole biogenesis. J. Biol. Chem. 278: 48413 48421.
170. Hodder, A. N.,, P. E. Crewther,, M. L. Matthew,, G. E. Reid,, R. L. Moritz,, R. J. Simpson,, and R. F. Anders. 1996. The disulfide bond structure of Plasmodium apical membrane antigen-1. J. Biol.Chem. 271: 29446 29452.
171. Hodder, A. N.,, D. R. Drew,, V. C. Epa,, M. Delorenzi,, R. Bourgon,, S. K. Miller,, R. L. Moritz,, D. F. Frecklington,, R. J. Simpson,, T. P. Speed,, R.N. Pike,, and B. S. Crabb. 2003. Enzymic, phylogenetic, and structural characterization of the unusual papain-like protease domain of Plasmodium falciparum SERA5. J. Biol. Chem. 278: 48169 48177.
172. Holder, A. A. 1988. The precursor to major merozoite surface antigens: structure and role in immunity. Prog.Allergy 41: 72 97.
173. Holder, A. A. 1994. Parasitology 108( Suppl): S5 S18.
174. Holder, A. A.,, and M. J. Blackman. 1994. What is the function of MSP-I on the malaria merozoite? Parasitol.Today 10: 182 184.
175. Holder, A. A.,, and R. R. Freeman. 1984a. Protective antigens of rodent and human bloodstage malaria. Philos.Trans. R. Soc. Lond. B Biol. Sci. 307: 171 177.
176. Holder, A.A.,, and R. R. Freeman. 1984b. The three major antigens on the surface of Plasmodium falciparum merozoites are derived from a single high molecular weight precursor. J. Exp. Med. 160: 624 629.
177. Holder, A. A.,, M. J. Blackman,, M. Borre,, P. A. Burghaus,, J.A. Chappel,, J. K. Keen,, I.T. Ling,, S.A. Ogun,, C.A. Owen,, and K.A. Sinha. 1994. Malaria parasites and erythrocyte invasion. Biochem. Soc.Trans. 22: 291 295.
178. Holder, A. A.,, R. R. Freeman,, S. Uni,, and M. Aikawa. 1985a. Isolation of a Plasmodium falciparum rhoptry protein. Mol. Biochem.Parasitol. 14: 293 303.
179. Holder, A. A.,, M. J. Lockyer,, K. G. Odink,, J. S. Sandhu,, V. Riveros-Moreno,, S. C. Nicholls,, Y. Hillman,, L. S. Davey,, M. L. Tizard,, R. T. Schwarz, et al. 1985b. Primary structure of the precursor to the three major surface antigens of Plasmodium falciparum merozoites. Nature 317: 270 273.
180. Holder, A.A.,, J. S. Sandhu,, Y. Hillman,, L. S. Davey,, S. C. Nicholls,, H. Cooper,, and M. J. Lockyer. 1987. Processing of the precursor to the major merozoite surface antigens of Plasmodium falciparum. Parasitology 94: 199 208.
181. Holt, D. C.,, D. L. Gardiner,, E. A. Thomas,, M. Mayo,, P. F. Bourke,, C. J. Sutherland,, R. Carter,, G. Myers,, D. J. Kemp,, and K. R. Trenholme. 1999. The cytoadherence linked asexual gene family of Plasmodium falciparum: are there roles other than cytoadherence? Int. J. Parasitol. 29: 939 944.
182. Holt, E. H.,, M. E. Nichols,, Z. Etzion,, and M. E. Perkins. 1989. Erythrocyte invasion by two Plasmodium falciparum isolates differing in sialic acid dependency in the presence of glycophorin A antibodies. Am. J.Trop. Med. Hyg. 40: 245 251.
183. Hopkins, J.,, R. Fowler,, S. Krishna,, I. Wilson,, G. Mitchell,, and L. Bannister. 1999. The plastid in Plasmodium falciparum asexual blood stages: a threedimensional ultrastructural analysis. Protist 150: 283 295.
184. Horuk, R.,, C. E. Chitnis,, W. C. Darbonne,, T. J. Colby,, A. Rybicki,, T. J. Hadley,, and L. H. Miller. 1993. A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. Science 261: 1182 1184.
