Chapter 10 : Multiple Antimicrobial Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Multiple Antimicrobial Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap10-2.gif


This chapter provides an overview of multiple antimicrobial resistance mechanisms in bacteria. The chief mechanism by which the phenotype is displayed is active efflux (extrusion) of structurally diverse compounds. The number of multidrug resistance (MDR) systems now known in bacteria is extensive, having been amassed from genetic, microbiological, biochemical, and phylogenetic investigations and, more recently, from bioinformatic sequence analysis of complete bacterial chromosomes. Multidrug transporters may be classified into two divisions: proton motive force-dependent secondary transporters and ABC transporters. The first category is divided into four subclasses-the major facilitator (MF), resistance-nodulation-cell division (RND), small multidrug resistance (SMR), and multidrug and toxic compound extrusion (MATE) families. Multidrug transporters are often expressed under very precise and elaborate transcriptional control, in response to environmental signals, substrates, or xenobiotics. Two new approaches to tackling the drug-resistance problem are receiving increasing attention. The first involves targeting nonmultiplying latent bacteria, which could reduce the duration of chemotherapy and the rate of development of resistance. The second method, which shows even more promise, involves activating chromosomal suicide modules that trigger programmed cell death of bacteria. Some common antibiotics that inhibit transcription/ translation or folic acid metabolism activate the suicide modules, and perhaps future research could be directed at identifying compounds that exclusively activate programmed cell death modules.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10

Key Concept Ranking

Integral Membrane Proteins
BaeSR Two-Component Regulatory System
Efflux Pumps
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of Figure 1
Figure 1

