1887

Chapter 18 : Function and Structure of MarR Family Members

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Function and Structure of MarR Family Members, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap18-2.gif

Abstract:

Many multiple antibiotic-resistance repressor (MarR) family members were identified originally based on their ability to regulate Mar. More recently, a number of MarR proteins have been shown to be important to the survival of a number of bacterial pathogens during infection. Included are proteins from , serovars and , and . Given the widespread conservation of MarR family members in diverse bacterial genera, and the roles that they play in processes fundamental to the survival of the microbe, these proteins can be useful tools for understanding and exploring bacterial physiology. That the activities of many MarR family members are modulated by small organic molecules makes them attractive targets for new anti-infection therapeutics. contains an additional MarR paralog, MprA (also called EmrR) , that regulates multiple drug resistance (MDR) in this host. Unlike MarR, MprA (EmrR) directly regulates the expression of a multidrug efflux system called EmrAB. The MexR binding site has been characterized, and its overall organization is similar to that of the MarR binding sites. There is an important difference, however, between the MexR binding site and that of other MarR family members. regulates the expression of numerous virulence factors in a complex and highly coordinated manner, and two of the most extensively characterized regulatory loci are and . The availability of crystal structures of the proteins themselves as well as small molecule- or DNA-co-crystal complexes may prove rewarding in subsequent structure-based drug design efforts.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18

Key Concept Ranking

Bacterial Proteins
0.7550545
Bacterial Pathogenesis
0.67493284
Staphylococcus aureus
0.54005235
0.7550545
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

DNA binding sites of MarR family members. Each protein binding site is symmetric and is composed of two palindromic half sites (underlined sequences). The MarR ( ) and MexR ( ) binding sites were determined using footprinting experiments. The SlyA ( ), PecS ( ), and MecI/BlaI ( ) binding sites were determined using both molecular and biochemical approaches. The physiological (physiol) and DNA-protein cocrystal (Co X-tal) hRFX1 (a eukaryotic winged-helix protein) binding sites are shown for comparison ( ). Abbreviations: N, any nucleotide; W, A, or T; Z, G, or T; R, purine; Y, pyrimidine.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Ribbon representation of MarR with bound salicylate (PDB ID 1JGS). (A) The MarR dimer with one chain in black and the other in white. Bound salicylates are shown as space-filled models. (B) View of the MarR dimer from below (relative to top figure) that shows a 25Å slab of the structure centered on the winged-helix motifs and with the bound salicylates shown as space-filled models.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Ribbon representations of MexR (PDB ID 1LNW). Four structures from the same crystal, aligned with a best fit on residues 4-16 and 116-139, showing the relative differences in the positions of the DNA binding domains. (A) A/B chains shown in white. (B-D) the C/D, E/F, and G/H chains (black), respectively, are superimposed on the A/B chains (white).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4a
Figure 4a

Structures of gram-positive MarR orthologs (PDB ID). The proteins are oriented so that the (putative) DNA binding domains are facing down. (A) SlyA-like protein (1LJ9). (B) MecI in the presence of DNA (represented as a wireframe model) (1SAX). (C) BlaI (1P6R). (D) SarA in the presence of DNA (represented as a wireframe model) (1FZP). (E) SarR (1HSJ) (SarR was crystallized as a fusion with maltose binding protein [MBP] [51], but the MBP structure was omitted from this figure). (F) SarS (1P4X). (G) YusO (1S3J).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4b
Figure 4b

