1887

Chapter 13 : The Nexus of Oxidative Stress Responses and Antibiotic Resistance Mechanisms in and

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Nexus of Oxidative Stress Responses and Antibiotic Resistance Mechanisms in and , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap13-2.gif

Abstract:

This chapter discusses the mechanistic overlap between seemingly separate regulatory systems, one responding to oxidative stress, the other governing antibiotic resistance mechanisms encoded in the bacterial chromosome. Oxidative stress signals activate , leading to transcriptional induction of the gene. The overlap in specificity between the two systems (activation of both oxidative stress and antibiotic resistance genes) is embodied in the second-stage regulators, SoxS and MarA. These small proteins are homologous to the C-terminal domain of the AraC/XylS family of transcription activators. For the regulon , oxidative stress imposed by superoxide-generating agents or macrophagegenerated nitric oxide are the predominant known activation signals. In the absence of oxidative stress, competition of the mutant SoxR in St46 by the nonactivated wild-type protein effectively shut down expression and thus antibiotic resistance. The convergence of different regulatory systems on both oxidative stress and antibiotic resistance genes was unexpected. In another collaboration with Stuart Levy, the properties of a strain (St46) that developed ciprofloxacin resistance during antibiotic therapy were examined. Analyzing the regulatory mechanisms of and and their roles in resistance to multiple antibiotics proved to be an exciting adventure. The clear relevance of this work to human health was a bonus, as was the chance to learn about whole new areas of research.

Citation: Demple B. 2005. The Nexus of Oxidative Stress Responses and Antibiotic Resistance Mechanisms in and , p 191-197. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch13

Key Concept Ranking

Bacterial Genetics
0.59012395
Escherichia coli
0.54729456
Outer Membrane Proteins
0.4636095
0.59012395
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Control and phenotypic output in the soxRS system. Both latent and activated forms of SoxR protein bind tightly to a site between the −10 and −35 motifs of the soxS promoter. Through its 2Fe-2S iron-sulfur centers, the transcription activating function of SoxR is triggered either by oxidative stress signals generated by redox-cycling agents such as MD or paraquat (resulting in oxidation) or by exposure to nitric oxide (resulting in nitrosylation of the centers). The increased expression of SoxS protein increases its occupancy of binding sites in the target promoters of the regulon, where it recruits σ70 RNA polymerase to activate transcription. The activated genes increased resistance to oxidative stress (e.g., superoxide dismutase) and antibiotics (e.g., micF RNA). Adapted from reference 37.

Citation: Demple B. 2005. The Nexus of Oxidative Stress Responses and Antibiotic Resistance Mechanisms in and , p 191-197. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

A conserved DNA binding domain in the Rob, SoxS, MarA, and AraC proteins. Rob protein secondary structure (27) is shown below an alignment of the E. coli Rob, SoxS, MarA, and AraC proteins. A common domain of ∼100 residues is shared in all the proteins, while Rob has an additional 170 C-terminal residues, probably involved in modulating its transcription-activating function (see text). The first helix-turn-helix motif directly contacts specific DNA sequences; the second shows different secondary contacts in the Rob-DNA structure (27) compared to a MarA-DNA complex (38). The shaded residues correspond to conserved buried hydrophobic residues or contact residues in the DNA binding motifs (27). Adapted from reference 27.

