1887

Chapter 16 : Identification of Mar Mutants among Clinical Bacterial Isolates

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Identification of Mar Mutants among Clinical Bacterial Isolates, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap16-2.gif

Abstract:

In recent years, a great deal of interest focused on chromosomal multidrug resistance such as the multiple antibiotic resistance () locus in and spp. This chapter addresses the involvement of the (or -like) operon in various bacterial species that may cause infections in humans and the potential impact of this resistance locus on modern therapeutics. Although considered a nonpathogenic commensal present in feces, in developing countries pathogenic is a major cause of intestinal infections associated with high childhood mortality and morbidity. The locus was discovered when the genetic basis of tetracycline resistance in was investigated. Northern blot analysis and subsequent functional reporter gene assay showed that 6 of 25 cyclohexane-tolerant strains were Mar mutants. Several reports described the isolation of spp. with a Mar phenotype from human clinical infections during antibiotic therapy. spp. and spp. are opportunistic pathogens commonly isolated from patients with urinary tract, respiratory, and/or wound infections. A recent study demonstrated that fluoroquinolone-resistant strains had mutations in structural genes A and C in agreement with similar studies in .

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16

Key Concept Ranking

Outer Membrane Proteins
0.5054011
DNA Topoisomerase IV
0.43724346
Point Mutation
0.4351051
0.5054011
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1.
Figure 1.

Percentage of cyclohexane-tolerant strains among 138 clinical isolates, grouped according to their ofloxacin MIC. The number of strains in each group is given at the bottom of the figure. Strains with an ofloxacin MIC of < 0.5 mg/liter are a control group of 57 fluoroquinolone-susceptible strains. Of the 24 fluoroquinolone-intermediate-resistant strains, three were cyclohexane tolerant. They had ofloxacin MICs of 1, 2, and 4 mg/liter, respectively.

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2.
Figure 2.

Northern blot analysis of mRNAs prepared from clinical strains incubated without (−) and with (+) 5 mM sodium salicylate for 45 min. RNA samples were transferred to Hybond-N membranes and probed with radioactively labeled . Arrows point to prominent transcripts of ∼1.1 and ∼0.9 kbp. [Reprinted with kind permission from reference ].

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3.
Figure 3.

Radiolabeled ciprofloxacin uptake in energized cells with (hatched bars) and without (solid bars) CCCP (200 µM). First-, second-, and third-step fluoroquinolone-resistant mutants, isolated in vitro, are designated by the prefixes 1-, 2-, and 3-, respectively. MM means selection of in vitro mutants on minimal medium. Results are expressed as picomoles of ciprofloxacin per unit (OD, optical density) and represent the mean of duplicate steady-state accumulation measurements. Experiments were repeated three times, with values for the accumulation relative to that of the parental strains differing by <10%. The results shown here are the results of one representative experiment. (Reprinted from reference with kind permission.)