Structures of gram-positive MarR orthologs (PDB ID). The proteins are oriented so that the (putative) DNA binding domains are facing down. (A) SlyA-like protein (1LJ9). (B) MecI in the presence of DNA (represented as a wireframe model) (1SAX). (C) BlaI (1P6R). (D) SarA in the presence of DNA (represented as a wireframe model) (1FZP). (E) SarR (1HSJ) (SarR was crystallized as a fusion with maltose binding protein [MBP] [51], but the MBP structure was omitted from this figure). (F) SarS (1P4X). (G) YusO (1S3J).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Ribbon representation of Mj223 (PDB ID 1KU9).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap18
1. Adewoye, L.,, A. Sutherland,, R. Srikumar,, and K. Poole. 2002. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J. Bacteriol. 184: 4308 4312.
2. Alekshun, M. N. 2001. Beyond comparison-antibiotics from genome data? Nat. Biotechnol. 19: 1124 1125.
3. Alekshun, M. N.,, Y. S. Kim,, and S. B. Levy. 2000. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Mol. Microbiol. 35: 1394 1404.
4. Alekshun, M. N.,, and S. B. Levy. 1999. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J. Bacteriol. 181: 4669 4672.
5. Alekshun, M. N.,, and S. B. Levy. 1999. Characterization of MarR superrepressor mutants. J. Bacteriol. 181: 3303 3306.
6. Alekshun, M. N.,, and S. B. Levy. 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41: 2067 2075.
7. Alekshun, M. N.,, S. B. Levy,, T. R. Mealy,, B. A. Seaton,, and J. F. Head. 2001. The crystal structure of MarR a regulator of multiple antibiotic resistance at 2.3 Å resolution. Nat. Struct. Biol. 8: 710 714.
8. Alksne, L. E.,, and S. J. Projan. 2000. Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 11: 625 636.
9. Berger-Bachi, B.,, and S. Rohrer. 2002. Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. 178: 165 171.
10. Boutoille, D.,, S. Corvec,, N. Caroff,, C. Giraudeau,, E. Espaze,, J. Caillon,, P. Plesiat,, and A. Reynaud. 2004. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. FEMS Microbiol. Lett. 230: 143 146.
11. Brandenberger, M.,, M. Tschierske,, P. Giachino,, A. Wada,, and B. Berger-Bachi. 2000. Inactivation of a novel three-cistronic operon tcaR-tcaA-tcaB increases teicoplanin resistance in Staphylococcus aureus. Biochim. Biophys. Acta 1523: 135 139.
12. Brooun, A.,, J. J. Tomashek,, and K. Lewis. 1999. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J. Bacteriol. 181: 5131 5133.
13. Buchmeier, N.,, S. Bossie,, C. Y. Chen,, F. C. Fang,, D. G. Guiney,, and S. J. Libby. 1997. SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect. Immun. 65: 3725 3730.
14. Cheung, A. L.,, A. S. Bayer,, G. Zhang,, H. Gresham,, and Y. Q. Xiong. 2004. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40: 1 9.
15. Cheung, A. L.,, K. Schmidt,, B. Bateman,, and A. C. Manna. 2001. SarS, a SarA homolog repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. Infect. Immun. 69: 2448 2455.
16. Cheung, A. L.,, and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7: d1825 d1842.
17. Cohen, S. P.,, H. Hächler,, and S. B. Levy. 1993. Genetic and functional analysis of the multiple antibiotic resistance ( mar) locus in Escherichia coli. J. Bacteriol. 175: 1484 1492.
18. Dalrymple, B. P.,, and Y. Swadling. 1997. Expression of a Butyrivibrio fibrisolvens E14 gene ( cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene ( cinR). Microbiology 143: 1203 1210.
19. Daniels, J. J.,, I. B. Autenrieth,, A. Ludwig,, and W. Goebel. 1996. The gene slyA of Salmonella typhimurium is required for destruction of M cells and intracellular survival but not for invasion or colonization of the murine small intestine. Infect. Immun. 64: 5075 5084.
20. De Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete,, R. Sobral,, S. Gill,, M. Chung,, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5: 163 175.
21. Dube, P. H.,, S. A. Handley,, P. A. Revell,, and V. L. Miller. 2003. The rovA mutant of Yersinia enterocolitica displays differential degrees of virulence depending on the route of infection. Infect. Immun. 71: 3512 3520.
22. Dunman, P. M.,, E. Murphy,, S. Haney,, D. Palacios,, G. Tucker- Kellogg,, S. Wu,, E. L. Brown,, R. J. Zagursky,, D. Shlaes,, and S. J. Projan. 2001. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol. 183: 7341 7353.
23. Ellison, D. W.,, M. B. Lawrenz,, and V. L. Miller. 2004. Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol. 12: 296 300.