Citation: Demple B. 2005. The Nexus of Oxidative Stress Responses and Antibiotic Resistance Mechanisms in and , p 191-197. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap13
1. Alekshun, M. N.,, and S. B. Levy. 1999. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J. Bacteriol. 181:46694672.
2. Amábile-Cuevas, C. F.,, and B. Demple. 1991. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res. 19:44794484.
3. Ariza, R. R.,, S. P. Cohen,, N. Bachhawat,, S. B. Levy,, and B. Demple. 1994. Repressor mutations in the marRAB operon that activate oxidative stress genes and multiple antibiotic resistance in Escherichia coli. J. Bacteriol. 176:143148.
4. Ariza, R. R.,, Z. Li,, N. Ringstad,, and B. Demple. 1995. Activation of multiple antibiotic resistance and binding of stressinducible promoters by Escherichia coli Rob protein. J. Bacteriol. 177:16551661.
5. Blattner, F. R.,, G. Plunkett, 3rd,, C. A. Bloch,, N. T. Perna,, V. Burland,, M. Riley,, J. Collado-Vides,, J. D. Glasner,, C. K. Rode,, G. F. Mayhew,, J. Gregor,, N. W. Davis,, H. A. Kirkpatrick,, M. A. Goeden,, D. J. Rose,, B. Mau,, and Y. Shao. 1997. The complete genome sequence of Escherichia coli K-12. Science 277:14531474.
6. Chander, M.,, and B. Demple. 2004. Functional analysis of SoxR residues affecting transduction of oxidative stress signals into gene expression. J. Biol. Chem. 279:4160341610.
7. Chander, M.,, L. Raducha-Grace,, and B. Demple. 2003. Transcription- defective soxR mutants of Escherichia coli: isolation and in vivo characterization. J. Bacteriol. 185:24412450.
8. Chou, J. H.,, J. T. Greenberg,, and B. Demple. 1993. Posttranscriptional repression of Escherichia coli OmpF protein in response to redox stress: positive control of the micF antisense RNA by the soxRS locus. J. Bacteriol. 175:10261031.
9. Christman, M. F.,, R. W. Morgan,, F. S. Jacobson,, and B. N. Ames. 1985. Positive control of a regulon for defenses against oxidative stress and some heat-shock proteins in Salmonella typhimurium. Cell 41:753762.
10. Cohen, S. P.,, H. Hächler,, and S. B. Levy. 1993. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. 175:14841492.
11. Cohen, S. P.,, S. B. Levy,, J. Foulds,, and J. L. Rosner. 1993. Salicylate induction of antibiotic resistance in Escherichia coli: activation of the mar operon and a mar-independent pathway. J. Bacteriol. 175:78567862.
12. Cohen, S. P.,, L. M. McMurry,, and S. B. Levy. 1988. marA locus causes decreased expression of OmpF porin in multipleantibiotic- resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 170:54165422.
13. Demple, B. 1996. Redox signaling and gene control in the Escherichia coli soxRS oxidative stress regulon—a review. Gene 179:5357.
14. Demple, B.,, and J. Halbrook. 1983. Inducible repair of oxidative DNA damage in Escherichia coli. Nature 304:466468.
15. Ding, H.,, and B. Demple. 2000. Direct nitric oxide signal transduction via nitrosylation of iron-sulfur centers in the SoxR transcription activator. Proc. Natl. Acad. Sci. USA 97:51465150.
16. Gallegos, M. T.,, R. Schleif,, A. Bairoch,, K. Hofmann,, and J. L. Ramos. 1997. Arac/XylS family of transcriptional regulators. Microbiol. Mol. Biol. Rev. 61:393410.
17. George, A. M.,, and S. B. Levy. 1983. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155:541548.
18. Greenberg, J. T.,, J. H. Chou,, P. A. Monach,, and B. Demple. 1991. Activation of oxidative stress genes by mutations at the soxQ/cfxB/marA locus of Escherichia coli. J. Bacteriol. 173: 44334439.
19. Greenberg, J. T.,, and B. Demple. 1989. A global response induced in Escherichia coli by redox-cycling agents overlaps with that induced by peroxide stress. J. Bacteriol. 171:39333939.
20. Greenberg, J. T.,, P. Monach,, J. H. Chou,, P. D. Josephy,, and B. Demple. 1990. Positive control of a global antioxidant defense regulon activated by superoxide-generating agents in Escherichia coli. Proc. Natl. Acad. Sci. USA 87:61816185.
21. Heldwein, E. E.,, and R. G. Brennan. 2001. Crystal structure of the transcription activator BmrR bound to DNA and a drug. Nature 409:378382.
22. Hidalgo, E.,, H. Ding,, and B. Demple. 1997. Redox signal transduction via iron-sulfur clusters in the SoxR transcription activator. Trends Biochem. Sci. 22:207210.
23. Hooper, D. C.,, J. S. Wolfson,, K. S. Souza,, E. Y. Ng,, G. L. McHugh,, and M. N. Swartz. 1989. Mechanisms of quinolone resistance in Escherichia coli: characterization of nfxB and cfxB, two mutant resistance loci decreasing norfloxacin accumulation. Antimicrob. Agents Chemother. 33:283290.
24. Howard, A. J.,, T. D. Joseph,, L. L. Bloodworth,, J. A. Frost,, H. Chart,, and B. Rowe. 1990. The emergence of ciprofloxacin resistance in Salmonella typhimurium. J. Antimicrob. Chemother. 26:296298.
