1887

Chapter 18 : Function and Structure of MarR Family Members

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Function and Structure of MarR Family Members, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap18-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap18-2.gif

Abstract:

Many multiple antibiotic-resistance repressor (MarR) family members were identified originally based on their ability to regulate Mar. More recently, a number of MarR proteins have been shown to be important to the survival of a number of bacterial pathogens during infection. Included are proteins from , serovars and , and . Given the widespread conservation of MarR family members in diverse bacterial genera, and the roles that they play in processes fundamental to the survival of the microbe, these proteins can be useful tools for understanding and exploring bacterial physiology. That the activities of many MarR family members are modulated by small organic molecules makes them attractive targets for new anti-infection therapeutics. contains an additional MarR paralog, MprA (also called EmrR) , that regulates multiple drug resistance (MDR) in this host. Unlike MarR, MprA (EmrR) directly regulates the expression of a multidrug efflux system called EmrAB. The MexR binding site has been characterized, and its overall organization is similar to that of the MarR binding sites. There is an important difference, however, between the MexR binding site and that of other MarR family members. regulates the expression of numerous virulence factors in a complex and highly coordinated manner, and two of the most extensively characterized regulatory loci are and . The availability of crystal structures of the proteins themselves as well as small molecule- or DNA-co-crystal complexes may prove rewarding in subsequent structure-based drug design efforts.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18

Key Concept Ranking

Bacterial Proteins
0.7550545
Bacterial Pathogenesis
0.67493284
Staphylococcus aureus
0.54005235
0.7550545
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

DNA binding sites of MarR family members. Each protein binding site is symmetric and is composed of two palindromic half sites (underlined sequences). The MarR ( ) and MexR ( ) binding sites were determined using footprinting experiments. The SlyA ( ), PecS ( ), and MecI/BlaI ( ) binding sites were determined using both molecular and biochemical approaches. The physiological (physiol) and DNA-protein cocrystal (Co X-tal) hRFX1 (a eukaryotic winged-helix protein) binding sites are shown for comparison ( ). Abbreviations: N, any nucleotide; W, A, or T; Z, G, or T; R, purine; Y, pyrimidine.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Ribbon representation of MarR with bound salicylate (PDB ID 1JGS). (A) The MarR dimer with one chain in black and the other in white. Bound salicylates are shown as space-filled models. (B) View of the MarR dimer from below (relative to top figure) that shows a 25Å slab of the structure centered on the winged-helix motifs and with the bound salicylates shown as space-filled models.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Ribbon representations of MexR (PDB ID 1LNW). Four structures from the same crystal, aligned with a best fit on residues 4-16 and 116-139, showing the relative differences in the positions of the DNA binding domains. (A) A/B chains shown in white. (B-D) the C/D, E/F, and G/H chains (black), respectively, are superimposed on the A/B chains (white).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4a
Figure 4a

Structures of gram-positive MarR orthologs (PDB ID). The proteins are oriented so that the (putative) DNA binding domains are facing down. (A) SlyA-like protein (1LJ9). (B) MecI in the presence of DNA (represented as a wireframe model) (1SAX). (C) BlaI (1P6R). (D) SarA in the presence of DNA (represented as a wireframe model) (1FZP). (E) SarR (1HSJ) (SarR was crystallized as a fusion with maltose binding protein [MBP] [51], but the MBP structure was omitted from this figure). (F) SarS (1P4X). (G) YusO (1S3J).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4b
Figure 4b

