Chapter 11 : Metal Resistance Loci of Bacterial Plasmids

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Metal Resistance Loci of Bacterial Plasmids, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap11-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap11-2.gif


This chapter provides an introduction to metallobiology, brief descriptions of the well-studied plasmidcoded metal resistances, and a short survey of the genetic and biochemical connections between metals and antibiotic resistances. Many genes in bacterial plasmid-borne metal resistance systems are homologous to those of the chromosomal homeostasis systems. Cobalt, nickel, and zinc are all essential metals, and all but zinc are redox active. Lead and cadmium have no beneficial biological functions and are both quite toxic. Operons conferring single and multiple resistances to various subsets of these four transition metals and the main group heavy metal, lead, are based on several distinct types of efflux pumps. In there are three metal resistance loci on pMOL28: a transposon conferring resistance to mercury, merTPADE, and two nontransposable loci conferring resistance to chromate and to cobalt and nickel. Although heavy metal resistances in bacteria first appeared to be largely plasmid encoded, genome sequencing has revealed that homologs of transition metal resistance genes and their regulators abound in all prokaryotic chromosomes, most likely for managing the cell’s use of their beneficial and essential metal relatives. It is a known fact that bacteria isolated from metal-impacted environments typically carry several metal resistances on large conjugative plasmids, suggesting that this genetic arrangement has selective advantage beyond that afforded by expression of related chromosomal loci.

Citation: Summers A. 2005. Metal Resistance Loci of Bacterial Plasmids, p 165-173. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch11