185. Howard, R. F. 1990. The lower-molecular-weight protein complex (RI) of the Plasmodium falciparum rhoptries lacks the glycolytic enzyme aldolase. Mol. Biochem. Parasitol. 42: 235 240.
186. Howard, R. F.,, D. L. Narum,, M. Blackman,, and J. Thurman. 1998. Analysis of the processing of Plasmodium falciparum rhoptry-associated protein 1 and localization of Pr86 to schizont rhoptries and p67 to free merozoites. Mol. Biochem. Parasitol. 92: 111 122.
187. Howard, R. F.,, and R.T. Reese. 1984. Synthesis of merozoite proteins and glycoproteins during the schizogony of Plasmodium falciparum. Mol. Biochem. Parasitol. 10: 319 334.
188. Howell, S.A.,, I. Well,, S. L. Fleck,, C. Kettleborough,, C. R. Collins,, and M. J. Blackman. 2003. A single malaria merozoite serine protease mediates shedding of multiple surface proteins by juxtamembrane cleavage. J. Biol. Chem. 278: 23890 23898.
189. Howell, S.A.,, C. Withers-Martinez,, C. H. Kocken,, A.W. Thomas,, and M. J. Blackman. 2001. Proteolytic processing and primary structure of Plasmodium falciparum apical membrane antigen-1. J. Biol. Chem. 276: 31311 31320.
190. Hudson-Taylor, D. E.,, S.A. Dolan,, F.W. Klotz,, H. Fujioka,, M. Aikawa,, E.V. Koonin,, and L. H. Miller. 1995. Plasmodium falciparum protein associated with the invasion junction contains a conserved oxidoreductase domain. Mol. Microbiol. 15: 463 471.
191. Irion, A.,, I. Felger,, S. Abdulla,, T. Smith,, R. Mull,, M. Tanner,, C. Hatz,, and H. P. Beck. 1998. Distinction of recrudescences from new infections by PCR-RFLP analysis in a comparative trial of CGP 56 697 and chloroquine in Tanzanian children. Trop. Med. Int. Health 3: 490 497.
192. Iwamoto, S.,, T. Omi,, E. Kajii,, and S. Ikemoto. 1995. Genomic organization of the glycoprotein D gene: Duffy blood group Fya/Fyb alloantigen system is associated with a polymorphism at the 44-amino acid residue. Blood 85: 622 626.
193. Jaikaria, N. S.,, C. Rozario,, R.G. Ridley,, and M.E. Perkins. 1993. Biogenesis of rhoptry organelles in Plasmodium falciparum. Mol. Biochem. Parasitol. 57: 269 279.
194. Jay, D.G. 1996. Role of band 3 in homeostasis and cell shape. Cell 86: 853 854.
195. Jewett, T. J.,, and L. D. Sibley. 2003. Aldolase forms a bridge between cell surface adhesins and the actin cytoskeleton in apicomplexan parasites. Mol. Cell 11: 885 894.
196. Johnson, J. G.,, N. Epstein,, T. Shiroishi,, and L. H. Miller. 1980. Factors affecting the ability of isolated Plasmodium knowlesi merozoites to attach to and invade erythrocytes. Parasitology 80: 539 550.
197. Johnson, J. G.,, N. Epstein,, T. Shiroishi,, and L. H. Miller. 1981. Identification of surface proteins on viable Plasmodium knowlesi merozoites. J. Protozool. 28: 160 164.
198. Kaneko, O.,, D. A. Fidock,, O. M. Schwartz,, and L. H. Miller. 2000. Disruption of the C-terminal region of EBA-175 in the Dd2/Nm clone of Plasmodium falciparum does not affect erythrocyte invasion. Mol. Biochem. Parasitol. 110: 135 146.
199. Kaneko, O.,, M. Kimura,, F. Kawamoto,, M.U. Ferreira,, and K. Tanabe. 1997. Plasmodium falciparum: allelic variation in the merozoite surface protein 1 gene in wild isolates from southern Vietnam. Exp. Parasitol. 86: 45 57.