Structures of gram-positive MarR orthologs (PDB ID). The proteins are oriented so that the (putative) DNA binding domains are facing down. (A) SlyA-like protein (1LJ9). (B) MecI in the presence of DNA (represented as a wireframe model) (1SAX). (C) BlaI (1P6R). (D) SarA in the presence of DNA (represented as a wireframe model) (1FZP). (E) SarR (1HSJ) (SarR was crystallized as a fusion with maltose binding protein [MBP] [51], but the MBP structure was omitted from this figure). (F) SarS (1P4X). (G) YusO (1S3J).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Ribbon representation of Mj223 (PDB ID 1KU9).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap18
1. Adewoye, L.,, A. Sutherland,, R. Srikumar,, and K. Poole. 2002. The mexR repressor of the mexAB-oprM multidrug efflux operon in Pseudomonas aeruginosa: characterization of mutations compromising activity. J. Bacteriol. 184:43084312.
2. Alekshun, M. N. 2001. Beyond comparison-antibiotics from genome data? Nat. Biotechnol. 19:11241125.
3. Alekshun, M. N.,, Y. S. Kim,, and S. B. Levy. 2000. Mutational analysis of MarR, the negative regulator of marRAB expression in Escherichia coli, suggests the presence of two regions required for DNA binding. Mol. Microbiol. 35:13941404.
4. Alekshun, M. N.,, and S. B. Levy. 1999. Alteration of the repressor activity of MarR, the negative regulator of the Escherichia coli marRAB locus, by multiple chemicals in vitro. J. Bacteriol. 181:46694672.
5. Alekshun, M. N.,, and S. B. Levy. 1999. Characterization of MarR superrepressor mutants. J. Bacteriol. 181:33033306.
6. Alekshun, M. N.,, and S. B. Levy. 1997. Regulation of chromosomally mediated multiple antibiotic resistance: the mar regulon. Antimicrob. Agents Chemother. 41:20672075.
7. Alekshun, M. N.,, S. B. Levy,, T. R. Mealy,, B. A. Seaton,, and J. F. Head. 2001. The crystal structure of MarR a regulator of multiple antibiotic resistance at 2.3 Å resolution. Nat. Struct. Biol. 8:710714.
8. Alksne, L. E.,, and S. J. Projan. 2000. Bacterial virulence as a target for antimicrobial chemotherapy. Curr. Opin. Biotechnol. 11:625636.
9. Berger-Bachi, B.,, and S. Rohrer. 2002. Factors influencing methicillin resistance in staphylococci. Arch. Microbiol. 178: 165171.
10. Boutoille, D.,, S. Corvec,, N. Caroff,, C. Giraudeau,, E. Espaze,, J. Caillon,, P. Plesiat,, and A. Reynaud. 2004. Detection of an IS21 insertion sequence in the mexR gene of Pseudomonas aeruginosa increasing beta-lactam resistance. FEMS Microbiol. Lett. 230:143146.
11. Brandenberger, M.,, M. Tschierske,, P. Giachino,, A. Wada,, and B. Berger-Bachi. 2000. Inactivation of a novel three-cistronic operon tcaR-tcaA-tcaB increases teicoplanin resistance in Staphylococcus aureus. Biochim. Biophys. Acta 1523:135139.
12. Brooun, A.,, J. J. Tomashek,, and K. Lewis. 1999. Purification and ligand binding of EmrR, a regulator of a multidrug transporter. J. Bacteriol. 181:51315133.
13. Buchmeier, N.,, S. Bossie,, C. Y. Chen,, F. C. Fang,, D. G. Guiney,, and S. J. Libby. 1997. SlyA, a transcriptional regulator of Salmonella typhimurium, is required for resistance to oxidative stress and is expressed in the intracellular environment of macrophages. Infect. Immun. 65:37253730.
