1887

Chapter 21 : Advances in Vancomycin Resistance:

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Advances in Vancomycin Resistance: , Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap21-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap21-2.gif

Abstract:

This chapter concentrates on the mechanisms and biological features of vancomycin resistance in methicillin- and cephem-resistant (MRSA). Vancomycin-resistant (VRSA) strains isolated from three American patients contained plasmids carrying the gene complex. The gene complex is carried on a transposon which seems to have been transferred by conjugation from vancomycin-resistant enterococcus (VRE) that coexisted in the patients’ bodies. The enzyme encoded by the gene, together with those encoded by the adjacent genes , , and , replaces D-alanyl-D-alanine residues of peptidoglycan by D-alanyl-D-lactate. In the cell wall of Mu50, peptidoglycan crosslinking is significantly decreased as compared to hetero-vancomycin-intermediate (VISA) strain Mu3 or vancomycin susceptible (VSSA) strains. That is, there are more D-alanyl-D-alanine false targets in the cell-wall peptidoglycan layers of Mu50 than in those of control strains. The vancomycin resistance of VISA is not due to the acquisition of a resistance gene from another bacterial species. It is generated spontaneously from VSSA strains in vitro, though the development of the VISA phenotype does not occur through a single-step selection process. A remarkable feature of hetero-VISA is that it can be obtained from the VSSA strain by selection with beta-lactam antibiotics. A high-thoroughput sequencing strategy for regulator genes in combination with microarray transcription profiling in many isogenic VISA and hetero-VISA combinations might reveal several alternative series of regulator mutations.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21

Key Concept Ranking

beta-Lactam Antibiotics
0.4540932
Staphylococcus aureus
0.45011127
Glycopeptide Antibiotics
0.44220024
0.4540932
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Thick cell wall prevents the saturation of peptidoglycan layers with vancomycin. The Mu50 cells with thin (A) and thick cell wall (B) were prepared by incubating the cells in resting media (RMs) with different nutrient compositions (11). RM does not support the cell growth. The numbers under the panels are mean and SD of cell-wall thickness in nm. (C) The cells were incubated in RM containing 30 mg/liter of vancomycin, and the time course of vancomycin consumption was monitored by HPLC. Symbols: squares, the cell densities of thin (open) and thick (closed) cell wall. Circles, vancomycin concentration in the culture supernatant of the cells with thin (open) and thick (closed) cell wall. Note that the cells with thick cell walls consume twice as much vancomycin as those with thin cell walls. Consumption of vancomycin by the cells with thick cell walls does not reach maximum before 60 min, whereas that by the latter cells reaches maximum before 5 min.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Analysis of vancomycin-resistant subpopulations of strains. Plating efficiency test is performed with maximum inoculum size of about 10 CFU onto BHI agar plates of 8.5 cm in diameter containing various concentrations of vancomycin. Strains analyzed are Mu50 (open circle), PC27-14 (closed circle), PC27 (open triangle), Mu3 (closed triangle), H1 (open square), FDA209P (closed square). Note that PC27 and PC27-14 were obtained from Mu3 cell population based on their colony sizes alone without recourse to drug selection.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Heterogeneous colony sizes in Mu3 cell population. Mu3 cells were spread on brain heart infusion agar plate and incubated for 24 h at 37°C before the photo was taken. Inset: magnification of the area in the square. RC, regular sized colony; SC, small colony; PC, pin-point colony.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Novel detection method of VISA strains. The chemiluminescence method to detect metabolism of viable cells after 3 h exposure of the cells to vancomycin. Three representative VISA strains, Mu50, MI, and AMC11094, are clearly distinguished from VSSA strains FDA209P (thin line) and NCTC8325 (dotted line). Hetero- VISA strain Mu3 has a marginal pattern and is not well differentiated from VSSA with this protocol.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap21
1. Andrade-Baiocchi, S.,, M. C. Tognim,, O. C. Baiocchi,, and H. S. Sader. 2003. Endocarditis due to glycopeptide-intermediate Staphylococcus aureus: case report and strain characterization. Diagn. Microbiol. Infect. Dis. 45: 149 152.