200. Kaneko, O.,, J. Mu,, T. Tsuboi,, X. Su,, and M. Torii. 2002. Gene structure and expression of a Plasmodium falciparum 220-kDa protein homologous to the Plasmodium vivax reticulocyte binding proteins. Mol. Biochem. Parasitol. 121: 275 278.
201. Kaneko, O.,, T. Tsuboi,, I.T. Ling,, S. Howell,, M. Shirano,, M. Tachibana,, Y. M. Cao,, A. A. Holder,, and M. Torii. 2001. The high molecular mass rhoptry protein, RhopH1, is encoded by members of the clag multigene family in Plasmodium falciparum and Plasmodium yoelii. Mol. Biochem. Parasitol. 118: 223 231.
202. Kappe, S. H.,, and J. H. Adams. 1996. Sequence analysis of the apical membrane antigen-1 genes (ama-1) of Plasmodium yoelii yoelii and Plasmodium berghei. Mol. Biochem. Parasitol. 78: 279 283.
203. Kappe, S. H.,, A. R. Noe,, T. S. Fraser,, P. L. Blair,, and J. H. Adams. 1998. A family of chimeric erythrocyte binding proteins of malaria parasites. Proc. Natl.Acad. Sci. USA 95: 1230 1235.
204. Kariu, T.,, M. Yuda,, K. Yano,, and Y. Chinzei. 2002. MAEBL is essential for malarial sporozoite infection of the mosquito salivary gland. J. Exp. Med. 195: 1317 1323.
205. Kauth, C.W.,, C. Epp,, H. Bujard,, and R. Lutz. 2003. The merozoite surface protein 1 complex of human malaria parasite Plasmodium falciparum: interactions and arrangements of subunits. J. Biol. Chem. 278: 22257 22264.
206. Kedzierski, L.,, C. G. Black,, and R. L. Coppel. 2000. Characterization of the merozoite surface protein 4/5 gene of Plasmodium berghei and Plasmodium yoelii. Mol. Biochem. Parasitol. 105: 137 147.
207. Keeley, A.,, and D. Soldati. 2004. The glideosome: a molecular machine powering motility and host-cell invasion by Apicomplexa. Trends Cell Biol. 14: 528 532.
208. Keen, J.,, A. Holder,, J. Playfair,, M. Lockyer,, and A. Lewis. 1990. Identification of the gene for a Plasmodium yoelii rhoptry protein. Multiple copies in the parasite genome. Mol. Biochem. Parasitol. 42: 241 246.
209. Keen, J. K.,, K. A. Sinha,, K. N. Brown,, and A. A. Holder. 1994. A gene coding for a high-molecular mass rhoptry protein of Plasmodium yoelii. Mol. Biochem. Parasitol. 65: 171 177.
210. Kerr, P. J.,, L.C. Ranford-Cartwright,, and D. Walliker. 1994. Proof of intragenic recombination in Plasmodium falciparum. Mol. Biochem.Parasitol. 66: 241 248.
211. Kiefer, M. C.,, K. A. Crawford,, L. J. Boley,, K. E. Landsberg,, H. L. Gibson,, D. C. Kaslow,, and P. J. Barr. 1996. Identification and cloning of a locus of serine repeat antigen (sera)-related genes from Plasmodium vivax. Mol. Biochem. Parasitol. 78: 55 65.
212. King, C.A. 1988. Cell motility of sporozoan protozoa. Parasitol.Today 4: 315 319.
213. Kitchen, S. K. 1938. The infection of reticulocytes by Plasmodium vivax. Am.J.Trop. Med. Hyg. 18: 347 353.
214. Klotz, F.W.,, P.A. Orlandi,, G. Reuter,, S. J. Cohen,, J. D. Haynes,, R. Schauer,, R. J. Howard,, P. Palese,, and L. H. Miller. 1992. Binding of Plasmodium falciparum 175-kilodalton erythrocyte binding antigen and invasion of murine erythrocytes requires N-acetylneuraminic acid but not its Oacetylated form. Mol. Biochem. Parasitol. 51: 49 54.