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap16
1. Alekshun, M. N.,, and S. B. Levy. 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41:20672075.
2. Amábile-Cuevas, C. F.,, and B. Demple. 1991. Molecular characterization of the soxRS genes of Escherichia coli: two genes control a superoxide stress regulon. Nucleic Acids Res. 19:44794484.
3. Ariza, R. R.,, Z. Li,, N. Ringstad,, and B. Demple. 1995. Activation of multiple antibiotic resistance and binding of stressinducible promoters by Escherichia coli Rob protein. J. Bacteriol. 177:16551661.
4. Barbosa, T. M.,, and S. B. Levy. 2000. Differential expression of over 60 chromosomal genes in Escherichia coli by constitutive expression of MarA. J. Bacteriol. 182:34673474.
5. Baucheron, S.,, H. Imberechts,, E. Chaslus-Dancla,, and A. Cloeckaert. 2002. The AcrB multidrug transporter plays a major role in high-level fluoroquinolone resistance in Salmonella enterica serovar Typhimurium phage type DT204. Microb. Drug Resist. 8:281289.
6. Charrel, R. N.,, J. M. Pages,, P. De Micco,, and M. Malléa. 1996. Prevalence of outer membrane porin alteration in beta-lactamantibiotic- resistant Enterobacter aerogenes. Antimicrob. Agents Chemother. 40:28542858.
7. Chollet, R.,, C. Bollet,, J. Chevalier,, M. Malléa,, J. M. Pages,, and A. Davin-Regli. 2002. Mar Operon involved in multidrug resistance of Enterobacter aerogenes. Antimicrob. Agents Chemother. 46:10931097.
8. Chollet, R.,, J. Chevalier,, C. Bollet,, J. M. Pages,, and A. Davin- Regli. 2004. RamA is an alternate activator of the multidrug resistance cascade in Enterobacter aerogenes. Antimicrob. Agents Chemother. 48:25182523.
9. Cohen, S. P.,, H. Hächler,, and S. B. Levy. 1993. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. 175:14841492.
10. Cohen, S. P.,, L. M. McMurry,, D. C. Hooper,, J. S. Wolfson,, and S. B. Levy. 1989. Cross-resistance to fluoroquinolone in multiple- antibiotic-resistant (Mar) Escherichia coli selected by tetracycline or chloramphenicol: decreased drug accumulation associated with membrane changes in addition to OmpF reduction. Antimicrob. Agents Chemother. 33:13181325.
11. Cohen, S. P.,, L. M. McMurry,, and S. B. Levy. 1988. marA locus causes decreased expression of OmpF porin in multipleantibiotic- resistant (Mar) mutants of Escherichia coli. J. Bacteriol. 170:54165422.
12. Cometta, A.,, T. Calandra,, J. Bille,, and M. P. Glauser. 1994. Escherichia coli resistant to fluoroquinolones in patients with cancer and neutropenia. N. Engl. J. Med. 330:12401241.
13. Conrad, S.,, M. Oethinger,, K. Kaifel,, G. Klotz,, R. Marre,, and W. V. Kern. 1996. gyrA mutations in high-level fluoroquinoloneresistant clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 38:443455.
14. Dang, P.,, L. Gutmann,, C. Quentin,, R. Williamson,, and E. Collatz. 1998. Some properties of Serratia marcescens, Salmonella paratyphi A, and Enterobacter cloacae with nonenzyme- dependent multiple resistance to beta-lactam antibiotics, aminoglycosides, and quinolones. Rev. Infect. Dis. 10: 899904.
15. de Champs, C.,, C. Henquell,, D. Guelon,, D. Sirot,, N. Gazuy,, and J. Sirot. 1993. Clinical and bacteriological study of nosocomial infections due to Enterobacter aerogenes resistant to imipenem. J. Clin. Microbiol. 31:123127.
16. Eaves, D. J.,, V. Ricci,, and L. J. V. Piddock. 2004. Expression of acrB, acrF, acrD, marA, and soxS in Salmonella enterica serovar typhimurium: role in multiple antibiotic resistance. Antimicrob. Agents Chemother. 48:11451150.
17. Gambino, L.,, S. J. Gracheck,, and P. F. Miller. 1993. Overexpression of the MarA positive regulator is sufficient to confer multiple antibiotic resistance in Escherichia coli. J. Bacteriol. 175:28882894.
18. George, A. M.,, R. M. Hall,, and H. W. Stokes. 1995. Multidrug resistance in Klebsiella pneumoniae: a novel gene, ramA, confers a multidrug resistance phenotype in Escherichia coli. Microbiology 141:19091920.
19. George, A. M.,, and S. B. Levy. 1983a. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155:531540.
20. George, A. M.,, and S. B. Levy. 1983b. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155:541548.
21. Gibb, A. P.,, C. S. Lewin,, and O. J. Garden. 1991. Development of quinolone resistance and multiple antibiotic resistance in Salmonella bovismorbificans in a pancreatic abscess. J. Antimicrob. Chemother. 28:318321.
22. Giraud, E.,, A. Cloeckaert,, D. Kerboeuf,, and E. Chaslus-Dancla. 2000. Evidence for active efflux as the primary mechanism of resistance to ciprofloxacin in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 44:12231228.