Transmembrane (TM) topologies of the major classes of multidrug efflux transporters. (A to D) represent RND, MF, ABC, and SMR families, respectively. The MATE family is not depicted, as its topology resembles the MF superfamily in having 12 TM segments. Some MF pumps have an extra 2 TM segments, that is, 14 in all. Vertical rectangles delineate TM spans of about 18 residues each. Intra- and extracytoplasmic connecting loops represent approximate scale lengths of residues, except for ABC transporters (C), whose large ATP-binding cassette domains (NBDs) are drawn as boxes. Note also that ABC transporters in bacteria are not usually contiguous polypeptides but are composites of four separate subunits (two TMDs and two NBDs) or dimers of two half transporters, as depicted in C.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Adler, J.,, and E. Bibi. 2004. Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J. Biol. Chem. 279: 89578965.
2. Adler, J.,, O. Lewinson,, and E. Bibi. 2004. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 43:518525.
3. Alekshun, M. N.,, and S. B. Levy. 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7:410413.
4. Alekshun, M. N.,, S. B. Levy,, T. R. Mealy,, B. A. Seaton,, and J. F. Head. 2001. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8:710714.
5. Baranova, N.,, and H. Nikaido. 2002. The BaeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 184:41684176.
6. Barbosa, T. M.,, and S. B. Levy. 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol. 182:34673474.
7. Campbell, J. D.,, K. Koike,, C. Moreau,, M. S. P. Sansom,, R. G. Deeley,, and S. P. C. Cole. 2004. Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1 (ABCC1). J. Biol. Chem. 279:463468.
8. Carredano, E.,, A. Karlsson,, B. Kauppi,, D. Choudhury,, R. E. Parales,, J. V. Parales,, K. Lee,, D. T. Gibson,, H. Eklund,, and S. Ramaswamy. 2000. Substrate binding site of naphthalene 1, 2-dioxygenase: functional implications of indole binding. J. Mol. Biol. 321:621632.
9. Choi, H.,, and L. Heginbotham. 2004. Functional influence of the pore helix glutamate in the KcsA K+ channel. Biophys. J. 86:21372144.
10. Chopra, I.,, A. J. O’Neill,, and K. Miller. 2003. The role of mutators in the mergence of antibiotic-resistant bacteria. Drug Res. Updates 6:137145.
11. Coates, A.,, Y. Hu,, R. Bax,, and C. Page. 2002. The future challenges facing the development of new antimicrobial drugs. Nature Rev. 1:895910.
12. Cohen, S. P.,, W. Yan,, and S. B. Levy. 1993. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J. Infect. Dis. 168:484488.
13. Danghi, B.,, P. Pelupessey,, R. G. Martin,, J. L. Rosner,, J. M. Louis,, and A. M. Gronenborn. 2001. Structure and dynamics of MarA-DNA complexes: an NMR investigation. J. Mol. Biol. 313:10671081.
14. Delihas, N.,, and S. Forst. 2001. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J. Mol. Biol. 313:112.
15. Demple, B. 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon—a review. Gene 179:5357.
16. Eda, S.,, H. Maseda,, and T. Nakae. 2003. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J. Biol. Chem. 278:20852088.
17. Edgar, R.,, and E. Bibi. 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179:22742280.
18. Edgar, R.,, and E. Bibi. 1999. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J. 18:822832.
19. Elbaz, Y.,, S. Steiner-Mordoch,, T. Danieli,, and S. Schuldiner. 2004. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc. Natl. Acad. Sci. USA 101:15191524.
20. Elkins, C. A.,, and H. Nikaido. 2002. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J. Bacteriol. 184:64906498.
21. Elkins, C. A.,, and H. Nikaido. 2003. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J. Bacteriol. 185:53495356.
22. Engelberg-Kulka, H.,, B. Sat,, M. Reches,, S. Amitai,, and R. Hazan. 2004. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol. 12:6671.
23. Evans, K.,, L. Adewoye,, and K. Poole. 2001. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexAmexR intergenic region. J. Bacteriol. 183:807812.
24. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57:9951017.
25. George, A. M.,, and S. B. Levy. 1983a. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155:531540.
26. George, A. M.,, and S. B. Levy. 1983b. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155:541548.
27. Gill, M. J.,, N. P. Brenwald,, and R. Wise. 1999. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43:187189.
28. Godsey, M. H.,, E. E. Zheleznova,, and R. G. Brennan. 2002. Structural biology of bacterial multidrug resistance gene regulators. J. Biol. Chem. 277:4016940172.
29. Griffith, K. L.,, I. M. Shah,, and R. E. Wolf, Jr. 2004. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51:18011816.
30. Grkovic, S.,, M. H. Brown,, and R. A. Skurray. 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66:671701.
31. Grkovic, S.,, K. M. Hardie,, M. H. Brown,, and R. A. Skurray. 2003. Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 42:1522615236.
32. Gutman, N.,, S. Steiner-Mordoch,, and S. Schuldiner. 2003. An amino acid cluster around the essential Glu-14 is part of the substrate- and proton-binding domain of EmrE, a multidrug transporter from Escherichia coli. J. Biol. Chem. 278:1608216087.
33. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrCDE efflux system. Microbiology 141:611622.
34. Hoyle, B. D.,, and W. J. Costerton. 1991. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37:91105.
35. Ishida, H.,, H. Fuziwara,, Y. Kaibori,, T. Horiuchi,, K. Sato,, and Y. Osada. 1995. Cloning of multidrug resistance gene pqrA from Proteus vulgaris. Antimicrob. Agents Chemother. 39:453457.