2.Anonymous. 2002. Staphylococcus aureus resistant to vancomycin—United States, 2002. Morb. Mortal. Wkly. Rep. 51: 565 567.
3.Anonymous. 2000. Staphylococcus aureus with reduced susceptibility to vancomycin—Illinois, 1999. Morb. Mortal. Wkly. Rep. 48: 1165 1167.
4.Anonymous. 2004. Vancomycin-resistant Staphylococcus aureus—New York, 2004. Morb. Mortal. Wkly. Rep. 53: 322 323.
5.Anonymous. 2002. Vancomycin-resistant Staphylococcus aureus—Pennsylvania, 2002. Morb. Mortal. Wkly. Rep. 51: 902.
6. Bartley, J. 2002. First case of VRSA identified in Michigan. Infect. Control Hosp. Epidemiol. 23: 480.
7. Bierbaum, G.,, K. Fuchs,, W. Lenz,, C. Szekat,, and H. G. Sahl. 1999. Presence of Staphylococcus aureus with reduced susceptibility to vancomycin in Germany. Eur. J. Clin. Microbiol. Infect. Dis. 18: 691 696.
8. Bobin-Dubreux, S.,, M. E. Reverdy,, C. Nervi,, M. Rougier,, A. Bolmstrom,, F. Vandenesch,, and J. Etienne. 2001. Clinical isolate of vancomycin-heterointermediate Staphylococcus aureus susceptible to methicillin and in vitro selection of a vancomycinresistant derivative. Antimicrob. Agents Chemother. 45: 349 352.
9. Cartolano, G. L.,, M. Cheron,, D. Benabid,, M. Leneveu,, and A. Boisivon. 2004. Methicillin-resistant Staphylococcus aureus (MRSA) with reduced susceptibility to glycopeptides (GISA) in 63 French general hospitals. Clin. Microbiol. Infect. 10: 448 451.
10. Cui, L.,, X. Ma,, K. Sato,, K. Okuma,, F. C. Tenover,, E. M. Mamizuka,, C. G. Gemmell,, M. N. Kim,, M. C. Ploy,, N. El-Solh,, V. Ferraz,, and K. Hiramatsu. 2003. Cell wall thickening is a common feature of vancomycin resistance in Staphylococcus aureus. J. Clin. Microbiol. 41: 5 14.
11. Cui, L.,, H. Murakami,, K. Kuwahara-Arai,, H. Hanaki,, and K. Hiramatsu. 2000. Contribution of a thickened cell wall and its glutamine nonamidated component to the vancomycin resistance expressed by Staphylococcus aureus Mu50. Antimicrob. Agents Chemother. 44: 2276 2285.
12. Denis, O.,, C. Nonhoff,, B. Byl,, C. Knoop,, S. Bobin-Dubreux,, and M. J. Struelens. 2002. Emergence of vancomycinintermediate Staphylococcus aureus in a Belgian hospital: microbiological and clinical features. J. Antimicrob. Chemother. 50: 383 391.
13. El Solh, N.,, M. Davi,, A. Morvan,, H. A. Damon,, and N. Marty. 2003. Characteristics of French methicillin-resistant Staphylococcus aureus isolates with decreased susceptibility or resistance to glycopeptides. J. Antimicrob. Chemother. 52: 691 694.
14. Enright, M. C.,, D. A. Robinson,, G. Randle,, E. J. Feil,, H. Grundmann,, and B. G. Spratt. 2002. The evolutionary history of methicillin-resistant Staphylococcus aureus (MRSA). Proc. Natl. Acad. Sci. USA 99: 7687 7692.
15. Farr, B. M.,, C. D. Salgado,, T. B. Karchmer,, and R. J. Sherertz. 2001. Can antibiotic-resistant nosocomial infections be controled? Lancet Infect. Dis. 1: 38 45.
16. Ferraz, V.,, A. G. Duse,, M. Kassel,, A. D. Black,, T. Ito,, and K. Hiramatsu. 2000. Vancomycin-resistant Staphylococcus aureus occurs in South Africa. S. Afr. Med. J. 90: 1113.