23. Gutmann, L.,, R. Williamson,, N. Moreau,, M. D. Kitzis,, E. Collatz,, J. F. Acar,, and F. W. Goldstein. 1985. Cross-resistance to nalidixic acid, trimethoprim, and chloramphenicol associated with alterations in outer membrane proteins of Klebsiella, Enterobacter, and Serratia. J. Infect. Dis. 151:501507.
24. Heisig, P. 1996. Genetic evidence for a role of parC mutation in the development of high-level fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 40:879885.
25. Hooper, D. C. 1995. Quinolone mode of action. Drugs 49 (Suppl. 2):1015.
26. Hooper, D. C. 1999. Mechanisms of fluoroquinolone resistance. Drug Resist. Updates 2:3855.
27. Howard, A. J.,, T. D. Joseph,, L. L. Bloodworth,, J. A. Frost,, H. Chart,, and B. Rowe. 1990. The emergence of ciprofloxacin resistance in Salmonella Typhimurium. J. Antimicrob. Chemother. 26:296298.
28. Kern, W. V.,, E. Andriof,, M. Oethinger,, P. Kern,, J. Hacker,, and R. Marre. 1994. Emergence of fluoroquinolone-resistant Escherichia coli at a cancer center. Antimicrob. Agents Chemother. 38:681687.
29. Kern, W. V.,, M. Oethinger,, A. S. Jellen-Ritter,, and S. B. Levy. 2000. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 44:814820.
30. Komatsu, T.,, M. Ohta,, N. Kido,, Y. Arakawa,, H. Ito,, and N. Kato. 1991. Increased resistance to multiple drugs by introduction of the Enterobacter cloacae romA gene into OmpF porin-deficient mutants of Escherichia coli K-12. Antimicrob. Agents Chemother. 35:21552158.
31. Komp Lindgren, P.,, A. Karlsson,, and D. Hughes. 2003. Mutation rate and evolution of fluoroquinolone resistance in Escherichia coli isolates from patients with urinary tract infections. Antimicrob. Agents Chemother. 47:32223232.
32. Liebana, E.,, C. Clouting,, C. A. Cassar,, L. P. Randall,, R. A. Walker,, E. J. Threlfall,, F. A. Clifton-Hadley,, A. M. Ridley,, and R. H. Davies. 2002. Comparison of gyrA mutations, cyclohexane resistance, and the presence of class I integrons in Salmonella enterica from farm animals in England and Wales. J. Clin. Microbiol. 40:14811486.
33. Linde, H. J.,, F. Notka,, M. Metz,, B. Kochanowski,, P. Heisig,, and N. Lehn. 2000. In vivo increase in resistance to ciprofloxacin in Escherichia coli associated with deletion of the C-terminal part of MarR. Antimicrob. Agents Chemother. 44:18651868.
34. Linde, H. J.,, F. Notka,, C. Irtenkauf,, J. Decker,, J. Wild,, H. H. Niller,, P. Heisig,, and N. Lehn. 2002. Increase in MICs of ciprofloxacin in vivo in two closely related clinical isolates of Enterobacter cloacae. J. Antimicrob. Chemother. 49:625630.
35. Malléa, M.,, J. Chevalier,, C. Bornet,, A. Eyraud,, A. Davin-Regli,, C. Bollet,, and J. M. Pages. 1998. Porin alteration and active efflux: two in vivo drug resistance strategies used by Enterobacter aerogenes. Microbiology 144:30033009.
36. Maneewannakul, K.,, and S. B. Levy. 1996. Identification for mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40:16951698.
37. Mazzariol, A.,, Y. Tokue,, T. M. Kanegawa,, G. Cornaglia,, and H. Nakaido. 2000. High-level fluoroquinolone-resistant clinical isolates of Escherichia coli overproduce multidrug efflux protein AcrA. Antimicrob. Agents Chemother. 44:34413443.
38. McDermott, P. F.,, D. G. White,, I. Podglajen,, M. N. Alekshun,, and S. B. Levy. 1998. Multidrug resistance following expression of the Escherichia coli marA gene in Mycobacterium smegmatis. J. Bacteriol. 180:29952998.
39. McMurry, L. M.,, M. Oethinger,, and S. B. Levy. 1998a. Triclosan targets lipid synthesis. Nature 394:531532.
40. McMurry, L. M.,, M. Oethinger,, and S. B. Levy. 1998b. Overexpression of marA, soxS, or acrAB produces resistance to triclosan in laboratory and clinical strains of Escherichia coli. FEMS Microbiol. Lett. 166:305309.
41. Notka, F.,, H. J. Linde,, A. Dankesreiter,, H. H. Niller,, and N. Lehn. 2002. A C-terminal 18 amino acid deletion in MarR in a clinical isolate of Escherichia coli reduces MarR binding properties and increases the MIC of ciprofloxacin. J. Antimicrob. Chemother. 49:4147.
42. Oethinger, M.,, S. Conrad,, K. Kaifel,, A. Cometta,, J. Belle,, G. Klotz,, M. P. Glauser,, R. Marre, The International Antimicrobial Therapy Cooperative Group of the European Organization for Research and Treatment of Cancer, and W. V. Kern. 1996. Molecular epidemiology of fluoroquinolone-resistant Escherichia coli bloodstream isolates from patients admitted to European cancer centers. Antimicrob. Agents Chemother. 40:387392.
43. Oethinger, M.,, A. S. Jellen-Ritter,, S. Conrad,, R. Marre,, and W. V. Kern. 1998a. Colonization and infection with fluoroquinolone- resistant Escherichia coli among cancer patients: clonal analysis. Infection 26:379384.
44. Oethinger, M.,, W. V. Kern,, J. D. Goldman,, and S. B. Levy. 1998b. Association of organic solvent tolerance and fluoroquinolone resistance in clinical isolates of Escherichia coli. J. Antimicrob. Chemother. 41:111114.
