1887

Chapter 20 : Role of Multidrug Efflux Pumps in Gram-Positive Bacteria

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Role of Multidrug Efflux Pumps in Gram-Positive Bacteria, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap20-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap20-2.gif

Abstract:

Drug efflux pumps possessed by gram-positive organisms are encoded either by plasmid- or chromosomally-based genes. Generally, drug-specific efflux pumps tend to be located on plasmids and thus are readily transmissible, whereas multidrug (MDR) efflux pumps are usually encoded on the chromosome and are not easily donated to another organism. This chapter focuses the discussion entirely on MDR-type pumps. The available genome sequence data for gram-positive organisms suggests the existence of numerous potential drug pumps in all of them. The greatest amount of information regarding the mechanism(s) of pump function and multidrug recognition as well as the regulation of pump gene expression in gram-positive organisms is available for major facilitator superfamily (MFS) MDR efflux pumps. The study of the mechanism of multidrug recognition and transport is hampered by our general inability to produce high-resolution crystals of MDR pump proteins. Further research on bacterial MDR efflux pumps is warranted in an effort to improve our understanding of how these systems work, because such an understanding may allow the development of means to overcome this resistance mechanism and to recover useful activity of their antibiotic substrates.

Citation: Kaatz G. 2005. Role of Multidrug Efflux Pumps in Gram-Positive Bacteria, p 275-286. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch20

Key Concept Ranking

Small Multidrug Resistance Family
0.62517196
Major Facilitator Superfamily
0.48785093
Secondary Active Transporters
0.45607743
0.62517196
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of the general structural characteristics of each family of MDR efflux proteins. ABC, ATP-binding cassette; MFS, major facilitator superfamily; MATE, multidrug and toxin extrusion; SMR, small multidrug resistance; RND, resistance-nodulation-division. The large central loop that is characteristic of MFS proteins is not necessarily as large as that depicted for MATE proteins. The cytoplasmic membrane (CM) is depicted in gray, and the interior and exterior of the cell are as indicated.

Citation: Kaatz G. 2005. Role of Multidrug Efflux Pumps in Gram-Positive Bacteria, p 275-286. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Regulation of and expression. (A) . A BmrR dimer binds to a ligand, most likely a Bmr substrate, and in turn binds to the promoter activating transcription. The ligand(s) for Mta are currently unknown. (B) . In the absence of a ligand, most likely a QacA substrate, QacR binds as a pair of dimers to the promoter and blocks transcription. Binding of a ligand to each QacR dimer results in a release of its repression on , allowing transcription to proceed.