24. Evans, K.,, L. Adewoye,, and K. Poole. 2001. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexAmexR intergenic region. J. Bacteriol. 183: 807 812..
25. Filee, P.,, K. Benlafya,, M. Delmarcelle,, G. Moutzourelis,, J. M. Frere,, A. Brans,, and B. Joris. 2002. The fate of the BlaI repressor during the induction of the Bacillus licheniformis BlaP beta-lactamase. Mol. Microbiol. 44: 685 694.
26. Fuangthong, M.,, S. Atichartpongkul,, S. Mongkolsuk,, and J. D. Helmann. 2001. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol. 183: 4134 4141.
27. Fuangthong, M.,, and J. D. Helmann. 2002. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl. Acad. Sci. USA 99: 6690 6695.
28. Gajiwala, K. S.,, and S. K. Burley. 2000. Winged helix proteins. Curr. Opin. Str. Biol. 10: 110 116.
29. Gajiwala, K. S.,, H. Chen,, F. Cornille,, B. P. Roques,, W. Reith,, B. Mach,, and S. K. Burley. 2000. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403: 916 921.
30. Galan, B.,, A. Kolb,, J. M. Sanz,, J. L. Garcia,, and M. A. Prieto. 2003. Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res. 31: 6598 6609.
31. Gao, L. Y.,, R. Groger,, J. S. Cox,, S. M. Beverley,, E. H. Lawson,, and E. J. Brown. 2003. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect. Immun. 71: 922 929.
32. Garcia-Castellanos, R.,, G. Mallorqui-Fernandez,, A. Marrero,, J. Potempa,, M. Coll,, and F. X. Gomis-Ruth. 2004. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 11: 11.
33. Garcia-Castellanos, R.,, A. Marrero,, G. Mallorqui-Fernandez,, J. Potempa,, M. Coll,, and F. X. Gomis-Ruth. 2003. Threedimensional structure of MecI. Molecular basis for transcriptional regulation of staphylococcal methicillin resistance. J. Biol. Chem. 278: 39897 39905.
34. George, A. M.,, and S. B. Levy. 1983. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: Involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155: 531 540.
35. George, A. M.,, and S. B. Levy. 1983. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155: 541 548.
36. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K.-D. Entian,, H. Fsihi,, F. G.-D. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L.-M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J.-C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J.-A. Vazquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294: 849 852.
37. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141: 611 622.
38. Hagman, K. E.,, and W. M. Shafer. 1995. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J. Bacteriol. 177: 4162 4165.
39. Ingavale, S. S.,, W. Van Wamel,, and A. L. Cheung. 2003. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol. Microbiol. 48: 1451 1466.
40. Jefferson, K. K.,, D. B. Pier,, D. A. Goldmann,, and G. B. Pier. 2004. The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J. Bacteriol. 186: 2449 2456.
41. Jerse, A. E.,, N. D. Sharma,, A. N. Simms,, E. T. Crow,, L. A. Snyder,, and W. M. Shafer. 2003. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71: 5576 5582.
42. Kaneko, A.,, M. Mita,, K. Sekiya,, H. Matsui,, K. Kawahara,, and H. Danbara. 2002. Association of a regulatory gene, slyA with a mouse virulence of Salmonella enterica serovar Choleraesuis. Microbiol. Immunol. 46: 109 113.
43. Kern, W. V.,, M. Oethinger,, A. S. Jellen-Ritter,, and S. B. Levy. 2000. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 44: 814 820.
44. Kupferwasser, L. I.,, M. R. Yeaman,, C. C. Nast,, D. Kupferwasser,, Y. Q. Xiong,, M. Palma,, A. L. Cheung,, and A. S. Bayer. 2003. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Invest. 112: 222 233.
45. Kupferwasser, L. I.,, M. R. Yeaman,, S. M. Shapiro,, C. C. Nast,, P. M. Sullam,, S. G. Filler,, and A. S. Bayer. 1999. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99: 2791 2797.
46. Lee, E. H.,, C. Rouquette-Loughlin,, J. P. Folster,, and W. M. Shafer. 2003. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185: 7145 7152.
47. Lee, E. H.,, and W. M. Shafer. 1999. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33: 839 845.
48. Li, R.,, A. C. Manna,, S. Dai,, A. L. Cheung,, and G. Zhang. 2003. Crystal structure of the SarS protein from Staphylococcus aureus sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. J. Bacteriol. 185: 4219 4225.
49. Libby, S. J.,, W. Goebel,, A. Ludwig,, N. Buchmeier,, F. Bowe,, F. C. Fang,, D. G. Guiney,, J. G. Songer,, and F. Heffron. 1994. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl. Acad. Sci. USA 91: 489 493.