45. Oethinger, M.,, W. V. Kern,, A. S. Jellen-Ritter,, L. M. McMurry,, and S. B. Levy. 2000. Ineffectiveness of topoisomerase mutations in mediating clinically significant fluoroquinolone resistance in Escherichia coli in the absence of the AcrAB efflux pump. Antimicrob. Agents Chemother. 44:1013.
46. Oethinger, M.,, I. Podglajen,, W. V. Kern,, and S. B. Levy. 1998c. Overexpression of the marA or soxS regulatory gene in clinical topoisomerase mutants of Escherichia coli. Antimicrob. Agents Chemother. 42:20892094.
47. Okusu, H.,, D. Ma,, and H. Nikaido. 1996. AcrAB efflux pump plays a major role in the antibiotic resistance phenotype of Escherichia coli multiple-antibiotic-resistance (Mar) mutants. J. Bacteriol. 178:306308.
48. Pers, C.,, P. Sogaard,, and L. Pallesen. 1996. Selection of multiple resistance in Salmonella enteritidis during treatment with ciprofloxacin. Scand. J. Infect. Dis. 28:529531.
49. Philipp, W. J.,, S. Poulet,, K. Eiglmeier,, L. Pascopella,, V. Balasubramanian,, B. Heym,, S. Bergh,, B. B. R. Bloom,, W. R. J. Jacobs,, and S. T. Cole. 1996. An integrated map of the genome of the tubercle bacillus, Mycobacterium tuberculosis H37Rv, and comparison with Mycobacterium leprae. Proc. Natl. Acad. Sci. USA 93:31323137.
50. Piddock, L. J. 1999. Mechanisms of fluoroquinolone resistance: an update 1994-1998. Drugs 58 (Suppl. 2):1118.
51. Piddock, L. J.,, D. J. Griggs,, M. C. Hall,, and Y. F. Jin. 1993. Ciprofloxacin resistance in clinical isolates of Salmonella Typhimurium obtained from two patients. Antimicrob. Agents Chemother. 37:662666.
52. Piddock, L. J.,, M. C. Hall,, and R. N. Walters. 1991. Phenotypic characterization of quinolone-resistant mutants of Enterobacteriaceae selected from wild type, gyrA type and multiplyresistant (marA) type strains. J. Antimicrob. Chemother. 28: 185198.
53. Piddock, L. J.,, D. G. White,, K. Gensberg,, L. Pumbwe,, and D. J. Griggs. 2000. Evidence for an efflux pump mediating multiple antibiotic resistance in Salmonella enterica serovar Typhimurium. Antimicrob. Agents Chemother. 44:31183121.
54. Randall, L. P.,, and M. J. Woodward. 2001. Multiple antibiotic resistance (mar) locus in Salmonella enterica serovar Typhimurium DT104. Appl. Environ. Microbiol. 67:11901197.
55. Sáenz, Y.,, L. Brinas,, E. Dominguez,, J. Ruiz,, M. Zarazaga,, J. Vila,, and C. Torres. 2004. Mechanisms of resistance in multiple- antibiotic-resistant Escherichia coli strains of human, animal, and food origins. Antimicrob. Agents Chemother. 48:39964001.
56. Schneiders, T.,, S. G. B. Amyes,, and S. B. Levy. 2003. Role of acrR and ramA in fluoroquinolone resistance in clinical Klebsiella pneumoniae isolates from Singapore. Antimicrob. Agents Chemother. 47:28312837.
57. Sulavik, M. C.,, M. Dazer,, and P. F. Miller. 1997. The Salmonella typhimurium mar locus: molecular and genetic analyses and assessment of its role in virulence. J. Bacteriol. 179:18571866.
58. Vila, J.,, J. Ruiz,, P. Goñi,, and M. T. J. de Anta. 1996. Detection of mutations in parC in quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40:491493.
59. Vila, J.,, J. Ruiz,, F. Marco,, A. Barcelo,, P. Goín,, E. Giralt,, and T. J. de Anta. 1994. Association between double mutations in gyrA gene of ciprofloxacin-resistant clinical isolates of Escherichia coli and MICs. Antimicrob. Agents Chemother. 38:24772479.
60. Wang, H.,, J. L. Dzink-Fox,, M. Chen,, and S. B. Levy. 2001. Genetic characterization of highly fluoroquinolone-resistant clinical Escherichia coli strains from China: role of acrR mutations. Antimicrob. Agents Chemother. 45:15151521.
61. Webber, M. A.,, and L. J. V. Piddock. 2001. Absence of mutations in marRAB or soxRS in acrB-overexpressing fluoroquinolone- resistant clinical and veterinary isolates of Escherichia coli. Antimicrob. Agents Chemother. 45:15501552.
62. White, D. G.,, J. D. Goldman,, B. Demple,, and S. B. Levy. 1997. Role of the acrAB locus in organic solvent tolerance mediated by expression of marA, soxS, or robA in Escherichia coli. J. Bacteriol. 179:61226126.
63. Wu, J.,, and B. Weiss. 1991. Two divergently transcribed genes, soxR and soxS, control a superoxide response regulon of Escherichia coli. J. Bacteriol. 173:28642871.
64. Yoshida, H.,, T. Kojima,, J. Yamagishi,, and S. Nakamura. 1988. Quinolone-resistant mutations of the gyrA gene of Escherichia coli. Mol. Gen. Genet. 211:17.
65. Yoshida, H.,, M. Bogaki,, M. Nakamura,, L. M. Yamanaka,, and S. Nakamura. 1991. Quinolone resistance-determining region in the DNA gyrase gyrB gene of Escherichia coli. Antimicrob. Agents Chemother. 35:16471650.

