1887

Chapter 10 : Multiple Antimicrobial Resistance

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Multiple Antimicrobial Resistance, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap10-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap10-2.gif

Abstract:

This chapter provides an overview of multiple antimicrobial resistance mechanisms in bacteria. The chief mechanism by which the phenotype is displayed is active efflux (extrusion) of structurally diverse compounds. The number of multidrug resistance (MDR) systems now known in bacteria is extensive, having been amassed from genetic, microbiological, biochemical, and phylogenetic investigations and, more recently, from bioinformatic sequence analysis of complete bacterial chromosomes. Multidrug transporters may be classified into two divisions: proton motive force-dependent secondary transporters and ABC transporters. The first category is divided into four subclasses-the major facilitator (MF), resistance-nodulation-cell division (RND), small multidrug resistance (SMR), and multidrug and toxic compound extrusion (MATE) families. Multidrug transporters are often expressed under very precise and elaborate transcriptional control, in response to environmental signals, substrates, or xenobiotics. Two new approaches to tackling the drug-resistance problem are receiving increasing attention. The first involves targeting nonmultiplying latent bacteria, which could reduce the duration of chemotherapy and the rate of development of resistance. The second method, which shows even more promise, involves activating chromosomal suicide modules that trigger programmed cell death of bacteria. Some common antibiotics that inhibit transcription/ translation or folic acid metabolism activate the suicide modules, and perhaps future research could be directed at identifying compounds that exclusively activate programmed cell death modules.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10