25. Koo, M. S.,, J. H. Lee,, S. Y. Rah,, W. S. Yeo,, J. W. Lee,, K. L. Lee,, Y. S. Koh,, S. O. Kang,, and J. H. Roe. 2003. A reducing system of the superoxide sensor SoxR in Escherichia coli. EMBO J. 22:26142622.
26. Koutsolioutsou, A.,, E. A. Martins,, D. G. White,, S. B. Levy,, and B. Demple. 2001. A soxRS-constitutive mutation contributing to antibiotic resistance in a clinical isolate of Salmonella enterica (Serovar typhimurium). Antimicrob. Agents Chemother. 45:3843.
26a. Koutsolioutsou, A.,, S. Peña-Llopis,, and B. Demple. 2005. Constitutive soxR mutations contribute to multiple antibiotic resistance in clinical Escherichia coli isolates. Antimicrob. Agents Chemother., in press.
27. Kwon, H. J.,, M. H. Bennik,, B. Demple,, and T. Ellenberger. 2000. Crystal structure of the Escherichia coli Rob transcription factor in complex with DNA. Nat. Struct. Biol. 7:424430.
28. Li, Z.,, and B. Demple. 1996. Sequence specificity for DNA binding by Escherichia coli SoxS and Rob proteins. Mol. Microbiol. 20:937945.
29. Li, Z.,, and B. Demple. 1994. SoxS, an activator of superoxide stress genes in Escherichia coli. Purification and interaction with DNA. J. Biol. Chem. 269:1837118377.
30. Martin, R. G.,, and J. L. Rosner. 1995. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92:54565460.
31. Nakajima, H.,, K. Kobayashi,, M. Kobayashi,, H. Asako,, and R. Aono. 1995. Overexpression of the robA gene increases organic solvent tolerance and multiple antibiotic and heavy metal ion resistance in Escherichia coli. Appl. Environ. Microbiol. 61:23022307.
32. Nakajima, H.,, M. Kobayashi,, T. Negishi,, and R. Aono. 1995. soxRS gene increased the level of organic solvent tolerance in Escherichia coli. Biosci. Biotechnol. Biochem. 59:13231325.
33. Nikaido, H. 1994. Prevention of drug access to bacterial targets: permeability barriers and active efflux. Science 264:382388.
34. Nunoshiba, T.,, T. deRojas-Walker,, J. S. Wishnok,, S. R. Tannenbaum,, and B. Demple. 1993. Activation by nitric oxide of an oxidative-stress response that defends Escherichia coli against activated macrophages. Proc. Natl. Acad. Sci. USA 90:99939997.
35. Nunoshiba, T.,, E. Hidalgo,, C. F. Amabile Cuevas,, and B. Demple. 1992. Two-stage control of an oxidative stress regulon: the Escherichia coli SoxR protein triggers redox-inducible expression of the soxS regulatory gene. J. Bacteriol. 174:60546060.
36. Oethinger, M.,, I. Podglajen,, W. V. Kern,, and S. B. Levy. 1998. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents Chemother. 42:20892094.
37. Pomposiello, P. J.,, and B. Demple. 2001. Redox-operated genetic switches: the SoxR and OxyR transcription factors. Trends Biotechnol. 19:109114.
38. Rhee, S.,, R. G. Martin,, J. L. Rosner,, and D. R. Davies. 1998. A novel DNA-binding motif in MarA: the first structure for an AraC family transcriptional activator. Proc. Natl. Acad. Sci. USA 95:1041310418.
39. Rosenberg, E. Y.,, D. Bertenthal,, M. L. Nilles,, K. P. Bertrand,, and H. Nikaido. 2003. Bile salts and fatty acids induce the expression of Escherichia coli AcrAB multidrug efflux pump through their interaction with Rob regulatory protein. Mol. Microbiol. 48:16091619.
40. Rosner, J. L.,, B. Dangi,, A. M. Gronenborn,, and R. G. Martin. 2002. Posttranscriptional activation of the transcriptional activator Rob by dipyridyl in Escherichia coli. J. Bacteriol. 184:14071416.
41. Sies, H., 1991. Oxidative stress: introduction, p. xvxxii. In H. Sies (ed.), Oxidative Stress: Oxidants and Antioxidants. Academic Press, London, United Kingdom.
42. Skarstad, K.,, B. Thony,, D. S. Hwang,, and A. Kornberg. 1993. A novel binding protein of the origin of the Escherichia coli chromosome. J. Biol. Chem. 268:53655370.
43. Tsaneva, I. R.,, and B. Weiss. 1990. soxR, a locus governing a superoxide response regulon in Escherichia coli K-12. J. Bacteriol. 172:41974205.
44. Way, J. C.,, M. A. Davis,, D. Morisato,, D. E. Roberts,, and N. Kleckner. 1984. New Tn10 derivatives for transposon muta genesis and for construction of lacZ operon fusions by transposition. Gene 32:369379.
45. Webber, M. A.,, and L. J. Piddock. 2001. Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinoloneresistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother. 45:15501552.
46. White, D. G.,, J. D. Goldman,, B. Demple,, and S. B. Levy. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179:61226126.
47. Wu, J.,, and B. Weiss. 1991. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J. Bacteriol. 173:28642871.
48. Wu, J.,, and B. Weiss. 1992. Two-stage induction of the soxRS (superoxide response) regulon of Escherichia coli. J. Bacteriol. 174:39153920.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error