36. Jones, P. M.,, and A. M. George. 2000. Symmetry and structure in P-glycoprotein and ABC transporters. Eur. J. Biochem. 267:52985305.
37. Jones, P. M.,, and A. M. George. 2004. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. 61:682699.
38. Kahmann, J. D.,, H.-J. Sass,, M. G. Allan,, H. Seto,, C. J. Thompson,, and S. Grzesiek. 2003. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. EMBO J. 22:18241834.
39. Karwatsky, J.,, R. Daoud,, J. Cai,, P. Gros,, and E. Georges. 2003. Binding of a photoaffintiy analogue of glutathione to MRP1 (ABCC1) within two cytoplasmic regions (L0 and L1) as well as transmembrane domains 10-11 and 16-17. Biochemistry 42:32863294.
40. Kawamura-Sato, K.,, K. Shibayama,, T. Horii,, Y. Iimuma,, Y. Arakawa,, and M. Ohta. 1999. Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol. Lett. 179:345352.
41. Kisker, C.,, W. Hinrichs,, K. Tovar,, W. Hillen,, and W. Saenger. 1995. The complex formed between Tet repressor and tetracycline- Mg2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247:260280.
42. Köhler, T.,, M. Michea-Hamzehpour,, U. Henze,, N. Gotoh,, L. Kocjancic-Curty,, and J. C. Pechère. 1997. Characterization of MexE-MexF-OprN,a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23:345254.
43. Leabman, M. K.,, C. C. Huang,, J. DeYoung,, E. J. Carlson,, T. R. Taylor,, M. de la Cruz,, S. J. Johns,, D. Stryke,, M. Kawamoto,, T. J. Urban,, D. L. Kroetz,, T. E. Ferrin,, A. G. Clark,, N. Risch,, I. Herskowitz,, and K. M. Giacomini. 2003. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc. Natl. Acad. Sci. USA 100:58965901.
44. Lee, E.-H.,, C. Rouquette-Loughlin,, J. P. Folster,, and W. M. Shafer. 2003. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185:71457152.
45. Lee, E.-H.,, and W. M. Shafer. 1999. The farAB efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33:839845.
46. Lewinson, O.,, J. Adler,, G. J. Poelarends,, P. Mazurkiewicz,, A. J. M. Driessen,, and E. Bibi. 2003. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc. Natl. Acad. Sci. USA 100:16671672.
47. Li, X.-Z.,, K. Poole,, and H. Nikaido. 2003. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob. Agents Chemother. 47:2733.
48. Lomovskaya, O.,, K. Lewis,, and A. Martin. 1995. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J. Bacteriol. 177:23282334.
49. Ma, C.,, and G. Chang. 2004. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl. Acad. Sci. USA 101:28522857.
50. Ma, D.,, M. Alberti,, C. Lynch,, H. Nikaido,, and J. E. Hearst. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19:101112.
51. Mah, T.-F.,, B. Pitts,, B. Pellock,, G. C. Walker,, P. S. Stewart,, and G. A. O’Toole. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426:306310.
52. Mao, W.,, M. S. Warren,, D. S. Black,, T. Satou,, T. Murata,, T. Nishino,, N. Gotoh,, and O. Lomovskaya. 2002. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic pools of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol. Microbiol. 46:889901.
53. Markham, P. N.,, and A. A. Neyfakh. 2001. Efflux-mediated resistance in gram-positive bacteria. Curr. Opin. Microbiol. 4: 509514.
54. Martin, R. G.,, and J. L. Rosner. 1995. Binding of lurified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92:54565460.
55. McKeegan, K. S.,, M. I. Borges-Walmsley,, and A. R. Walmsley. 2003. The structure and function of drug pumps: an update. Trends Microbiol. 11:2129.
56. Mordoch, S. S.,, D. Granot,, M. Lebendiker,, and S. Schuldiner. 1999. Scanning cysteine accessibility of EmrE, an H+-coupled multidrug transporter from Escherichia coli, reveals a hydrophobic pathway for solutes. J. Biol. Chem. 274:1948019486.
57. Murakami, S.,, and A. Yamaguchi. 2003. Multidrug-exporting secondary transporters. Curr. Opin. Struct. Biol. 13:443452.
58. Murray, D. S.,, M. A. Schumacher,, and R. G. Brennan. 2004. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. J. Biol. Chem. 279:1436514371.
59. Newman, L. M.,, and L. P. Wackett. 1997. Trichloromethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179:9096.
60. Neyfakh, A. A. 2002. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44:11231130.
61. Neyfakh, A. A.,, V. E. Bidnenko,, and L. B. Chen. 1991. Effluxmediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. USA 88:4788785.
62. Neyfakh, A. A.,, C. M. Borsch,, and G. W. Kaatz. 1993. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37:128129.
63. Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382388.
64. Nikaido, H. 1998. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1:516523.
65. Nilsen, I. W.,, I. Baake,, A. Vader,, Ø. Olsvik,, and M. R. El-Gewely. 1996. Isolation of cmr, a novel Escherichia coli chloramphenicol resistance gene encoding a putative efflux pump. J. Bacteriol. 178:31883193.
66. Paulsen, I. T.,, M. H. Brown,, and R. A. Skurray. 1996. Protondependent multidrug efflux systems. Microbiol. Rev. 60:575608.
67. Paulsen, I. T.,, J. Chen,, K. E. Nelson,, and M. H. Saier, Jr. 2001. Comparative genomics of microbial drug efflux systems. J. Mol. Microbiol. Biotechnol. 3:145150.
68. Paulsen, I. T.,, M. K. Silwinski,, and M. H. Saier, Jr. 1998. Microbial genomic analysis: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277:573592.
69. Perron, K.,, O. Caille,, C. Rossier,, C. van Delden,, J.-L. Dumas,, and T. Köhler. 2004. CzcR-CzcS, a two-component system involved in heavy metal and carbenpenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279:87618768.
70. Poole, K. 2002. Outer membranes and efflux: the path to multidrug resistance in gram-negative bacteria. Curr. Pharm. Biotech. 3:7798.