14. Cheung, A. L.,, A. S. Bayer,, G. Zhang,, H. Gresham,, and Y. Q. Xiong. 2004. Regulation of virulence determinants in vitro and in vivo in Staphylococcus aureus. FEMS Immunol. Med. Microbiol. 40:19.
15. Cheung, A. L.,, K. Schmidt,, B. Bateman,, and A. C. Manna. 2001. SarS, a SarA homolog repressible by agr, is an activator of protein A synthesis in Staphylococcus aureus. Infect. Immun. 69:24482455.
16. Cheung, A. L.,, and G. Zhang. 2002. Global regulation of virulence determinants in Staphylococcus aureus by the SarA protein family. Front. Biosci. 7:d1825d1842.
17. Cohen, S. P.,, H. Hächler,, and S. B. Levy. 1993. Genetic and functional analysis of the multiple antibiotic resistance (mar) locus in Escherichia coli. J. Bacteriol. 175:14841492.
18. Dalrymple, B. P.,, and Y. Swadling. 1997. Expression of a Butyrivibrio fibrisolvens E14 gene (cinB) encoding an enzyme with cinnamoyl ester hydrolase activity is negatively regulated by the product of an adjacent gene (cinR). Microbiology 143: 12031210.
19. Daniels, J. J.,, I. B. Autenrieth,, A. Ludwig,, and W. Goebel. 1996. The gene slyA of Salmonella typhimurium is required for destruction of M cells and intracellular survival but not for invasion or colonization of the murine small intestine. Infect. Immun. 64:50755084.
20. De Lencastre, H.,, S. W. Wu,, M. G. Pinho,, A. M. Ludovice,, S. Filipe,, S. Gardete,, R. Sobral,, S. Gill,, M. Chung,, and A. Tomasz. 1999. Antibiotic resistance as a stress response: complete sequencing of a large number of chromosomal loci in Staphylococcus aureus strain COL that impact on the expression of resistance to methicillin. Microb. Drug Resist. 5:163175.
21. Dube, P. H.,, S. A. Handley,, P. A. Revell,, and V. L. Miller. 2003. The rovA mutant of Yersinia enterocolitica displays differential degrees of virulence depending on the route of infection. Infect. Immun. 71:35123520.
22. Dunman, P. M.,, E. Murphy,, S. Haney,, D. Palacios,, G. Tucker- Kellogg,, S. Wu,, E. L. Brown,, R. J. Zagursky,, D. Shlaes,, and S. J. Projan. 2001. Transcription profiling-based identification of Staphylococcus aureus genes regulated by the agr and/or sarA loci. J. Bacteriol. 183:73417353.
23. Ellison, D. W.,, M. B. Lawrenz,, and V. L. Miller. 2004. Invasin and beyond: regulation of Yersinia virulence by RovA. Trends Microbiol. 12:296300.
24. Evans, K.,, L. Adewoye,, and K. Poole. 2001. MexR repressor of the mexAB-oprM multidrug efflux operon of Pseudomonas aeruginosa: identification of MexR binding sites in the mexAmexR intergenic region. J. Bacteriol. 183:807812..
25. Filee, P.,, K. Benlafya,, M. Delmarcelle,, G. Moutzourelis,, J. M. Frere,, A. Brans,, and B. Joris. 2002. The fate of the BlaI repressor during the induction of the Bacillus licheniformis BlaP beta-lactamase. Mol. Microbiol. 44:685694.
26. Fuangthong, M.,, S. Atichartpongkul,, S. Mongkolsuk,, and J. D. Helmann. 2001. OhrR is a repressor of ohrA, a key organic hydroperoxide resistance determinant in Bacillus subtilis. J. Bacteriol. 183:41344141.
27. Fuangthong, M.,, and J. D. Helmann. 2002. The OhrR repressor senses organic hydroperoxides by reversible formation of a cysteine-sulfenic acid derivative. Proc. Natl. Acad. Sci. USA 99:66906695.
28. Gajiwala, K. S.,, and S. K. Burley. 2000. Winged helix proteins. Curr. Opin. Str. Biol. 10:110116.