Key Concept Ranking

Outer Membrane Proteins
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Aarestrup, F. M.,, H. Hasman,, L. B. Jensen,, M. Moreno,, I. A. Herrero,, L. Dominguez,, M. Finn,, and A. Franklin. 2002. Antimicrobial resistance among enterococci from pigs in three European countries. Appl. Environ. Microbiol. 68:41274129.
2. Banci, L.,, I. Bertini,, R. Del Conte,, J. Markey,, and F. J. Ruiz- Duenas. 2001. Copper trafficking: the solution structure of Bacillus subtilis CopZ. Biochemistry 40:1566015668.
3. Barkay, T.,, S. M. Miller,, and A. O. Summers. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiol. Rev. 27:355384.
4. Bender, C. L.,, and D. A. Cooksey. 1986. Indigenous plasmids in Pseudomonas syringae pv. tomato: conjugative transfer and role in copper resistance. J. Bacteriol. 165:534541.
5. Besnard, E.,, C. Chenu,, and M. Robert. 2001. Influence of organic amendments on copper distribution among particle-size and density fractions in Champagne vineyard soils. Environ. Pollut. 112:329337.
6. Borremans, B.,, J. L. Hobman,, A. Provoost,, N. L. Brown,, and D. van de Lelie. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183:56515658.
7. Brown, N. L.,, J. V. Stoyanov,, S. P. Kidd,, and J. L. Hobman. 2003. The MerR family of transcriptional regulators. FEMS Microbiol. Rev. 27:145163.
8. Bull, P. C.,, and D. W. Cox. 1994. Wilson disease and Menkes disease: new handles on heavy-metal transport. Trends Genet. 10:246252.
9. Busenlehner, L. S.,, M. A. Pennella,, and D. P. Giedroc. 2003. The SmtB/ArsR family of metalloregulatory transcriptional repressors: structural insights into prokaryotic metal resistance. FEMS Microbiol. Rev. 27:131143.
10. Canady, R. A.,, C. S. Rabe,, and K. Gan. 1996. Toxicological Profile for Mercury (update). U.S. Dept. of Health and Human Services, Public Health Service Agency for Toxic Substances and Disease Registry, Atlanta, Ga.
11. Canovas, D.,, I. Cases,, and V. de Lorenzo. 2003. Heavy metal tolerance and metal homeostasis in Pseudomonas putida as revealed by complete genome analysis. Environ. Microbiol. 5:12421256.
12. Chen, C. A.,, and J. A. Cowan. 2002. In vivo cleavage of a target RNA by copper kanamycin A. Direct observation by a fluorescence assay. Chem. Commun. (Camb):196197.
13. Cooksey, D. A.,, and H. R. Azad. 1992. Accumulation of copper and other metals by copper-resistant plant pathogenic and saprophytic pseudomonads. Appl. Environ. Microbiol. 58:274278.
14. Dyllick-Brenzinger, M.,, M. Liu,, T. L. Winstone,, D. E. Taylor,, and R. J. Turner. 2000. The role of cysteine residues in tellurite resistance mediated by the TehAB determinant. Biochem. Biophys. Res. Commun. 277:394400.
15. Edmonds, M. S.,, O. A. Izquierdo,, and D. H. Baker. 1985. Feed additive studies with newly weaned pigs: efficacy of supplemental copper, antibiotics and organic acids. J. Anim. Sci. 60: 462469.
16. Finney, L. A.,, and T. V. O’Halloran. 2003. Transition metal speciation in the cell: insights from the chemistry of metal ion receptors. Science 300:931936.
17. Frausto de Silva, J. J. R.,, and R. J. P. Williams. 1991. The Biological Chemistry of the Elements: the Inorganic Chemistry of Life. Clarendon Press, Oxford, United Kingdom.
18. Gallagher, D. L.,, K. M. Johnston,, and A. M. Dietrich. 2001. Fate and transport of copper-based crop protectants in plasticulture runoff and the impact of sedimentation as a best management practice. Water Res. 35:29842994.
19. Goldberg, M.,, T. Pribyl,, S. Juhnke,, and D. H. Nies. 1999. Energetics and topology of CzcA, a cation/proton antiporter of the resistance-nodulation-cell division protein family. J. Biol. Chem. 274:2606526070.
20. Hasman, H.,, and F. M. Aarestrup. 2002. tcrB, a gene conferring transferable copper resistance in Enterococcus faecium: occurrence, transferability, and linkage to macrolide and glycopeptide resistance. Antimicrob. Agents Chemother. 46:14101416.
21. Iqbal, M. S.,, A. R. Ahmad,, M. Sabir,, and S. M. Asad. 1999. Preparation, characterization and biological evaluation of copper( II) and zinc(II) complexes with cephalexin. J. Pharm. Pharmacol. 51:371375.
22. Jezowska-Bojczuk, M.,, W. Szczepanik,, W. Lesniak,, J. Ciesiolka,, J. Wrzesinski,, and W. Bal. 2002. DNA and RNA damage by Cu(II)-amikacin complex. Eur. J. Biochem. 269:55475556.
23. Juhnke, S.,, N. Peitzsch,, N. Hubener,, C. Grosse,, and D. H. Nies. 2002. New genes involved in chromate resistance in Ralstonia metallidurans strain CH34. Arch. Microbiol. 179:1525.
24. Lehnherr, H.,, and M. Yarmolinsky. 1995. Addiction protein Phd of plasmid prophage P1 is a substrate of the ClpXp serineprotease of Escherichia coli. Proc. Natl. Acad. Sci. USA 92:32743277.
25. Lesniak, W.,, W. R. Harris,, J. Y. Kravitz,, J. Schacht,, and V. L. Pecoraro. 2003. Solution chemistry of copper(II)-gentamicin complexes: relevance to metal-related aminoglycoside toxicity. Inorg. Chem. 42:14201429.
26. Li, S.,, B. P. Rosen,, M. I. Borges-Walmsley,, and A. R. Walmsley. 2002. Evidence for cooperativity between the four binding sites of the dimeric ArsD, and As(III)-responsive transcriptional regulator. J. Biol. Chem. 277:25992256002.
27. Liebert, C. A.,, R. M. Hall,, and A. O. Summers. 1999. Transposon Tn21, flagship of the floating genome. Microbiol. Mol. Biol. Rev. 63:507522.
28. Liu, M.,, R. J. Turner,, T. L. Winstone,, A. Saetre,, M. Dyllick- Brenzinger,, G. Jickling,, L. W. Tari,, J. H. Weiner,, and D. E. Taylor. 2000. Escherichia coli TehB requires S-adenosylmethionine as a cofactor to mediate tellurite resistance. J. Bacteriol. 182:65096513.
29. McEwen, S. A.,, and P. J. Fedorka-Cray. 2002. Antimicrobial use and resistance in animals. Clin. Infect. Dis. 34:S93S106.