Key Concept Ranking

Integral Membrane Proteins
0.48391545
BaeSR Two-Component Regulatory System
0.427454
Efflux Pumps
0.4239451
0.48391545
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Transmembrane (TM) topologies of the major classes of multidrug efflux transporters. (A to D) represent RND, MF, ABC, and SMR families, respectively. The MATE family is not depicted, as its topology resembles the MF superfamily in having 12 TM segments. Some MF pumps have an extra 2 TM segments, that is, 14 in all. Vertical rectangles delineate TM spans of about 18 residues each. Intra- and extracytoplasmic connecting loops represent approximate scale lengths of residues, except for ABC transporters (C), whose large ATP-binding cassette domains (NBDs) are drawn as boxes. Note also that ABC transporters in bacteria are not usually contiguous polypeptides but are composites of four separate subunits (two TMDs and two NBDs) or dimers of two half transporters, as depicted in C.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap10
1. Adler, J.,, and E. Bibi. 2004. Determinants of substrate recognition by the Escherichia coli multidrug transporter MdfA identified on both sides of the membrane. J. Biol. Chem. 279: 8957 8965.
2. Adler, J.,, O. Lewinson,, and E. Bibi. 2004. Role of a conserved membrane-embedded acidic residue in the multidrug transporter MdfA. Biochemistry 43: 518 525.
3. Alekshun, M. N.,, and S. B. Levy. 1999. The mar regulon: multiple resistance to antibiotics and other toxic chemicals. Trends Microbiol. 7: 410 413.
4. Alekshun, M. N.,, S. B. Levy,, T. R. Mealy,, B. A. Seaton,, and J. F. Head. 2001. The crystal structure of MarR, a regulator of multiple antibiotic resistance, at 2.3 Å resolution. Nat. Struct. Biol. 8: 710 714.
5. Baranova, N.,, and H. Nikaido. 2002. The BaeSR two-component regulatory system activates transcription of the yegMNOB (mdtABCD) transporter gene cluster in Escherichia coli and increases its resistance to novobiocin and deoxycholate. J. Bacteriol. 184: 4168 4176.
6. Barbosa, T. M.,, and S. B. Levy. 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol. 182: 3467 3474.
7. Campbell, J. D.,, K. Koike,, C. Moreau,, M. S. P. Sansom,, R. G. Deeley,, and S. P. C. Cole. 2004. Molecular modeling correctly predicts the functional importance of Phe594 in transmembrane helix 11 of the multidrug resistance protein, MRP1 (ABCC1). J. Biol. Chem. 279: 463 468.
8. Carredano, E.,, A. Karlsson,, B. Kauppi,, D. Choudhury,, R. E. Parales,, J. V. Parales,, K. Lee,, D. T. Gibson,, H. Eklund,, and S. Ramaswamy. 2000. Substrate binding site of naphthalene 1, 2-dioxygenase: functional implications of indole binding. J. Mol. Biol. 321: 621 632.
9. Choi, H.,, and L. Heginbotham. 2004. Functional influence of the pore helix glutamate in the KcsA K + channel. Biophys. J. 86: 2137 2144.
10. Chopra, I.,, A. J. O’Neill,, and K. Miller. 2003. The role of mutators in the mergence of antibiotic-resistant bacteria. Drug Res. Updates 6: 137 145.
11. Coates, A.,, Y. Hu,, R. Bax,, and C. Page. 2002. The future challenges facing the development of new antimicrobial drugs. Nature Rev. 1: 895 910.
12. Cohen, S. P.,, W. Yan,, and S. B. Levy. 1993. A multidrug resistance regulatory chromosomal locus is widespread among enteric bacteria. J. Infect. Dis. 168: 484 488.
13. Danghi, B.,, P. Pelupessey,, R. G. Martin,, J. L. Rosner,, J. M. Louis,, and A. M. Gronenborn. 2001. Structure and dynamics of MarA-DNA complexes: an NMR investigation. J. Mol. Biol. 313: 1067 1081.
14. Delihas, N.,, and S. Forst. 2001. MicF: an antisense RNA gene involved in response of Escherichia coli to global stress factors. J. Mol. Biol. 313: 1 12.
15. Demple, B. 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon—a review. Gene 179: 53 57.
16. Eda, S.,, H. Maseda,, and T. Nakae. 2003. An elegant means of self-protection in gram-negative bacteria by recognizing and extruding xenobiotics from the periplasmic space. J. Biol. Chem. 278: 2085 2088.
17. Edgar, R.,, and E. Bibi. 1997. MdfA, an Escherichia coli multidrug resistance protein with an extraordinarily broad spectrum of drug recognition. J. Bacteriol. 179: 2274 2280.