29. Gajiwala, K. S.,, H. Chen,, F. Cornille,, B. P. Roques,, W. Reith,, B. Mach,, and S. K. Burley. 2000. Structure of the winged-helix protein hRFX1 reveals a new mode of DNA binding. Nature 403:916921.
30. Galan, B.,, A. Kolb,, J. M. Sanz,, J. L. Garcia,, and M. A. Prieto. 2003. Molecular determinants of the hpa regulatory system of Escherichia coli: the HpaR repressor. Nucleic Acids Res. 31:65986609.
31. Gao, L. Y.,, R. Groger,, J. S. Cox,, S. M. Beverley,, E. H. Lawson,, and E. J. Brown. 2003. Transposon mutagenesis of Mycobacterium marinum identifies a locus linking pigmentation and intracellular survival. Infect. Immun. 71:922929.
32. Garcia-Castellanos, R.,, G. Mallorqui-Fernandez,, A. Marrero,, J. Potempa,, M. Coll,, and F. X. Gomis-Ruth. 2004. On the transcriptional regulation of methicillin resistance: MecI repressor in complex with its operator. J. Biol. Chem. 11:11.
33. Garcia-Castellanos, R.,, A. Marrero,, G. Mallorqui-Fernandez,, J. Potempa,, M. Coll,, and F. X. Gomis-Ruth. 2003. Threedimensional structure of MecI. Molecular basis for transcriptional regulation of staphylococcal methicillin resistance. J. Biol. Chem. 278:3989739905.
34. George, A. M.,, and S. B. Levy. 1983. Amplifiable resistance to tetracycline, chloramphenicol, and other antibiotics in Escherichia coli: Involvement of a non-plasmid-determined efflux of tetracycline. J. Bacteriol. 155:531540.
35. George, A. M.,, and S. B. Levy. 1983. Gene in the major cotransduction gap of the Escherichia coli K-12 linkage map required for the expression of chromosomal resistance to tetracycline and other antibiotics. J. Bacteriol. 155:541548.
36. Glaser, P.,, L. Frangeul,, C. Buchrieser,, C. Rusniok,, A. Amend,, F. Baquero,, P. Berche,, H. Bloecker,, P. Brandt,, T. Chakraborty,, A. Charbit,, F. Chetouani,, E. Couve,, A. de Daruvar,, P. Dehoux,, E. Domann,, G. Dominguez-Bernal,, E. Duchaud,, L. Durant,, O. Dussurget,, K.-D. Entian,, H. Fsihi,, F. G.-D. Portillo,, P. Garrido,, L. Gautier,, W. Goebel,, N. Gomez-Lopez,, T. Hain,, J. Hauf,, D. Jackson,, L.-M. Jones,, U. Kaerst,, J. Kreft,, M. Kuhn,, F. Kunst,, G. Kurapkat,, E. Madueno,, A. Maitournam,, J. M. Vicente,, E. Ng,, H. Nedjari,, G. Nordsiek,, S. Novella,, B. de Pablos,, J.-C. Perez-Diaz,, R. Purcell,, B. Remmel,, M. Rose,, T. Schlueter,, N. Simoes,, A. Tierrez,, J.-A. Vazquez-Boland,, H. Voss,, J. Wehland,, and P. Cossart. 2001. Comparative genomics of Listeria species. Science 294:849852.
37. Hagman, K. E.,, W. Pan,, B. G. Spratt,, J. T. Balthazar,, R. C. Judd,, and W. M. Shafer. 1995. Resistance of Neisseria gonorrhoeae to antimicrobial hydrophobic agents is modulated by the mtrRCDE efflux system. Microbiology 141:611622.
38. Hagman, K. E.,, and W. M. Shafer. 1995. Transcriptional control of the mtr efflux system of Neisseria gonorrhoeae. J. Bacteriol. 177:41624165.
39. Ingavale, S. S.,, W. Van Wamel,, and A. L. Cheung. 2003. Characterization of RAT, an autolysis regulator in Staphylococcus aureus. Mol. Microbiol. 48:14511466.
40. Jefferson, K. K.,, D. B. Pier,, D. A. Goldmann,, and G. B. Pier. 2004. The teicoplanin-associated locus regulator (TcaR) and the intercellular adhesin locus regulator (IcaR) are transcriptional inhibitors of the ica locus in Staphylococcus aureus. J. Bacteriol. 186:24492456.