17. Fridkin, S. K.,, J. Hageman,, L. K. McDougal,, J. Mohammed,, W. R. Jarvis,, T. M. Perl,, and F. C. Tenover. 2003. Epidemiological and microbiological characterization of infections caused by Staphylococcus aureus with reduced susceptibility to vancomycin, United States, 1997-2001. Clin. Infect. Dis. 36: 429 439.
18. Geisel, R.,, F. J. Schmitz,, L. Thomas,, G. Berns,, O. Zetsche,, B. Ulrich,, A. C. Fluit,, H. Labischinsky,, and W. Witte. 1999. Emergence of heterogeneous intermediate vancomycin resistance in Staphylococcus aureus isolates in the Dusseldorf area. J. Antimicrob. Chemother. 43: 846 848.
19. Guerin, F.,, A. Buu-Hoi,, J. L. Mainardi,, G. Kac,, N. Colardelle,, S. Vaupre,, L. Gutmann,, and I. Podglajen. 2000. Outbreak of methicillin-resistant Staphylococcus aureus with reduced susceptibility to glycopeptides in a Parisian hospital. J. Clin. Microbiol. 38: 2985 2988.
20. Hageman, J. C.,, D. A. Pegues,, C. Jepson,, R. L. Bell,, M. Guinan,, K. W. Ward,, M. D. Cohen,, J. A. Hindler,, F. C. Tenover,, S. K. McAllister,, M. E. Kellum,, and S. K. Fridkin. 2001. Vancomycinintermediate Staphylococcus aureus in a home health-care patient. Emerg. Infect. Dis. 7: 1023 1025.
21. Hanaki, H.,, K. Kuwahara-Arai,, S. Boyle-Vavra,, R. S. Daum,, H. Labischinski,, and K. Hiramatsu. 1998. Activated cell-wall synthesis is associated with vancomycin resistance in methicillinresistant Staphylococcus aureus clinical strains Mu3 and Mu50. J. Antimicrob. Chemother. 42: 199 209.
22. Hanaki, H.,, H. Labischinski,, Y. Inaba,, N. Kondo,, H. Murakami,, and K. Hiramatsu. 1998. Increase in glutamine-nonamidated muropeptides in the peptidoglycan of vancomycinresistant Staphylococcus aureus strain Mu50. J. Antimicrob. Chemother. 42: 315 320.
23. Haraga, I.,, S. Nomura,, and A. Nagayama. 1999. The effects of vancomycin and beta-lactam antibiotics on vancomycin-resistant Staphylococcus aureus. N. Engl. J. Med. 341: 1624.
24. Harbarth, S.,, W. Albrich,, D. A. Goldmann,, and J. Huebner. 2001. Control of multiply resistant cocci: do international comparisons help? Lancet Infect. Dis. 1: 251 261.
25. Hiramatsu, K. 1998. The emergence of Staphylococcus aureus with reduced susceptibility to vancomycin in Japan. Am. J. Med. 104: 7S 10S.
26. Hiramatsu, K. 1995. Molecular evolution of MRSA. Microbiol. Immunol. 39: 531 543.
27. Hiramatsu, K. 1998. Vancomycin resistance in staphylococci. Drug Resist. Updates 1: 135 150.
28. Hiramatsu, K. 2001. Vancomycin-resistant Staphylococcus aureus: a new paradigm of antibiotic resistance. Lancet Infect. Dis. 1: 147 155.
29. Hiramatsu, K.,, N. Aritaka,, H. Hanaki,, S. Kawasaki,, Y. Hosoda,, S. Hori,, Y. Fukuchi,, and I. Kobayashi. 1997. Dissemination in Japanese hospitals of strains of Staphylococcus aureus heterogeneously resistant to vancomycin. Lancet 350: 1670 1673.
30. Hiramatsu, K.,, L. Cui,, M. Kuroda,, and T. Ito. 2001. The emergence and evolution of methicillin-resistant Staphylococcus aureus. Trends Microbiol. 9: 486 493.
31. Hiramatsu, K.,, and H. Hanaki. 1998. Glycopeptide resistance in staphylococci. Current Opin. Infect. Dis. 11: 653 658.