Citation: Kaatz G. 2005. Role of Multidrug Efflux Pumps in Gram-Positive Bacteria, p 275-286. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch20
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap20
1. Aeschlimann, J. R.,, L. D. Dresser,, G. W. Kaatz,, and M. J. Rybak. 1999. Effects of NorA inhibitors on the in vitro antibacterial activities and postantibiotic effects of levofloxacin, ciprofloxacin, and norfloxacin in genetically related strains of Staphylococcus aureus. Antimicrob. Agents Chemother. 43: 335 340.
2. Aeschlimann, J. R.,, G. W. Kaatz,, and M. J. Rybak. 1999. The effects of NorA inhibition on the activities of levofloxacin, ciprofloxacin, and norfloxacin against two genetically related strains of Staphylococcus aureus in an in-vitro infection model. Antimicrob. Agents Chemother. 44: 343 349.
3. Ahmed, M.,, C. M. Borsch,, S. S. Taylor,, N. Vazquez-Laslop,, and A. A. Neyfakh. 1994. A protein that activates expression of a multidrug efflux transporter upon binding the transporter substrates. J. Biol. Chem. 269: 1 8.
4. Ahmed, M.,, L. Lyass,, P. N. Markham,, S. S. Taylor,, N. Vazquez- Laslop,, and A. A. Neyfakh. 1995. Two highly similar multidrug transporters of Bacillus subtilis whose expression is differentially regulated. J. Bacteriol. 177: 3904 3910.
5. Alam, M. M.,, N. Kobayashi,, N. Uechara,, and N. Wantanabe. 2003. Analysis on distribution and genomic diversity of highlevel antiseptic resistance genes qacA and qacB in human clinical isolates of Staphylococcus aureus. Microb. Drug Resist. 9: 109 21.
6. Ambudkar, S. V.,, I. H. Lelong,, J. Zhang,, C. O. Cardarelli,, M. M. Gottesman,, and I. Pastan. 1992. Partial purification and reconstitution of the human multidrug-resistance pump: characterization of the drug-stimulatable ATP hydrolysis. Proc. Natl. Acad. Sci. USA 89: 8472 8476.
7. Baranova, N. N.,, A. Danchin,, and A. A. Neyfakh. 1999. Mta, a global MerR-type regulator of the Bacillus subtilis multidrugefflux transporters. Mol. Microbiol. 31: 1549 1559.
8. Baranova, N. N.,, and A. A. Neyfakh. 1997. Apparent involvement of a multidrug transporter in the fluoroquinolone resistance of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41: 1396 1398.
9. Bolhuis, H.,, D. Molenaar,, G. J. Poelarends,, H. W. van Veen,, B. Poolman,, A. J. M. Driessen. and W. N. Konings. 1994. Proton motive force-driven and ATP-dependent extrusion systems in multidrug-resistant Lactococcus lactis. J. Bacteriol. 176: 6957 6964.
10. Bolhuis, H.,, G. J. Poelarends,, H. W. van Veen,, B. Poolman,, A. J. M. Driessen,, and W. N. Konings. 1995. The lactococcal lmrP gene encodes a proton motive force-dependent drug transporter. J. Biol. Chem. 270: 26092 26098.
11. Bolhuis, H.,, H. W. van Veen,, J. R. Brands,, M. Putman,, B. Poolman,, A. J. M. Driessen,, and W. N. Konings. 1996. Energetics and mechanism of drug transport mediated by the lactococcal multidrug transporter LmrP. J. Biol. Chem. 271: 24123 24128.
12. Bolhuis, H. H. W. van Veen, D. Molenaar, B. Poolman, A. J. M. Driessen, and W. N. Konings. 1996. Multidrug resistance in Lactococcus lactis: evidence for ATP-dependent drug extrusion from the inner leaflet of the cytoplasmic membrane. EMBO J. 15: 4239 4245.
13. Borges-Walmsley, M. I.,, K. S. McKeegan,, and A. R. Walmsley. 2003. Structure and function of efflux pumps that confer resistance to drugs. Biochem. J. 376: 313 338.