Tables

Generic image for table
Table 2.

Effect of inactivation of the locus (HI fragment) by a kanamycin resistance gene replacement on antibiotic susceptibility

Results are representative of duplicate experiments. Reprinted with kind permission from reference .

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16
Generic image for table
Table 1.

Gene sequences of mutant in fluoroquinolone-resistant strains from humans and animals reported in the literature to date

Fluoroquinolone tested was norfloxacin.

Fluoroquinolone tested was ofloxacin.

Fluoroquinolone tested was ciprofloxacin.

Resistance phenotype; indicates resistance to nalidixic acid (N) or ciprofloxacin (C) ( ).

Cyclohexane tolerance was tested on LB agar overlaid by the organic solvent and grown for 24 h at 30°C ( ).

Δ deletion.

Several strains carried reportedly a Ser 3 Asn mutation, but strains are not identified in reference .

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16
Generic image for table
Table 3.

Overexpression of and in clinical fluoroquinolone-resistant strains with identical mutations in the regions determining quinolone resistance in and

Reprinted from reference 46 with permission.

The strains, including HO strains, are genotypically unrelated (42), and they are all bloodstream isolates except for NH1, which is a urinary tract isolate.

Cyclohexane tolerance was tested on LB agar overlaid by the organic solvent and grown for 24 h at 30°C (44).

See reference .

Increased fluoroquinolone resistance not associated with cyclohexane tolerance.

Citation: Dzink-Fox J, Oethinger M. 2005. Identification of Mar Mutants among Clinical Bacterial Isolates, p 224-234. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error