41. Jerse, A. E.,, N. D. Sharma,, A. N. Simms,, E. T. Crow,, L. A. Snyder,, and W. M. Shafer. 2003. A gonococcal efflux pump system enhances bacterial survival in a female mouse model of genital tract infection. Infect. Immun. 71:55765582.
42. Kaneko, A.,, M. Mita,, K. Sekiya,, H. Matsui,, K. Kawahara,, and H. Danbara. 2002. Association of a regulatory gene, slyA with a mouse virulence of Salmonella enterica serovar Choleraesuis. Microbiol. Immunol. 46:109113.
43. Kern, W. V.,, M. Oethinger,, A. S. Jellen-Ritter,, and S. B. Levy. 2000. Non-target gene mutations in the development of fluoroquinolone resistance in Escherichia coli. Antimicrob. Agents Chemother. 44:814820.
44. Kupferwasser, L. I.,, M. R. Yeaman,, C. C. Nast,, D. Kupferwasser,, Y. Q. Xiong,, M. Palma,, A. L. Cheung,, and A. S. Bayer. 2003. Salicylic acid attenuates virulence in endovascular infections by targeting global regulatory pathways in Staphylococcus aureus. J. Clin. Invest. 112:222233.
45. Kupferwasser, L. I.,, M. R. Yeaman,, S. M. Shapiro,, C. C. Nast,, P. M. Sullam,, S. G. Filler,, and A. S. Bayer. 1999. Acetylsalicylic acid reduces vegetation bacterial density, hematogenous bacterial dissemination, and frequency of embolic events in experimental Staphylococcus aureus endocarditis through antiplatelet and antibacterial effects. Circulation 99:27912797.
46. Lee, E. H.,, C. Rouquette-Loughlin,, J. P. Folster,, and W. M. Shafer. 2003. FarR regulates the farAB-encoded efflux pump of Neisseria gonorrhoeae via an MtrR regulatory mechanism. J. Bacteriol. 185:71457152.
47. Lee, E. H.,, and W. M. Shafer. 1999. The farAB-encoded efflux pump mediates resistance of gonococci to long-chained antibacterial fatty acids. Mol. Microbiol. 33:839845.
48. Li, R.,, A. C. Manna,, S. Dai,, A. L. Cheung,, and G. Zhang. 2003. Crystal structure of the SarS protein from Staphylococcus aureus sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. J. Bacteriol. 185:42194225.
49. Libby, S. J.,, W. Goebel,, A. Ludwig,, N. Buchmeier,, F. Bowe,, F. C. Fang,, D. G. Guiney,, J. G. Songer,, and F. Heffron. 1994. A cytolysin encoded by Salmonella is required for survival within macrophages. Proc. Natl. Acad. Sci. USA 91:489493.
50. Lim, D.,, K. Poole,, and N. C. Strynadka. 2002. Crystal structure of the MexR repressor of the mexRAB-oprM multidrug efflux operon of Pseudomonas aeruginosa. J. Biol. Chem. 277:2925329259.
51. Liu, Y.,, A. Manna,, R. Li,, W. E. Martin,, R. C. Murphy,, A. L. Cheung,, and G. Zhang. 2001. Crystal structure of the SarR protein from Staphylococcus aureus. Proc. Natl. Acad. Sci. USA 98:68776882.
52. Lomovskaya, O.,, and K. Lewis. 1992. Emr, an Escherichia coli locus for multidrug resistance. Proc. Natl. Acad. Sci. USA 89:89388942.
53. Lomovskaya, O.,, K. Lewis,, and A. Matin. 1995. EmrR is a negative regulator of the Escherichia coli multidrug resistance pump EmrAB. J. Bacteriol. 177:23282334.
54. Luong, T. T.,, S. W. Newell,, and C. Y. Lee. 2003. Mgr, a novel global regulator in Staphylococcus aureus. J. Bacteriol. 185:37033710.
55. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger- Bachi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48:19531959.
56. Maneewannakul, K.,, and S. B. Levy. 1996. Identification of mar mutants among quinolone-resistant clinical isolates of Escherichia coli. Antimicrob. Agents Chemother. 40:16951698.