215. Knapp, B.,, E. Hundt,, and H. A. Kupper. 1989. A new blood stage antigen of Plasmodium falciparum transported to the erythrocyte surface. Mol. Biochem. Parasitol. 37: 47 56.
216. Knowles, D.W.,, L. Tilley,, N. Mohandas,, and J. A. Chasis. 1997. Erythrocyte membrane vesiculation: model for the molecular mechanism of protein sorting. Proc. Natl.Acad. Sci. USA 94: 12969 12974.
217. Kocken, C. H.,, D. L. Narum,, A. Massougbodji,, B. Ayivi,, M. A. Dubbeld,, A. van der Wel,, D. J. Conway,, A. Sanni,, and A.W. Thomas. 2000. Molecular characterisation of Plasmodium reichenowi apical membrane antigen-1 (AMA-1), comparison with P. falciparum AMA-1,and antibody-mediated inhibition of red cell invasion. Mol. Biochem. Parasitol. 109: 147 156.
218. Koontz, L. C.,, R. L. Jacobs,, W. L. Lummis,, and L. H. Miller. 1979. Plasmodium berghei: uptake of clindamycin and its metabolites by mouse erythrocytes with clindamycin-sensitive and clindamycinresistant parasites. Exp. Parasitol. 48: 206 212.
219. Kushwaha, A.,, A. Perween,, S. Mukund,, S. Majumdar,, D. Bhardwaj,, N. R. Chowdhury,, and V. S. Chauhan. 2002. Amino terminus of Plasmodium falciparum acidic basic repeat antigen interacts with the erythrocyte membrane through band 3 protein. Mol. Biochem. Parasitol. 122: 45 54.
220. Ladda, R.,, M. Aikawa,, and H. Sprinz. 1969. Penetration of erythrocytes by merozoites of mammalian and avian malarial parasites. J. Parasitol. 55: 633 644.
221. Langreth, S. G.,, J. B. Jensen,, R.T. Reese,, and W. Trager. 1978. Fine structure of human malaria in vitro. J. Protozool. 25: 443 452.
222. Lauer, S.,, J. VanWye,, T. Harrison,, H. McManus,, B. U. Samuel,, N. L. Hiller,, N. Mohandas,, and K. Haldar. 2000. Vacuolar uptake of host components, and a role for cholesterol and sphingomyelin in malarial infection. EMBO J. 19: 3556 3564.
223. Le Bonniec, S.,, C. Deregnaucourt,, V. Redeker,, R. Banerjee,, P. Grellier,, D. E. Goldberg,, and J. Schrevel. 1999. Plasmepsin II, an acidic hemoglobinase from the Plasmodium falciparum food vacuole, is active at neutral pH on the host erythrocyte membrane skeleton. J. Biol. Chem. 274: 14218 14223.
224. Le Roch, K.G.,, J.R. Johnson,, L. Florens,, Y. Zhou,, A. Santrosyan,, M. Grainger,, S. F. Yan,, K. C. Williamson,, A. A. Holder,, D. J. Carucci,, J. R. Yates III,, and E.A. Winzeler. 2004. Global analysis of transcript and protein levels across the Plasmodium falciparum life cycle. Genome Res. 14: 2308 2318.
225. Le Roch, K.G.,, Y. Zhou,, P. L. Blair,, M. Grainger,, J. K. Moch,, J. D. Haynes,, P. De La Vega,, A. A. Holder,, S. Batalov,, D. J. Carucci,, and E. A. Winzeler. 2003. Discovery of gene function by expression profiling of the malaria parasite life cycle. Science 301: 1503 1508.
226. Li, J.,, H. Matsuoka,, T. Mitamura,, and T. Horii. 2002a. Characterization of proteases involved in the processing of Plasmodium falciparum serine repeat antigen (SERA). Mol. Biochem. Parasitol. 120: 177 186.
227. Li, J.,, T. Mitamura,, B. A. Fox,, D. J. Bzik,, and T. Horii. 2002b. Differential localization of processed fragments of Plasmodium falciparum serine repeat antigen and further processing of its N-terminal 47 kDa fragment. Parasitol. Int. 51: 343 352.