14. Brenwald, N. P.,, P. Appelbaum,, T. Davies,, and M. J. Gill. 2003. Evidence for efflux pumps, other than PmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Clin. Microbiol. Infect. 9: 140 143.
15. Brenwald, N. P.,, M. J. Gill,, and R. Wise. 1997. The effect of reserpine, an inhibitor of multidrug efflux pumps, on the in-vitro susceptibilities of fluoroquinolone-resistant strains of Streptococcus pneumoniae to norfloxacin. J. Antimicrob. Chemother. 40: 458 460.
16. Brenwald, N. P.,, M. J. Gill,, and R. Wise. 1998. Prevalence of a putative efflux mechanism among fluoroquinolone-resistant clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 42: 2032 2035.
17. Fournier, B.,, R. Aras,, and D. C. Hooper. 2000. Expression of the multidrug resistance transporter NorA from Staphylococcus aureus is modified by a two-component regulatory system. J. Bacteriol. 182: 664 671.
18. Fournier, B.,, and D. C. Hooper. 2000. A new two-component regulatory system involved in adhesion, autolysis, and extracellular proteolytic activity of Staphylococcus aureus. J. Bacteriol. 182: 3955 3964.
19. Fournier, B.,, Q.-C. Truong-Bolduc,, X. Zhang,, and D. C. Hooper. 2001. A mutation in the 5' untranslated region increases stability of norA mRNA, encoding a multidrug resistance transporter of Staphylococcus aureus. J. Bacteriol. 183: 2367 2371.
20. Gill, M. J.,, N. P. Brenwald,, and R. Wise. 1999. Identification of an efflux pump gene, pmrA, associated with fluoroquinolone resistance in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 43: 187 189.
21. Godsey, M. H.,, N. N. Baranova,, A. A. Neyfakh,, and R. G. Brennan. 2001. Crystal structure of MtaN, a global multidrug transporter gene activator. J. Biol. Chem. 276: 47178 47184.
22. Grinius, L. L.,, G. Dreguniene,, E. B. Goldberg,, C. H. Liao,, and S. J. Projan. 1992. A staphylococcal multidrug resistance gene product is a member of a new protein family. Plasmid 27: 119 129.
23. Grkovic, S.,, M. H. Brown,, N. J. Roberts,, I. T. Paulsen,, and R. A. Skurray. 1998. QacR is a repressor protein that regulates expression of the Staphylococcus aureus multidrug efflux pump QacA. J. Biol. Chem. 273: 18665 18673.
24. Grkovic, S.,, M. H. Brown,, M. A. Schumacher,, R. G, Brennan, and R. A. Skurray. 2001. The staphylococcal QacR multidrug regulator binds a correctly spaced operator as a pair of dimers. J. Bacteriol. 183: 7102 7109.
25. Grkovic, S.,, M. H. Brown,, and R. A. Skurray. 2002. Regulation of bacterial drug export systems. Microbiol. Mol. Biol. Rev. 66: 671 701.
26. Grkovic, S.,, K. M. Hardie,, M. H. Brown,, and R. A. Skurray. 2003. Interactions of the QacR multidrug-binding protein with structurally diverse ligands: implications for the evolution of the binding pocket. Biochemistry 42: 15226 15236.
27. Huang, J.,, P. W. O’Toole,, W. Shen,, H. Amrine-Madsen,, X. Jiang,, N. Lobo,, L. M. Palmer,, L. Voelker,, F. Fan,, M. N. Gwynn,, and D. McDevitt. 2004. Novel chromosomally-encoded multidrug efflux transporter MdeA in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 909 917.
28. Hugenholtz, J.,, and M. Kleerebezum. 1999. Metabolic engineering of lactic acid bacteria: overview of the approaches and results of pathway rerouting involved in food fermentations. Curr. Opin. Biotechnol. 10: 492 497.
29. Hugenholtz, J.,, and E. J. Smid. 2002. Nutraceutical production with food-grade microorganisms. Curr. Opin. Biothecnol. 13: 497 507.