57. Manna, A.,, and A. L. Cheung. 2001. Characterization of sarR, a modulator of sar expression in Staphylococcus aureus. Infect. Immun. 69:885896.
58. Manna, A. C.,, and A. L. Cheung. 2003. sarU, a sarA homolog, is repressed by SarT and regulates virulence genes in Staphylococcus aureus. Infect. Immun. 71:343353.
59. Manna, A. C.,, S. S. Ingavale,, M. Maloney,, W. van Wamel,, and A. L. Cheung. 2004. Identification of sarV (SA2062), a new transcriptional regulator, is repressed by SarA and MgrA (SA0641) and involved in the regulation of autolysis in Staphylococcus aureus. J. Bacteriol. 186:52675280.
60. Martin, R. G.,, and J. L. Rosner. 1995. Binding of purified multiple antibiotic-resistance repressor protein (MarR) to mar operator sequences. Proc. Natl. Acad. Sci. USA 92:54565460.
61. Martin, R. G.,, and J. L. Rosner. 2004. Transcriptional and translational regulation of the marRAB multiple antibiotic resistance operon in Escherichia coli. Mol. Microbiol. 53:183191.
62. McCallum, N.,, M. Bischoff,, H. Maki,, A. Wada,, and B. Berger- Bachi. 2004. TcaR, a putative MarR-like regulator of sarS expression. J. Bacteriol. 186:29662972.
63. McNamara, P. J.,, K. C. Milligan-Monroe,, S. Khalili,, and R. A. Proctor. 2000. Identification, cloning, and initial characterization of rot, a locus encoding a regulator of virulence factor expression in Staphylococcus aureus. J. Bacteriol. 182:31973203.
64. Melckebeke, H. V.,, C. Vreuls,, P. Gans,, P. Filee,, G. Llabres,, B. Joris,, and J. P. Simorre. 2003. Solution structural study of BlaI: implications for the repression of genes involved in betalactam antibiotic resistance. J. Mol. Biol. 333:711720.
65. Mongkolsuk, S.,, W. Praituan,, S. Loprasert,, M. Fuangthong,, and S. Chamnongpol. 1998. Identification and characterization of a new organic hydroperoxide resistance (ohr) gene with a novel pattern of oxidative stress regulation from Xanthomonas campestris pv. phaseoli. J. Bacteriol. 180:26362643.
66. Novick, R. P., 2000. Pathogenicity factors and their regulation, p. 392407. In V. A. Fischetti,, R. P. Novick,, J. J. Ferretti,, D. A. Portnoy,, and J. I. Rood (ed.), Gram-Positive Pathogens. ASM Press, Washington, D.C.
67. O’Leary, J. O.,, M. J. Langevin,, C. T. Price,, J. S. Blevins,, M. S. Smeltzer,, and J. E. Gustafson. 2004. Effects of sarA inactivation on the intrinsic multidrug resistance mechanism of Staphylococcus aureus. FEMS Microbiol. Lett. 237:297302.
68. Oscarsson, J.,, Y. Mizunoe,, B. E. Uhlin,, and D. J. Haydon. 1996. Induction of haemolytic activity in Escherichia coli by the slyA gene product. Mol. Microbiol. 20:191199.
69. Pabo, C. O.,, and R. T. Sauer. 1984. Protein-DNA recognition. Annu. Rev. Biochem. 53:293321.
70. Pai, H.,, J. Kim,, J. H. Lee,, K. W. Choe,, and N. Gotoh. 2001. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 45:480484.
71. Panmanee, W.,, P. Vattanaviboon,, W. Eiamphungporn,, W. Whangsuk,, R. Sallabhan,, and S. Mongkolsuk. 2002. OhrR, a transcription repressor that senses and responds to changes in organic peroxide levels in Xanthomonas campestris pv. phaseoli. Mol. Microbiol. 45:16471654.
72. Phan-Thanh, L.,, and F. Mahouin. 1999. A proteomic approach to study the acid response in Listeria monocytogenes. Electrophoresis 20:22142224.