18. Edgar, R.,, and E. Bibi. 1999. A single membrane-embedded negative charge is critical for recognizing positively charged drugs by the Escherichia coli multidrug resistance protein MdfA. EMBO J. 18: 822 832.
19. Elbaz, Y.,, S. Steiner-Mordoch,, T. Danieli,, and S. Schuldiner. 2004. In vitro synthesis of fully functional EmrE, a multidrug transporter, and study of its oligomeric state. Proc. Natl. Acad. Sci. USA 101: 1519 1524.
20. Elkins, C. A.,, and H. Nikaido. 2002. Substrate specificity of the RND-type multidrug efflux pumps AcrB and AcrD of Escherichia coli is determined predominantly by two large periplasmic loops. J. Bacteriol. 184: 6490 6498.
21. Elkins, C. A.,, and H. Nikaido. 2003. Chimeric analysis of AcrA function reveals the importance of its C-terminal domain in its interaction with the AcrB multidrug efflux pump. J. Bacteriol. 185: 5349 5356.
22. Engelberg-Kulka, H.,, B. Sat,, M. Reches,, S. Amitai,, and R. Hazan. 2004. Bacterial programmed cell death systems as targets for antibiotics. Trends Microbiol. 12: 66 71.
23. Evans, K.,, L. Adewoye,, and K. Poole. 2001. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexAmexR intergenic region. J. Bacteriol. 183: 807 812.
24. Fath, M. J.,, and R. Kolter. 1993. ABC transporters: bacterial exporters. Microbiol. Rev. 57: 995 1017.
25. George, A. M.,, and S. B. Levy. 1983a. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155: 531 540.
26. George, A. M.,, and S. B. Levy. 1983b. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155: 541 548.
27. Gill, M. J.,, N. P. Brenwald,, and R. Wise. 1999. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43: 187 189.
28. Godsey, M. H.,, E. E. Zheleznova,, and R. G. Brennan. 2002. Structural biology of bacterial multidrug resistance gene regulators. J. Biol. Chem. 277: 40169 40172.
29. Griffith, K. L.,, I. M. Shah,, and R. E. Wolf, Jr. 2004. Proteolytic degradation of Escherichia coli transcription activators SoxS and MarA as the mechanism for reversing the induction of the superoxide (SoxRS) and multiple antibiotic resistance (Mar) regulons. Mol. Microbiol. 51: 1801 1816.
30. Grkovic, S.,, M. H. Brown,, and R. A. Skurray. 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66: 671 701.
31. Grkovic, S.,, K. M. Hardie,, M. H. Brown,, and R. A. Skurray. 2003. Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 42: 15226 15236.
32. Gutman, N.,, S. Steiner-Mordoch,, and S. Schuldiner. 2003. An amino acid cluster around the essential Glu-14 is part of the substrate- and proton-binding domain of EmrE, a multidrug transporter from Escherichia coli. J. Biol. Chem. 278: 16082 16087.
33. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrCDE efflux system. Microbiology 141: 611 622.
34. Hoyle, B. D.,, and W. J. Costerton. 1991. Bacterial resistance to antibiotics: the role of biofilms. Prog. Drug Res. 37: 91 105.
35. Ishida, H.,, H. Fuziwara,, Y. Kaibori,, T. Horiuchi,, K. Sato,, and Y. Osada. 1995. Cloning of multidrug resistance gene pqrA from Proteus vulgaris. Antimicrob. Agents Chemother. 39: 453 457.
36. Jones, P. M.,, and A. M. George. 2000. Symmetry and structure in P-glycoprotein and ABC transporters. Eur. J. Biochem. 267: 5298 5305.
37. Jones, P. M.,, and A. M. George. 2004. The ABC transporter structure and mechanism: perspectives on recent research. Cell. Mol. Life Sci. 61: 682 699.
38. Kahmann, J. D.,, H.-J. Sass,, M. G. Allan,, H. Seto,, C. J. Thompson,, and S. Grzesiek. 2003. Structural basis for antibiotic recognition by the TipA class of multidrug-resistance transcriptional regulators. EMBO J. 22: 1824 1834.
39. Karwatsky, J.,, R. Daoud,, J. Cai,, P. Gros,, and E. Georges. 2003. Binding of a photoaffintiy analogue of glutathione to MRP1 (ABCC1) within two cytoplasmic regions (L0 and L1) as well as transmembrane domains 10-11 and 16-17. Biochemistry 42: 3286 3294.
40. Kawamura-Sato, K.,, K. Shibayama,, T. Horii,, Y. Iimuma,, Y. Arakawa,, and M. Ohta. 1999. Role of multiple efflux pumps in Escherichia coli in indole expulsion. FEMS Microbiol. Lett. 179: 345 352.