30. Ingavale, S. S.,, W. van Wamel,, and A. L. Cheung. 2003. Characterization of Rat, an autolysis regulator in Staphylococcus aureus. Mol. Microbiol. 48: 1451 1466.
31. Jack, D. L.,, M. L. Storms,, J. H. Tchieu,, I. T. Paulsen,, and M. H. Saier. 2000. A broad-specificity multidrug efflux pump requiring a pair of homologous SMR-type proteins. J. Bacteriol. 182: 2311 2313.
32. Jonas, B. M.,, B. E. Murray,, and G. M. Weinstock. 2001. Characterization of emeA, a norA homologue and multidrug resistance efflux pump, in Enterococcus faecalis. Antimicrob. Agents Chemother. 45: 3574 3579.
33. Kaatz, G. W.,, V. V. Moudgal,, S. M. Seo,, J. Bondo Hansen,, and J. E. Kristiansen. 2003. Phenylpiperidine selective serotonin reuptake inhibitors interfere with multidrug efflux pump activity in Staphylococcus aureus. Int. J. Antimicrob. Agents 22: 254 261.
34. Kaatz, G. W.,, V. V. Moudgal,, S. M. Seo,, and J. E. Kristiansen. 2003. Phenothiazines and thioxanthenes inhibit multidrug efflux pump activity in Staphylococcus aureus. Antimicrob. Agents Chemother. 47: 719 726.
35. Kaatz, G. W.,, and S. M. Seo. 1995. Inducible NorA-mediated multidrug resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 39: 2650 2655.
36. Kaatz, G. W.,, and S. M. Seo. 2004. Effect of substrate exposure and other growth condition manipulations on norA expression. J. Antimicrob. Chemother. 54: 364 369.
37. Kaatz, G. W.,, S. M. Seo,, and T. J. Foster. 1999. Introduction of a norA promoter region mutation into the chromosome of fluoroquinolone-susceptible strain of Staphylococcus aureus using plasmid integration. Antimicrob. Agents Chemother. 43: 2222 2224.
38. Kaatz, G. W.,, S. M. Seo,, and C. A. Ruble. 1993. Efflux-mediated fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 37: 1086 1094.
39. Lee, E.-W.,, M. Nazmul Huda,, T. Kuroda,, T. Mizushima,, and T. Tsuchiya. 2003. EfrAB, an ABC multidrug efflux pump in Enterococcus faecalis. Antimicrob. Agents Chemother. 47: 3733 3738.
40. Lolkema, J. S.,, B. Poolman,, and W. N. Konings. 1998. Bacterial solute uptake and efflux systems. Curr. Opin. Microbiol. 1: 248 253.
41. Lomovskaya, O.,, M. S. Warren,, A. Lee,, J. Galazzo,, R. Fronko,, M. Lee,, J. Blais,, D. Cho,, S. Chamberland,, T. Renau,, R. Leger,, S. Hecker,, W. Watkins,, K. Hishino,, H. Ishida,, and V. J. Lee. 2001. Identification and characterization of inhibitors of multidrug resistance efflux pumps in Pseudomonas aeruginosa: novel agents for combination therapy. Antimicrob. Agents Chemother. 45: 105 116.
42. Luong, T. T.,, S. W. Newell,, and C. Y. Lee. 2003. mgrA, a novel global regulator in Staphylococcus aureus. J. Bacteriol. 185: 3703 3710.
43. Markham, P. N.,, E. Westhaus,, K. Klyatchko,, M. E. Johnson,, and A. A. Neyfakh. 1999. Multiple novel inhibitors of the NorA multidrug transporter of Staphylococcus aureus. Antimicrob. Agents Chemother. 43: 2404 2408.
44. Masaoka, Y.,, Y. Ueno,, Y. Morita,, T. Kuroda,, T. Mizushima,, and T. Tsuchiya. 2000. A two-component multidrug efflux pump, EbrAB, in Bacillus subtilis. J. Bacteriol. 182: 2307 2310.
45. Mazurkiewicz, P.,, W. N. Konings,, and G. J. Poelarends. 2002. Acidic residues in the lactococcal multidrug efflux pump LmrP play critical roles in transport of lipophilic cationic compounds. J. Biol. Chem. 277: 26081 26088.