71. Putman, M.,, H. W. van Veen,, J. E. Degener,, and W. N. Konings. 2000. Antibiotic resistance: era of the multidrug pump. Mol. Microbiol. 36:772773.
72. Reuter, G.,, T. Janvilisri,, H. Venter,, S. Shahi,, L. Balakrishnan,, and H. W. van Veen. 2003. The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J. Biol. Chem. 278:3519335198.
73. Rouch, D. A.,, D. S. Cram,, D. DiBerardino,, T. G. Littlejohn,, and R. A. Skurray. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol. Microbiol. 4:20512062.
74. Saier, M. H. Jr.,, I. T. Paulsen,, M. K. Sliwinski,, S. S. Pao,, R. A. Skurray,, and H. Nikaido. 1998. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12:265274.
75. Schneiders, T.,, T. M. Barbosa,, L. M. McMurry,, and S. B. Levy. 2004. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J. Biol. Chem. 279:90379042.
76. Schulinder, S.,, D. Granot,, S. S. Mordoch,, S. Nino,, D. Rotem,, M. Soskin,, C. G. Tate,, and H. Yerushalmi. 2001. Small is mighty: EmrE, a multidrug transporter as an experimental paradigm. News Physiol. Sci. 16:130134.
77. Schumacher, M. A.,, and R. G. Brennan. 2002. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol. Microbiol. 45:885893.
78. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294:21582163.
79. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2002. Structural basis for cooperative DNA binding by two dimers of the multidrugbinding protein QacR. EMBO J. 21:12101218.
80. Sharom, F. J. 1997. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160:161175.
81. Smith, A. J.,, A. van Helvoort,, G. van Meer,, K. Szabó,, E. Welker,, G. Szakács,, A. Váradi,, B. Sarkadi,, and P. Borst. 2000. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J. Biol. Chem. 275:2353023539.
82. Son, M. S.,, C. Del Castilho,, K. A. Duncalf,, D. Carney,, J. H. Weiner,, and R. J. Turner. 2003. Mutagenesis of SugE, a small multidrug resistance protein. Biochem. Biophys. Res. Commun. 312:914921.
83. Soskine, M.,, Y. Adam,, and S. Schuldiner. 2004. Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J. Biol. Chem. 279:99519955.
84. Sulavik, M. C.,, C. Houseweart,, C. Cramer,, N. Jiwani,, N. Murgolo,, J. Greene,, B. DiDomenico,, K. J. Shaw,, G. H. Miller,, R. Hare,, and G. Shimer. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45:11261136.
85. Tanaka, T.,, T. Horli,, K. Shibayama,, K. Sato,, S. Ohsuka,, Y. Arawaka,, K.-I. Yamaka,, K. Takagi,, and M. Ohta. 1997. RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol. Immunol. 41:697702.
86. Thanassi, D. G.,, L. W. Cheng,, and H. Nikaido. 1997. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179:25152518.
87. Tourasse, N. J.,, and W. H. Li. 2000. Selective constraints, amino acid composition, and the rate of protein evolution. Mol. Biol. Evol. 17:656664.
88. Truong-Bolduc, Q. C.,, X. Zhang,, and D. C. Hooper. 2003. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J. Bacteriol. 185:31272138.
89. Tseng, T.-T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau,, and M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1:107125.
90. van Helvoort, A.,, A. J. Smith,, H. Sprong,, I. Fritzsche,, A. H. Schinkel,, P. Borst,, and G. van Meer. 1996. MDR1 PGlycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87:507517.
91. van Veen, H. W.,, A. Margolles,, M. Muller,, C. F. Higgins,, and W. N. Konings. 2000. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19:25032514.
92. van Veen, H. W.,, K. Vanema,, H. Bolhuis,, I. Oussenko,, J. Kok,, B. Poolman,, A. J. M. Driessen,, and W. N. Konings. 1996. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93:1066810672.
93. Vincent, F.,, S. Spinelli,, R. Ramoni,, S. Grolli,, P. Pelosi,, C. Cambillau,, and M. Tegoni. 2000. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J. Mol. Biol. 305:459469.
94. Wang, X. D.,, P. A. de Boer,, and L. I. Rothfield. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 10:33633372.
95. Wei, Y.,, J.-M. Lee,, D. R. Smulski,, and R. A. LaRossa. 2001. Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J. Bacteriol. 183:22652272.
96. White, D. G.,, J. D. Goldman,, B. Demple,, and S. B. Levy. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179:61226126.
97. Yerushalmi, H.,, M. Lebendiker,, and S. Schuldiner. 1996. Negative dominance studies demonstrate the oligomeric structure of Emr, a multidrug antiporter from Escherichia coli. J. Biol. Chem. 271:3104431048.
98. Yerushalmi, H.,, and S. Schuldiner. 2000. An essential glutamyl residue in EmrE, a multidrug transporter from Escherichia coli. J. Biol. Chem. 275:52645269.
99. Yoshida, H.,, M. Bogaki,, S. Nakamura,, K. Ubukata,, and M. Konno. 1990. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172:69426949.
100. Young, J.,, and I. B. Holland. 1999. ABC transporters: bacterial exporters—revisited five years on. Biochim. Biophys. Acta 1461:177200.
101. Yu, E. W.,, J. R. Aires,, and H. Nikaido. 2003. AcrB multidrug efflux pump of Escherichia coli: composite substratebinding cavity of exceptional flexibility generates its extremely wide substrate specificity. J. Bacteriol. 185:56575664.
102. Yu, J.-L.,, L. Grinius,, and D. C. Hooper. 2002. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J. Bacteriol. 184:13701377.
103. Zgurskaya, H. I.,, and H. Nikaido. 2000. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37:219225.
104. Zheleznova, E. E.,, P. M. Markham,, A. A. Neyfakh,, and R. G. Brennan. 1999. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96:353362.
105. Zhou, Z.,, K. A. White,, A. Polissi,, C. Georgopoulos,, and C. R. H. Raetz. 1998. Function of Escherichia coli MsbA, an essential ABC transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273:1246612475.