41. Kisker, C.,, W. Hinrichs,, K. Tovar,, W. Hillen,, and W. Saenger. 1995. The complex formed between Tet repressor and tetracycline- Mg 2+ reveals mechanism of antibiotic resistance. J. Mol. Biol. 247: 260 280.
42. Köhler, T.,, M. Michea-Hamzehpour,, U. Henze,, N. Gotoh,, L. Kocjancic-Curty,, and J. C. Pechère. 1997. Characterization of MexE-MexF-OprN,a positively regulated multidrug efflux system of Pseudomonas aeruginosa. Mol. Microbiol. 23: 345 254.
43. Leabman, M. K.,, C. C. Huang,, J. DeYoung,, E. J. Carlson,, T. R. Taylor,, M. de la Cruz,, S. J. Johns,, D. Stryke,, M. Kawamoto,, T. J. Urban,, D. L. Kroetz,, T. E. Ferrin,, A. G. Clark,, N. Risch,, I. Herskowitz,, and K. M. Giacomini. 2003. Natural variation in human membrane transporter genes reveals evolutionary and functional constraints. Proc. Natl. Acad. Sci. USA 100: 5896 5901.
44. Lee, E.-H.,, C. Rouquette-Loughlin,, J. P. Folster,, and W. M. Shafer. 2003. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185: 7145 7152.
45. Lee, E.-H.,, and W. M. Shafer. 1999. The farAB efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33: 839 845.
46. Lewinson, O.,, J. Adler,, G. J. Poelarends,, P. Mazurkiewicz,, A. J. M. Driessen,, and E. Bibi. 2003. The Escherichia coli multidrug transporter MdfA catalyzes both electrogenic and electroneutral transport reactions. Proc. Natl. Acad. Sci. USA 100: 1667 1672.
47. Li, X.-Z.,, K. Poole,, and H. Nikaido. 2003. Contributions of MexAB-OprM and an EmrE homolog to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob. Agents Chemother. 47: 27 33.
48. Lomovskaya, O.,, K. Lewis,, and A. Martin. 1995. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J. Bacteriol. 177: 2328 2334.
49. Ma, C.,, and G. Chang. 2004. Structure of the multidrug resistance efflux transporter EmrE from Escherichia coli. Proc. Natl. Acad. Sci. USA 101: 2852 2857.
50. Ma, D.,, M. Alberti,, C. Lynch,, H. Nikaido,, and J. E. Hearst. 1996. The local repressor AcrR plays a modulating role in the regulation of acrAB genes of Escherichia coli by global stress signals. Mol. Microbiol. 19: 101 112.
51. Mah, T.-F.,, B. Pitts,, B. Pellock,, G. C. Walker,, P. S. Stewart,, and G. A. O’Toole. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306 310.
52. Mao, W.,, M. S. Warren,, D. S. Black,, T. Satou,, T. Murata,, T. Nishino,, N. Gotoh,, and O. Lomovskaya. 2002. On the mechanism of substrate specificity by resistance nodulation division (RND)-type multidrug resistance pumps: the large periplasmic pools of MexD from Pseudomonas aeruginosa are involved in substrate recognition. Mol. Microbiol. 46: 889 901.
53. Markham, P. N.,, and A. A. Neyfakh. 2001. Efflux-mediated resistance in gram-positive bacteria. Curr. Opin. Microbiol. 4: 509 514.
54. Martin, R. G.,, and J. L. Rosner. 1995. Binding of lurified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92: 5456 5460.
55. McKeegan, K. S.,, M. I. Borges-Walmsley,, and A. R. Walmsley. 2003. The structure and function of drug pumps: an update. Trends Microbiol. 11: 21 29.
56. Mordoch, S. S.,, D. Granot,, M. Lebendiker,, and S. Schuldiner. 1999. Scanning cysteine accessibility of EmrE, an H +-coupled multidrug transporter from Escherichia coli, reveals a hydrophobic pathway for solutes. J. Biol. Chem. 274: 19480 19486.
57. Murakami, S.,, and A. Yamaguchi. 2003. Multidrug-exporting secondary transporters. Curr. Opin. Struct. Biol. 13: 443 452.
58. Murray, D. S.,, M. A. Schumacher,, and R. G. Brennan. 2004. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. J. Biol. Chem. 279: 14365 14371.
59. Newman, L. M.,, and L. P. Wackett. 1997. Trichloromethylene oxidation by purified toluene 2-monooxygenase: products, kinetics, and turnover-dependent inactivation. J. Bacteriol. 179: 90 96.
60. Neyfakh, A. A. 2002. Mystery of multidrug transporters: the answer can be simple. Mol. Microbiol. 44: 1123 1130.
61. Neyfakh, A. A.,, V. E. Bidnenko,, and L. B. Chen. 1991. Effluxmediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. USA 88: 478 8785.
62. Neyfakh, A. A.,, C. M. Borsch,, and G. W. Kaatz. 1993. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37: 128 129.
63. Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264: 382 388.
64. Nikaido, H. 1998. Multiple antibiotic resistance and efflux. Curr. Opin. Microbiol. 1: 516 523.
65. Nilsen, I. W.,, I. Baake,, A. Vader,, Ø. Olsvik,, and M. R. El-Gewely. 1996. Isolation of cmr, a novel Escherichia coli chloramphenicol resistance gene encoding a putative efflux pump. J. Bacteriol. 178: 3188 3193.
66. Paulsen, I. T.,, M. H. Brown,, and R. A. Skurray. 1996. Protondependent multidrug efflux systems. Microbiol. Rev. 60: 575 608.
67. Paulsen, I. T.,, J. Chen,, K. E. Nelson,, and M. H. Saier, Jr. 2001. Comparative genomics of microbial drug efflux systems. J. Mol. Microbiol. Biotechnol. 3: 145 150.
68. Paulsen, I. T.,, M. K. Silwinski,, and M. H. Saier, Jr. 1998. Microbial genomic analysis: global comparisons of transport capabilities based on phylogenies, bioenergetics and substrate specificities. J. Mol. Biol. 277: 573 592.
69. Perron, K.,, O. Caille,, C. Rossier,, C. van Delden,, J.-L. Dumas,, and T. Köhler. 2004. CzcR-CzcS, a two-component system involved in heavy metal and carbenpenem resistance in Pseudomonas aeruginosa. J. Biol. Chem. 279: 8761 8768.
70. Poole, K. 2002. Outer membranes and efflux: the path to multidrug resistance in gram-negative bacteria. Curr. Pharm. Biotech. 3: 77 98.
71. Putman, M.,, H. W. van Veen,, J. E. Degener,, and W. N. Konings. 2000. Antibiotic resistance: era of the multidrug pump. Mol. Microbiol. 36: 772 773.
72. Reuter, G.,, T. Janvilisri,, H. Venter,, S. Shahi,, L. Balakrishnan,, and H. W. van Veen. 2003. The ATP binding cassette multidrug transporter LmrA and lipid transporter MsbA have overlapping substrate specificities. J. Biol. Chem. 278: 35193 35198.
73. Rouch, D. A.,, D. S. Cram,, D. DiBerardino,, T. G. Littlejohn,, and R. A. Skurray. 1990. Efflux-mediated antiseptic resistance gene qacA from Staphylococcus aureus: common ancestry with tetracycline- and sugar-transport proteins. Mol. Microbiol. 4: 2051 2062.
74. Saier, M. H. Jr.,, I. T. Paulsen,, M. K. Sliwinski,, S. S. Pao,, R. A. Skurray,, and H. Nikaido. 1998. Evolutionary origins of multidrug and drug-specific efflux pumps in bacteria. FASEB J. 12: 265 274.
75. Schneiders, T.,, T. M. Barbosa,, L. M. McMurry,, and S. B. Levy. 2004. The Escherichia coli transcriptional regulator MarA directly represses transcription of purA and hdeA. J. Biol. Chem. 279: 9037 9042.
76. Schulinder, S.,, D. Granot,, S. S. Mordoch,, S. Nino,, D. Rotem,, M. Soskin,, C. G. Tate,, and H. Yerushalmi. 2001. Small is mighty: EmrE, a multidrug transporter as an experimental paradigm. News Physiol. Sci. 16: 130 134.
77. Schumacher, M. A.,, and R. G. Brennan. 2002. Structural mechanisms of multidrug recognition and regulation by bacterial multidrug transcription factors. Mol. Microbiol. 45: 885 893.
78. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294: 2158 2163.
79. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2002. Structural basis for cooperative DNA binding by two dimers of the multidrugbinding protein QacR. EMBO J. 21: 1210 1218.
80. Sharom, F. J. 1997. The P-glycoprotein efflux pump: how does it transport drugs? J. Membr. Biol. 160: 161 175.
81. Smith, A. J.,, A. van Helvoort,, G. van Meer,, K. Szabó,, E. Welker,, G. Szakács,, A. Váradi,, B. Sarkadi,, and P. Borst. 2000. MDR3 P-glycoprotein, a phosphatidylcholine translocase, transports several cytotoxic drugs and directly interacts with drugs as judged by interference with nucleotide trapping. J. Biol. Chem. 275: 23530 23539.
82. Son, M. S.,, C. Del Castilho,, K. A. Duncalf,, D. Carney,, J. H. Weiner,, and R. J. Turner. 2003. Mutagenesis of SugE, a small multidrug resistance protein. Biochem. Biophys. Res. Commun. 312: 914 921.
83. Soskine, M.,, Y. Adam,, and S. Schuldiner. 2004. Direct evidence for substrate-induced proton release in detergent-solubilized EmrE, a multidrug transporter. J. Biol. Chem. 279: 9951 9955.
84. Sulavik, M. C.,, C. Houseweart,, C. Cramer,, N. Jiwani,, N. Murgolo,, J. Greene,, B. DiDomenico,, K. J. Shaw,, G. H. Miller,, R. Hare,, and G. Shimer. 2001. Antibiotic susceptibility profiles of Escherichia coli strains lacking multidrug efflux pump genes. Antimicrob. Agents Chemother. 45: 1126 1136.