46. Mitchell, B. A.,, I. T. Paulsen,, M. H. Brown,, and R. A. Skurray. 1999. Bioenergetics of the staphylococcal multidrug export protein QacA. J. Biol. Chem. 274: 3541 3548.
47. Murray, D. S.,, M. A. Schumacher,, and R. G. Brennan. 2004. Crystal structures of QacR-diamidine complexes reveal additional multidrug-binding modes and a novel mechanism of drug charge neutralization. J. Biol. Chem. 279: 14365 14371.
48. Neyfakh, A. A. 1992. The multidrug efflux transporter of Bacillus subtilis is a structural and functional homologue of the Staphylococcus aureus NorA protein. Antimicrob. Agents Chemother. 36: 484 485.
49. Neyfakh, A. A.,, V. E. Bidnenko,, and L. B. Chen. 1991. Effluxmediated multidrug resistance in Bacillus subtilis: similarities and dissimilarities with the mammalian system. Proc. Natl. Acad. Sci. USA 88: 4781 4785.
50. Neyfakh, A. A.,, C. M. Borsch,, and G. W. Kaatz. 1993. Fluoroquinolone resistance protein NorA of Staphylococcus aureus is a multidrug efflux transporter. Antimicrob. Agents Chemother. 37: 128 129.
51. Ng, E. Y. W.,, M. Trucksis,, and D. C. Hooper. 1994. Quinolone resistance mediated by norA: physiologic characterization and relationship to flqB, a quinolone resistance locus on the Staphylococcus aureus chromosome. Antimicrob. Agents Chemother. 38: 1345 1355.
52.Noguchi N., M. Hase, M. Kitta, M. Sasatsu, K. Deguchi, and M. Kono. 1999. Antiseptic susceptibility and distribution of antiseptic- resistance genes in methicillin-resistant Staphylococcus aureus. FEMS Microbiol. Lett. 172: 247253.
53. Noguchi, N.,, M. Tamura,, K. Narui,, K. Wakasugi,, and M. Sasatu. 2002. Frequency and genetic characterization of multidrug- resistant mutants of Staphylococcus aureus after selection with individual antiseptics and fluoroquinolones. Biol. Pharm. Bull. 25: 1129 1132.
54. Paulsen, I. T.,, M. H. Brown,, and R. A. Skurray. 1996. Protondependent multidrug efflux systems. Microbiol. Rev. 60: 575 608.
55. Paulsen, I. T.,, M. H. Brown,, T. G. Littlejohn,, B. A. Mitchell,, and R. A. Skurray. 1996. Multidrug resistance proteins QacA and QacB from Staphylococcus aureus: membrane topology and identification of residues involved in substrate specificity. Proc. Natl. Acad. Sci. USA 93: 3630 3635.
56. Paulsen, I. T.,, R. A. Skurray,, R. Tam,, M. H. saier,, R. J. Turner,, J. H. weiner,, E. B. Goldberg,, and L. L. Grinius. 1996. The SMR family: a novel family of multidrug efflux proteins involved with the efflux of lipophilic drugs. Mol. Microbiol. 19: 1167 1175.
57. Pestova, E.,, J. J. Millichap,, F. Siddiqui,, G. A. Noskin,, and L. R. Peterson. 2002. Non-PmrA-mediated multidrug resistance in Streptococcus pneumoniae. J. Antimicrob. Chemother. 49: 553 556.
58. Piddock, L. J. V.,, M. M. Johnson,, S. Simjee,, and L. Pumbwe. 2002. Expression of efflux pump gene pmrA in fluoroquinoloneresistant and -susceptible clinical isolates of Streptococcus pneumoniae. Antimicrob. Agents Chemother. 46: 808 812.
59. Putman, M.,, L. A. Koole,, H. W. van Veen,, and W. N. Konings. 1999. The secondary multidrug transporter LmrP contains multiple drug interaction sites. Biochemistry 38: 13900 13905.
60. Putman, M.,, H. W. van Veen,, and W. N. Konings. 2000. Molecular properties of bacterial multidrug transporters. Microbiol. Mol. Biol. Rev. 64: 672 693.
61. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2001. Structural mechanisms of QacR induction and multidrug recognition. Science 294: 2158 2163.