50. Lim, D.,, K. Poole,, and N. C. Strynadka. 2002. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J. Biol. Chem. 277: 29253 29259.
51. Liu, Y.,, A. Manna,, R. Li,, W. E. Martin,, R. C. Murphy,, A. L. Cheung,, and G. Zhang. 2001. Crystal structure of the SarR protein from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98: 6877 6882.
52. Lomovskaya, O.,, and K. Lewis. 1992. Emr, an Escherichia coli locus for multidrug resistance. Proc. Natl. Acad. Sci. USA 89: 8938 8942.
53. Lomovskaya, O.,, K. Lewis,, and A. Matin. 1995. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J. Bacteriol. 177: 2328 2334.
54. Luong, T. T.,, S. W. Newell,, and C. Y. Lee. 2003. Mgr, a novel global regulator in Staphylococcus aureus. J. Bacteriol. 185: 3703 3710.
55. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger- Bachi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 1953 1959.
56. Maneewannakul, K.,, and S. B. Levy. 1996. Identification of mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40: 1695 1698.
57. Manna, A.,, and A. L. Cheung. 2001. Characterization of sarR, a modulator of sar expression in Staphylococcus aureus. Infect. Immun. 69: 885 896.
58. Manna, A. C.,, and A. L. Cheung. 2003. sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect. Immun. 71: 343 353.
59. Manna, A. C.,, S. S. Ingavale,, M. Maloney,, W. van Wamel,, and A. L. Cheung. 2004. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. J. Bacteriol. 186: 5267 5280.
60. Martin, R. G.,, and J. L. Rosner. 1995. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92: 5456 5460.
61. Martin, R. G.,, and J. L. Rosner. 2004. Transcriptional and translational regulation of the marRAB multiple antibiotic resistance operon in Escherichia coli. Mol. Microbiol. 53: 183 191.
62. McCallum, N.,, M. Bischoff,, H. Maki,, A. Wada,, and B. Berger- Bachi. 2004. TcaR, a putative MarR-like regulator of sarS expression. J. Bacteriol. 186: 2966 2972.
63. McNamara, P. J.,, K. C. Milligan-Monroe,, S. Khalili,, and R. A. Proctor. 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182: 3197 3203.
64. Melckebeke, H. V.,, C. Vreuls,, P. Gans,, P. Filee,, G. Llabres,, B. Joris,, and J. P. Simorre. 2003. Solution structural study of BlaI: implications for the repression of genes involved in betalactam antibiotic resistance. J. Mol. Biol. 333: 711 720.
65. Mongkolsuk, S.,, W. Praituan,, S. Loprasert,, M. Fuangthong,, and S. Chamnongpol. 1998. Identification and characterization of a new organic hydroperoxide resistance ( ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180: 2636 2643.
66. Novick, R. P., 2000. Pathogenicity factors and their regulation, p. 392 407. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
67. O’Leary, J. O.,, M. J. Langevin,, C. T. Price,, J. S. Blevins,, M. S. Smeltzer,, and J. E. Gustafson. 2004. Effects of sarA inactivation on the intrinsic multidrug resistance mechanism of Staphylococcus aureus. FEMS Microbiol. Lett. 237: 297 302.
68. Oscarsson, J.,, Y. Mizunoe,, B. E. Uhlin,, and D. J. Haydon. 1996. Induction of haemolytic activity in Escherichia coli by the slyA gene product. Mol. Microbiol. 20: 191 199.
69. Pabo, C. O.,, and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53: 293 321.
70. Pai, H.,, J. Kim,, J. H. Lee,, K. W. Choe,, and N. Gotoh. 2001. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 45: 480 484.
71. Panmanee, W.,, P. Vattanaviboon,, W. Eiamphungporn,, W. Whangsuk,, R. Sallabhan,, and S. Mongkolsuk. 2002. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol. Microbiol. 45: 1647 1654.
72. Phan-Thanh, L.,, and F. Mahouin. 1999. A proteomic approach to study the acid response in Listeria monocytogenes. Electrophoresis 20: 2214 2224.
73. Poole, K.,, K. Tetro,, Q. Zhao,, S. Neshat,, D. E. Heinrichs,, and N. Bianco. 1996. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob. Agents Chemother. 40: 2021 2028.
74. Prouty, A. M.,, I. E. Brodsky,, S. Falkow,, and J. S. Gunn. 2004. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150: 775 783.
75. Providenti, M. A.,, and R. C. Wyndham. 2001. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl. Environ. Microbiol. 67: 3530 3541.
76. Ramakrishnan, L.,, H. T. Tran,, N. A. Federspiel,, and S. Falkow. 1997. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179: 5862 5868.
77. Ray, S. S.,, J. B. Bonanno,, H. Chen,, H. de Lencastre,, S. Wu,, A. Tomasz,, and S. K. Burley. 2003. X-ray structure of an M. jannaschii DNA-binding protein: implications for antibiotic resistance in S. aureus. Proteins 50: 170 173.