85. Tanaka, T.,, T. Horli,, K. Shibayama,, K. Sato,, S. Ohsuka,, Y. Arawaka,, K.-I. Yamaka,, K. Takagi,, and M. Ohta. 1997. RobA-induced multiple antibiotic resistance largely depends on the activation of the AcrAB efflux. Microbiol. Immunol. 41: 697 702.
86. Thanassi, D. G.,, L. W. Cheng,, and H. Nikaido. 1997. Active efflux of bile salts by Escherichia coli. J. Bacteriol. 179: 2515 2518.
87. Tourasse, N. J.,, and W. H. Li. 2000. Selective constraints, amino acid composition, and the rate of protein evolution. Mol. Biol. Evol. 17: 656 664.
88. Truong-Bolduc, Q. C.,, X. Zhang,, and D. C. Hooper. 2003. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J. Bacteriol. 185: 3127 2138.
89. Tseng, T.-T.,, K. S. Gratwick,, J. Kollman,, D. Park,, D. H. Nies,, A. Goffeau,, and M. H. Saier, Jr. 1999. The RND permease superfamily: an ancient, ubiquitous and diverse family that includes human disease and development proteins. J. Mol. Microbiol. Biotechnol. 1: 107 125.
90. van Helvoort, A.,, A. J. Smith,, H. Sprong,, I. Fritzsche,, A. H. Schinkel,, P. Borst,, and G. van Meer. 1996. MDR1 PGlycoprotein is a lipid translocase of broad specificity, while MDR3 P-glycoprotein specifically translocates phosphatidylcholine. Cell 87: 507 517.
91. van Veen, H. W.,, A. Margolles,, M. Muller,, C. F. Higgins,, and W. N. Konings. 2000. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19: 2503 2514.
92. van Veen, H. W.,, K. Vanema,, H. Bolhuis,, I. Oussenko,, J. Kok,, B. Poolman,, A. J. M. Driessen,, and W. N. Konings. 1996. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93: 10668 10672.
93. Vincent, F.,, S. Spinelli,, R. Ramoni,, S. Grolli,, P. Pelosi,, C. Cambillau,, and M. Tegoni. 2000. Complexes of porcine odorant binding protein with odorant molecules belonging to different chemical classes. J. Mol. Biol. 305: 459 469.
94. Wang, X. D.,, P. A. de Boer,, and L. I. Rothfield. 1991. A factor that positively regulates cell division by activating transcription of the major cluster of essential cell division genes of Escherichia coli. EMBO J. 10: 3363 3372.
95. Wei, Y.,, J.-M. Lee,, D. R. Smulski,, and R. A. LaRossa. 2001. Global impact of sdiA amplification revealed by comprehensive gene expression profiling of Escherichia coli. J. Bacteriol. 183: 2265 2272.
96. White, D. G.,, J. D. Goldman,, B. Demple,, and S. B. Levy. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179: 6122 6126.
97. Yerushalmi, H.,, M. Lebendiker,, and S. Schuldiner. 1996. Negative dominance studies demonstrate the oligomeric structure of Emr, a multidrug antiporter from Escherichia coli. J. Biol. Chem. 271: 31044 31048.
98. Yerushalmi, H.,, and S. Schuldiner. 2000. An essential glutamyl residue in EmrE, a multidrug transporter from Escherichia coli. J. Biol. Chem. 275: 5264 5269.
99. Yoshida, H.,, M. Bogaki,, S. Nakamura,, K. Ubukata,, and M. Konno. 1990. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172: 6942 6949.
100. Young, J.,, and I. B. Holland. 1999. ABC transporters: bacterial exporters—revisited five years on. Biochim. Biophys. Acta 1461: 177 200.
101. Yu, E. W.,, J. R. Aires,, and H. Nikaido. 2003. AcrB multidrug efflux pump of Escherichia coli: composite substratebinding cavity of exceptional flexibility generates its extremely wide substrate specificity. J. Bacteriol. 185: 5657 5664.
102. Yu, J.-L.,, L. Grinius,, and D. C. Hooper. 2002. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J. Bacteriol. 184: 1370 1377.
103. Zgurskaya, H. I.,, and H. Nikaido. 2000. Multidrug resistance mechanisms: drug efflux across two membranes. Mol. Microbiol. 37: 219 225.
104. Zheleznova, E. E.,, P. M. Markham,, A. A. Neyfakh,, and R. G. Brennan. 1999. Structural basis of multidrug recognition by BmrR, a transcription activator of a multidrug transporter. Cell 96: 353 362.
105. Zhou, Z.,, K. A. White,, A. Polissi,, C. Georgopoulos,, and C. R. H. Raetz. 1998. Function of Escherichia coli MsbA, an essential ABC transporter, in lipid A and phospholipid biosynthesis. J. Biol. Chem. 273: 12466 12475.