73. Poole, K.,, K. Tetro,, Q. Zhao,, S. Neshat,, D. E. Heinrichs,, and N. Bianco. 1996. Expression of the multidrug resistance operon mexA-mexB-oprM in Pseudomonas aeruginosa: mexR encodes a regulator of operon expression. Antimicrob. Agents Chemother. 40:20212028.
74. Prouty, A. M.,, I. E. Brodsky,, S. Falkow,, and J. S. Gunn. 2004. Bile-salt-mediated induction of antimicrobial and bile resistance in Salmonella typhimurium. Microbiology 150:775783.
75. Providenti, M. A.,, and R. C. Wyndham. 2001. Identification and functional characterization of CbaR, a MarR-like modulator of the cbaABC-encoded chlorobenzoate catabolism pathway. Appl. Environ. Microbiol. 67:35303541.
76. Ramakrishnan, L.,, H. T. Tran,, N. A. Federspiel,, and S. Falkow. 1997. A crtB homolog essential for photochromogenicity in Mycobacterium marinum: isolation, characterization, and gene disruption via homologous recombination. J. Bacteriol. 179:58625868.
77. Ray, S. S.,, J. B. Bonanno,, H. Chen,, H. de Lencastre,, S. Wu,, A. Tomasz,, and S. K. Burley. 2003. X-ray structure of an M. jannaschii DNA-binding protein: implications for antibiotic resistance in S. aureus. Proteins 50:170173.
78. Rea, R. B.,, C. G. Gahan,, and C. Hill. 2004. Disruption of putative regulatory loci in Listeria monocytogenes demonstrates a significant role for Fur and PerR in virulence. Infect. Immun. 72:717727.
79. Revell, P. A.,, and V. L. Miller. 2000. A chromosomally encoded regulator is required for expression of the Yersinia enterocolitica inv gene and for virulence. Mol. Microbiol. 35:677685.
80. Reverchon, S.,, W. Nasser,, and J. Robert-Baudouy. 1994. pecS: a locus controlling pectinase, cellulase and blue pigment production in Erwinia chrysanthemi. Mol. Microbiol. 11:11271139.
81. Reverchon, S.,, C. Rouanet,, D. Expert,, and W. Nasser. 2002. Characterization of indigoidine biosynthetic genes in Erwinia chrysanthemi and role of this blue pigment in pathogenicity. J. Bacteriol. 184:654665.
82. Rouanet, C.,, S. Reverchon,, D. A. Rodionov,, and W. Nasser. 2004. Definition of a consensus DNA-binding site for PecS, a global regulator of virulence gene expression in Erwinia chrysanthemi and identification of new members of the PecS regulon. J. Biol. Chem. 279:3015830167.
83. Said-Salim, B.,, P. M. Dunman,, F. M. McAleese,, D. Macapagal,, E. Murphy,, P. J. McNamara,, S. Arvidson,, T. J. Foster,, S. J. Projan,, and B. N. Kreiswirth. 2003. Global regulation of Staphylococcus aureus genes by Rot. J. Bacteriol. 185:610619.
84. Saito, K.,, H. Akama,, E. Yoshihara,, and T. Nakae. 2003. Mutations affecting DNA-binding activity of the MexR repressor of mexR-mexA-mexB-oprM operon expression. J. Bacteriol. 185:61956198.
85. Saito, K.,, H. Yoneyama,, and T. Nakae. 1999. nalB-type mutations causing the overexpression of the MexAB-OprM efflux pump are located in the mexR gene of the Pseudomonas aeruginosa chromosome. FEMS Microbiol. Lett. 179:6772.
86. Schmidt, K. A.,, A. C. Manna,, and A. L. Cheung. 2003. SarT influences sarS expression in Staphylococcus aureus. Infect. Immun. 71:51395148.
87. Schmidt, K. A.,, A. C. Manna,, S. Gill,, and A. L. Cheung. 2001. SarT, a repressor of alpha-hemolysin in Staphylococcus aureus. Infect. Immun. 69:47494758.
88. Schumacher, M. A.,, B. K. Hurlburt,, and R. G. Brennan. 2001. Crystal structures of SarA, a pleiotropic regulator of virulence genes in Staphylococcus aureus. Nature 414:85.