62. Schumacher, M. A.,, M. C. Miller,, S. Grkovic,, M. H. Brown,, R. A. Skurray,, and R. G. Brennan. 2002. Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J. 21: 1210 1218.
63. Steinfels, E.,, C. Orelle,, J.-R. Fantino,, O. Dalmas,, J.-L. Rigaud,, F. Denizot,, A. Di Pietro,, and J.-M. Jault. 2004. Characterization of YvcC (BmrA), a multidrug ABC transporter constitutively expressed in Bacillus subtilis. Biochemistry 43: 7491 7502.
64. Stermitz, F. R.,, P. Lorenz,, J. N. Tawara,, L. A. Zenewicz,, and K. Lewis. 2000. Synergy in a medicinal plant: antimicrobial action of berberine potentiated by 5'-methoxyhydnocarpin, a multidrug pump inhibitor. Proc. Natl. Acad. Sci. USA 97: 1433 1437.
65. Trucksis, M.,, J. S. Wolfson,, and D. C. Hooper. 1991. A novel locus conferring fluoroquinolone resistance in Staphylococcus aureus. J. Bacteriol. 173: 5854 5860.
66. Truong-Bolduc, Q.-C.,, X. Zhang,, and D. C. Hooper. 2003. Characterization of NorR protein, a multifunctional regulator of norA expression in Staphylococcus aureus. J. Bacteriol. 185: 3127 3138.
67. Ubukata, K.,, N. Itoh-Yamashita,, and M. Konno. 1989. Cloning and expression of the norA gene for fluoroquinolone resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 33: 1535 1539.
68. van Veen, H. W.,, R. Callaghan,, L. Soceneantu,, A. Sardini,, W. N. Konings,, and C. F. Higgins. 1998. A bacterial antibioticresistance gene that complements the human multidrugresistance P-glycoprotein gene. Nature 391: 291 295.
69. van Veen, H. W.,, A. margolles,, M. Muller,, C. F. Higgins,, and W. N. Konings. 2000. The homodimeric ATP-binding cassette transporter LmrA mediates multidrug transport by an alternating two-site (two-cylinder engine) mechanism. EMBO J. 19: 2503 2514.
70. van Veen, H. W.,, K. Venema,, H. Bolhuis,, I. Oussenko,, J. Kok,, B. Poolman,, A. J. M. Driessen,, and W. N. Konings. 1996. Multidrug resistance mediated by a bacterial homolog of the human multidrug transporter MDR1. Proc. Natl. Acad. Sci. USA 93: 10668 10672.
71. Woolridge, D. P.,, N. Vazquez-Laslop,, P. N. Markham,, M. S. Chevalier,, E. W. Garner,, and A. A. Neyfakh. 1997. Efflux of the natural polyamine spermidine facilitated by the Bacillus subtilis multidrug transporter Blt. J. Biol. Chem. 272: 8864 8868.
72. Yoshida, H.,, M. Bogaki,, S. Nakamura,, K. Ubukata,, and M. Konno. 1990. Nucleotide sequence and characterization of the Staphylococcus aureus norA gene, which confers resistance to quinolones. J. Bacteriol. 172: 6942 6949.
73. Yu, J.-L.,, L. Grinius,, and D. C. Hooper. 2002. NorA functions as a multidrug efflux protein in both cytoplasmic membrane vesicles and reconstituted proteoliposomes. J. Bacteriol. 184: 1370 1377.
74. Zeller, V.,, C. Janoir,, M. D. Kitzis,, L. Gutmann,, and N. J. Moreau. 1997. Active efflux as a mechanism of resistance to ciprofloxacin in Streptococcus pneumoniae. Antimicrob. Agents Chemother. 41: 1973 1978.
75. Zheleznova, E. E.,, P. N. Markham,, A. A. Neyfakh,, and R. G. Brennan. 1999. Structural basis of multidrug recognition by BmrR, a transcriptional activator of a multidrug transporter. Cell 96: 353 362.

Tables

Generic image for table
Table 1

Drug transport proteins predicted from analysis of genome data

Citation: Kaatz G. 2005. Role of Multidrug Efflux Pumps in Gram-Positive Bacteria, p 275-286. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch20

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error