Tables

Generic image for table
Table 1

RND multidrug transporters

ACF, acriflavine; ACR, acridine; AGs, aminoglycosides; AHs, aromatic hydrocarbons; AMP, ampicillin; BLs, β-lactams; BSs, bile salts; BZK, benzylkonium; CAB, carbenicillin; CCCP, carbonyl cyanide -chlorophenylhydrazone; CIP, ciprofloxacin; CML, chloramphenicol; CV, crystal violet; DAPI, 4′,6-diamidino-2-phenylindole; DAU, daunomycin; DEO, deoxycholate; DOX, doxorubicin; EB, ethidium bromide; ERY, erythromycin; FAs, fatty acids; FQs, fluoroquinolones; FUS, fusidic acid; IPM, imipenem; KAN, kanamicin; LCs, lincosamides; MLs, macrolides; MV, methyl viologen; NAL, nalidixic acid; NOR, norfloxacin; NOV, novobiocin; OSs, organic solvents; OTC, oxytetracycline; OXO, oxacillin; PFN, proflavin; PMs, polymyxins; PUR, puromycin; QACs, quaternary ammonium compounds; QLs, quinolones; RIF, rifampin; R6G, rhodamine 6G; SDS, sodium dodecyl sulfate; SGs, streptogramins; SMX, sulfamethoxalone; STR, streptomycin; SUL, sulfonamide; TCN, triclosan; TET, tetracycline; TMP, trimethoprim; TOL, toluene; TPP, tetraphenylphosphonium; VGN, virginiamycin.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 5

ABC multidrug transporters

See Table 1 , footnote ,for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 4

MATE multidrug transporters

See Table 1 , footnote ,for abbreviations for substrates.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 2

MF multidrug transporters

See Table 1 , footnote for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10
Generic image for table
Table 3

SMR multidrug transporters

See Table 1 , footnote for abbreviations for substrates.

pl, plasmid encoded.

Citation: George A. 2005. Multiple Antimicrobial Resistance, p 151-164. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch10

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error