30. Mergeay, M.,, S. Monchy,, T. Vallaeys,, V. Auquier,, A. Benotmane,, P. Bertin,, S. Taghavi,, J. Dunn,, D. van der Lelie,, and R. Wattiez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27:385410.
31. Miller, M. A.,, and S. A. Harmon. 1967. Genetic association of determinants controlling resistance to mercuric chloride, production of penicillinase and synthesis of methionine in Staphylococcus aureus. Nature 215:531532.
32. Moore, B. 1960. A new screen test and selective medium for the rapid detection of epidemic strains of Staphylococcus aureus. Lancet ii:453458.
33. Mukhopadhyay, R.,, and B. P. Rosen. 2002. Arsenate reductases in prokaryotes and eukaryotes. Environ. Health Perspect. 110: 745748.
34. Mukhopadhyay, R.,, B. P. Rosen,, L. T. Phung,, and S. Silver. 2002. Microbial arsenic: from geocycles to genes and enzymes. FEMS Microbiol. Rev. 26:311325.
35. Munson, G. P.,, D. L. Lam,, F. W. Outten,, and T. V. O’Halloran. 2000. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J. Bacteriol. 182:58645871.
36. Nies, D. H. 2003. Efflux-mediated heavy metal resistance in prokaryotes. FEMS Microbiol. Rev. 27:313339.
37. Nies, D. H., 2004. Essential and toxic effects of elements on microorganisms, p. 257276. In K. Anke,, M. Ihnat,, and M. Stoeppler (ed.), Metals and Their Compounds in the Environment. Wiley-VCH, Weinheim, Germany.
38. Novick, R. P.,, and C. Roth. 1968. Plasmid resistance to inorganic salts in Staphylococcus aureus. J. Bacteriol. 95:13351342.
39. Nucifora, G.,, L. Chu,, T. K. Misra,, and S. Silver. 1989. Cadmium resistance from Staphylococcus aureus plasmid pI258 cadA gene results from a cadmium-efflux ATPase. Proc. Natl. Acad. Sci. USA 86:35443548.
40. Outten, C. E.,, and T. V. O’Halloran. 2001. Femtomolar sensitivity of metalloregulatory proteins controlling zinc homeostasis. Science 292:24882492.
41. Outten, F. W.,, D. L. Huffman,, J. A. Hale,, and T. V. O’Halloran. 2001. The independent cue and cus systems confer copper tolerance during aerobic and anaerobic growth in Escherichia coli. J. Biol. Chem. 276:3067030677.
42. Outten, F. W.,, C. E. Outten,, J. Hale,, and T. V. O’Halloran. 2000. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homolog, CueR. J. Biol. Chem. 275:3102431029.
43. Randall, L. P.,, and M. J. Woodward. 2002. The multiple antibiotic resistance (mar) locus and its significance. Res. Vet. Sci. 72:8793.
44. Rensing, C.,, and G. Grass. 2003. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol. Rev. 27:197213.
45. Richmond, M. H.,, and M. John. 1964. Co-transduction by a staphylococcal phage of the genes responsible for penicillinase synthesis and resistance to mercury salts. Nature 202:13601361.
46. Saltikov, C. W.,, A. Cifuentes,, K. Venkateswaran,, and D. K. Newman. 2003. The ars detoxification system is advantageous but not required for As(V) respiration by the genetically tractable Shewanella species strain ANA-3. Appl. Environ. Microbiol. 69:28002809.
47. Saltikov, C. W.,, and D. K. Newman. 2003. Genetic identification of a respiratory arsenate reductase. Proc. Natl. Acad. Sci. USA 100:1098310988.
48. Schluter, A.,, H. Heuer,, R. Szczepanowski,, L. J. Forney,, C. M. Thomas,, A. Puhler,, and E. M. Top. 2003. The 64,508 bp IncP- 1β antibiotic multiresistance plasmid pB10 isolated from a waste-water treatment plant provides evidence for recombination between members of different branches of the IncP-1β group. Microbiology 149:31393153.
49. Silver, S. 2003. Bacterial silver resistance: molecular biology and uses and misuses of silver compounds. FEMS Microbiol. Rev. 27:341353.
50. Solioz, M.,, and J. V. Stoyanov. 2003. Copper homeostasis in Enterococcus hirae. FEMS Microbiol. Rev. 27:183195.
51. Szczepanik, W.,, E. Dworniczek,, J. Ciesiolka,, J. Wrzesinski,, J. Skala,, and M. Jezowska-Bojczuk. 2003. In vitro oxidative activity of cupric complexes of kanamycin A in comparison to in vivo bactericidal efficacy. J. Inorg. Biochem. 94:355364.
52. Taylor, D. E. 1999. Bacterial tellurite resistance. Trends Microbiol. 7:111115.
53. Taylor, D. E.,, M. Rooker,, M. Keelan,, L. K. Ng,, I. Martin,, N. T. Perna,, N. T. Burland,, and F. R. Blattner. 2002. Genomic variability of O islands encoding tellurite resistance in enterohemorrhagic Escherichia coli O157:H7 isolates. J. Bacteriol. 184:46904698.
54. Thorburn, A. L. 1983. Paul Ehrlich: pioneer of chemotherapy and cure by arsenic (1854-1915). Br. J. Vener. Dis. 59:404405.
55. Tsai, K. J.,, Y. F. Lin,, M. D. Wong,, H. H. C. Yang,, H. L. Fu,, and B. P. Rosen. 2002. Membrane topolocy of the pI258 CadA Cd(II)/Pb(II)/Zn(II)-translocating P-type ATPase. J. Bionerg. Biomembr. 34:147156.
56. Vidaver, A. K. 2002. Uses of antimicrobials in plant agriculture. Clin. Infect. Dis. 34:S107S110.
57. Williams, J. R.,, A. G. Morgan,, D. A. Rouch,, N. L. Brown,, and B. T. Lee. 1993. Copper-resistant enteric bacteria from United Kingdom and Australian piggeries. Appl. Environ. Microbiol. 59:25312537.
58. Wong, M. D.,, B. Fan,, and B. P. Rosen,. 2003. Bacterial transport ATPases for monovalent, divalent and trivalent soft metal ions, p. 159178. In J. Kaplan,, Y. Wada,, and M. Futai (ed.), Ion- Pumping ATPases: Biochemisry, Cell Biology and Pathophysiology. Wiley-VCH, Weinhein, Germany.


Generic image for table
Table 1

Biologically useful heavy metal and metalloid elements

Data from references and .

Vanadium and tungsten are also essential for nitrogen fixation in some bacteria.

Citation: Summers A. 2005. Metal Resistance Loci of Bacterial Plasmids, p 165-173. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch11
Generic image for table
Table 2

Plasmid-determined heavy metal and metalloid resistance systems

Citation: Summers A. 2005. Metal Resistance Loci of Bacterial Plasmids, p 165-173. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch11

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error