78. Rea, R. B.,, C. G. Gahan,, and C. Hill. 2004. Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect. Immun. 72: 717 727.
79. Revell, P. A.,, and V. L. Miller. 2000. A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence. Mol. Microbiol. 35: 677 685.
80. Reverchon, S.,, W. Nasser,, and J. Robert-Baudouy. 1994. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol. Microbiol. 11: 1127 1139.
81. Reverchon, S.,, C. Rouanet,, D. Expert,, and W. Nasser. 2002. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J. Bacteriol. 184: 654 665.
82. Rouanet, C.,, S. Reverchon,, D. A. Rodionov,, and W. Nasser. 2004. Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J. Biol. Chem. 279: 30158 30167.
83. Said-Salim, B.,, P. M. Dunman,, F. M. McAleese,, D. Macapagal,, E. Murphy,, P. J. McNamara,, S. Arvidson,, T. J. Foster,, S. J. Projan,, and B. N. Kreiswirth. 2003. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 185: 610 619.
84. Saito, K.,, H. Akama,, E. Yoshihara,, and T. Nakae. 2003. Mutations affecting DNA-binding activity of the MexR repressor of mexR-mexA-mexB-oprM operon expression. J. Bacteriol. 185: 6195 6198.
85. Saito, K.,, H. Yoneyama,, and T. Nakae. 1999. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol. Lett. 179: 67 72.
86. Schmidt, K. A.,, A. C. Manna,, and A. L. Cheung. 2003. SarT influences sarS expression in Staphylococcus aureus. Infect. Immun. 71: 5139 5148.
87. Schmidt, K. A.,, A. C. Manna,, S. Gill,, and A. L. Cheung. 2001. SarT, a repressor of alpha-hemolysin in Staphylococcus aureus. Infect. Immun. 69: 4749 4758.
88. Schumacher, M. A.,, B. K. Hurlburt,, and R. G. Brennan. 2001. Crystal structures of SarA, a pleiotropic regulator of virulence genes in Staphylococcus aureus. Nature 414: 85.
89. Schumacher, M. A.,, B. K. Hurlburt,, R. G. Brennan,, T. M. Rechtin,, A. F. Gillaspy,, and M. S. Smeltzer. 2001. Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus: Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Nature 409: 215 219.
90. Srikumar, R.,, C. J. Paul,, and K. Poole. 2000. Influence of mutations in the mexR repressor gene on expression of the MexAMExB- OprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 182: 1410 1414.
91. Stapleton, M. R.,, V. A. Norte,, R. C. Read,, and J. Green. 2002. Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J. Biol. Chem. 277: 17630 17637.
92. Sulavik, M. C.,, L. F. Gambino,, and P. F. Miller. 1994. Analysis of the genetic requirements for inducible multiple-antibiotic resistance associated with the mar locus in Escherichia coli. J. Bacteriol. 176: 7754 7756.
93. Sulavik, M. C.,, L. F. Gambino,, and P. F. Miller. 1995. The MarR repressor of the multiple antibiotic resistance ( mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol. Med. 1: 436 446.
94. Tegmark, K.,, A. Karlsson,, and S. Arvidson. 2000. Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 37: 398 409.
95. Truong-Bolduc, Q. C.,, X. Zhang,, and D. C. Hooper. 2003. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J. Bacteriol. 185: 3127 3138.
96. Ubukata, K.,, N. Itoh-Yamashita,, and M. Konno. 1989. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 33: 1535 1539.
97. Wu, R. Y.,, R. G. Zhang,, O. Zagnitko,, I. Dementieva,, N. Maltzev,, J. D. Watson,, R. Laskowski,, P. Gornicki,, and A. Joachimiak. 2003. Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J. Biol. Chem. 278: 20240 20244.
98. Xiong, A.,, A. Gottman,, C. Park,, M. Baetens,, S. Pandza,, and A. Matin. 2000. The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region. Antimicrob. Agents Chemother. 44: 2905 2907.
99. Yoshida, H.,, H. Bogaki,, S. Nakamura,, K. Ubukata,, and H. Konno. 1990. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172: 6942 6949.
100. Ziha-Zarifi, I.,, C. Llanes,, T. Köhler,, J.-C. Pechàre,, and P. Plésiat. 1999. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob. Agents Chemother. 43: 287 291.

Tables

Generic image for table
Table 1

A representative collection of MarR family members and their functions

Abbreviations: Mar, multiple antibiotic resistance; OST, organic solvent tolerance; OXS, resistance to oxidative stress.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Generic image for table
Table 2

MarR orthologs from that regulate virulence

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Generic image for table
Table 3

Classification of SarA family members in ( )

Based in the COL genome (http://www.tigr.org).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error