Generic image for table
Table 1

RND multidrug transporters

ACF, acriflavine; ACR, acridine; AGs, aminoglycosides; AHs, aromatic hydrocarbons; AMP, ampicillin; BLs, β-lactams; BSs, bile salts; BZK, benzylkonium; CAB, carbenicillin; CCCP, carbonyl cyanide -chlorophenylhydrazone; CIP, ciprofloxacin; CML, chloramphenicol; CV, crystal violet; DAPI, 4′,6-diamidino-2-phenylindole; DAU, daunomycin; DEO, deoxycholate; DOX, doxorubicin; EB, ethidium bromide; ERY, erythromycin; FAs, fatty acids; FQs, fluoroquinolones; FUS, fusidic acid; IPM, imipenem; KAN, kanamicin; LCs, lincosamides; MLs, macrolides; MV, methyl viologen; NAL, nalidixic acid; NOR, norfloxacin; NOV, novobiocin; OSs, organic solvents; OTC, oxytetracycline; OXO, oxacillin; PFN, proflavin; PMs, polymyxins; PUR, puromycin; QACs, quaternary ammonium compounds; QLs, quinolones; RIF, rifampin; R6G, rhodamine 6G; SDS, sodium dodecyl sulfate; SGs, streptogramins; SMX, sulfamethoxalone; STR, streptomycin; SUL, sulfonamide; TCN, triclosan; TET, tetracycline; TMP, trimethoprim; TOL, toluene; TPP, tetraphenylphosphonium; VGN, virginiamycin.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 5

ABC multidrug transporters

See Table 1 , footnote ,for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 4

MATE multidrug transporters

See Table 1 , footnote ,for abbreviations for substrates.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 2

MF multidrug transporters

See Table 1 , footnote for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 3

SMR multidrug transporters

See Table 1 , footnote for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error