89. Schumacher, M. A.,, B. K. Hurlburt,, R. G. Brennan,, T. M. Rechtin,, A. F. Gillaspy,, and M. S. Smeltzer. 2001. Crystal structures of SarA, a pleiotropic regulator of virulence genes in S. aureus: Characterization of the SarA virulence gene regulator of Staphylococcus aureus. Nature 409:215219.
90. Srikumar, R.,, C. J. Paul,, and K. Poole. 2000. Influence of mutations in the mexR repressor gene on expression of the MexAMExB- OprM multidrug efflux system of Pseudomonas aeruginosa. J. Bacteriol. 182:14101414.
91. Stapleton, M. R.,, V. A. Norte,, R. C. Read,, and J. Green. 2002. Interaction of the Salmonella typhimurium transcription and virulence factor SlyA with target DNA and identification of members of the SlyA regulon. J. Biol. Chem. 277:1763017637.
92. Sulavik, M. C.,, L. F. Gambino,, and P. F. Miller. 1994. Analysis of the genetic requirements for inducible multiple-antibiotic resistance associated with the mar locus in Escherichia coli. J. Bacteriol. 176:77547756.
93. Sulavik, M. C.,, L. F. Gambino,, and P. F. Miller. 1995. The MarR repressor of the multiple antibiotic resistance (mar) operon in Escherichia coli: prototypic member of a family of bacterial regulatory proteins involved in sensing phenolic compounds. Mol. Med. 1:436446.
94. Tegmark, K.,, A. Karlsson,, and S. Arvidson. 2000. Identification and characterization of SarH1, a new global regulator of virulence gene expression in Staphylococcus aureus. Mol. Microbiol. 37:398409.
95. Truong-Bolduc, Q. C.,, X. Zhang,, and D. C. Hooper. 2003. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J. Bacteriol. 185:31273138.
96. Ubukata, K.,, N. Itoh-Yamashita,, and M. Konno. 1989. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 33:15351539.
97. Wu, R. Y.,, R. G. Zhang,, O. Zagnitko,, I. Dementieva,, N. Maltzev,, J. D. Watson,, R. Laskowski,, P. Gornicki,, and A. Joachimiak. 2003. Crystal structure of Enterococcus faecalis SlyA-like transcriptional factor. J. Biol. Chem. 278:2024020244.
98. Xiong, A.,, A. Gottman,, C. Park,, M. Baetens,, S. Pandza,, and A. Matin. 2000. The EmrR protein represses the Escherichia coli emrRAB multidrug resistance operon by directly binding to its promoter region. Antimicrob. Agents Chemother. 44:29052907.
99. Yoshida, H.,, H. Bogaki,, S. Nakamura,, K. Ubukata,, and H. Konno. 1990. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172:69426949.
100. Ziha-Zarifi, I.,, C. Llanes,, T. Köhler,, J.-C. Pechàre,, and P. Plésiat. 1999. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob. Agents Chemother. 43:287291.

Tables

Generic image for table
Table 1

A representative collection of MarR family members and their functions

Abbreviations: Mar, multiple antibiotic resistance; OST, organic solvent tolerance; OXS, resistance to oxidative stress.

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Generic image for table
Table 2

MarR orthologs from that regulate virulence

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18
Generic image for table
Table 3

Classification of SarA family members in ( )

Based in the COL genome (http://www.tigr.org).

Citation: Alekshun M, Head J. 2005. Function and Structure of MarR Family Members, p 247-260. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch18

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error