32. Hiramatsu, K.,, H. Hanaki,, T. Ino,, K. Yabuta,, T. Oguri,, and F. C. Tenover. 1997. Methicillin-resistant Staphylococcus aureus clinical strain with reduced vancomycin susceptibility. J. Antimicrob. Chemother. 40: 135 136.
33. Hood, J.,, G. F. S. Edwards,, B. Cosgrove,, E. Curran,, D. Morrison,, and C. G. Gemmell. 2000. Vancomycin-intermediate Staphylococcus aureus at a Scottish hospital. J. Infect. 40: A11 w01.
34. Howe, R. A.,, K. E. Bowker,, T. R. Walsh,, T. G. Feest,, and A. P. MacGowan. 1998. Vancomycin-resistant Staphylococcus aureus. Lancet 351: 602.
35. Kashii, Y.,, Y. Arakawa,, M. Y. Momoi,, and K. Hiramatsu. 2002. Treatment of a pneumonia caused by heterogeneously vancomycin- resistant Staphylococcus aureus (hetero-VRSA) with a combination of arbekacin and ampicillin/sulbactam, abstr. 155- 02. In 10th International Symposium on Staphylococci and Staphylococcal Infections.
36. Katayama, Y.,, T. Ito,, and K. Hiramatsu. 2000. A new class of genetic element, Staphylococcus Cassette Chromosome mec, encodes methicillin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 44: 1549 1555.
37. Kim, M. N.,, S. H. Hwang,, Y. J. Pyo,, H. M. Mun,, and C. H. Pai. 2002. Clonal spread of Staphylococcus aureus heterogeneously resistant to vancomycin in a university hospital in Korea. J. Clin. Microbiol. 40: 1376 1380.
38. Kim, M. N.,, C. H. Pai,, J. H. Woo,, J. S. Ryu,, and K. Hiramatsu. 2000. Vancomycin-intermediate Staphylococcus aureus in Korea. J. Clin. Microbiol. 38: 3879 3881.
39. Kirst, H. A.,, D. G. Thompson,, and T. I. Nicas. 1998. Historical yearly usage of vancomycin. Antimicrob. Agents Chemother. 42: 1303 1304.
40. Kuroda, M.,, H. Kuroda,, T. Oshima,, F. Takeuchi,, H. Mori,, and K. Hiramatsu. 2003. Two-component system VraSR positively modulates the regulation of cell-wall biosynthesis pathway in Staphylococcus aureus. Mol. Microbiol. 49: 807 821.
41. Kuroda, M.,, K. Kuwahara-Arai,, and K. Hiramatsu. 2000. Identification of the up- and down-regulated genes in vancomycinresistant Staphylococcus aureus strains Mu3 and Mu50 by cDNA differential hybridization method. Biochem. Biophys. Res. Commun. 269: 485 490.
42. Kuwahara-Arai, K.,, N. Kondo,, S. Hori,, E. Tateda-Suzuki,, and K. Hiramatsu. 1996. Suppression of methicillin resistance in a mecA-containing pre-methicillin-resistant Staphylococcus aureus strain is caused by the mecI-mediated repression of PBP2' production. Antimicrob. Agents Chemother. 40: 2680 2685.
43. Maki, H.,, N. McCallum,, M. Bischoff,, A. Wada,, and B. Berger- Baechi. 2004. tcaA inactivation increases glycopeptide resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 48: 1953 1959.
44. Marchese, A.,, G. Balistreri,, E. Tonoli,, E. A. Debbia,, and G. C. Schito. 2000. Heterogeneous vancomycin resistance in methicillin- resistant Staphylococcus aureus strains isolated in a large Italian hospital. J. Clin. Microbiol. 38: 866 869.
45. McDougal, L. K.,, C. D. Steward,, G. E. Killgore,, J. M. Chaitram,, S. K. McAllister,, and F. C. Tenover. 2003. Pulsed-field gel electrophoresis typing of oxacillin-resistant Staphylococcus aureus isolates from the United States: establishing a national database. J. Clin. Microbiol. 41: 5113 5120.
46. Naimi, T. S.,, D. Anderson,, C. O’Boyle,, D. J. Boxrud,, S. K. Johnson,, F. C. Tenover,, and R. Lynfield. 2003. Vancomycinintermediate Staphylococcus aureus with phenotypic susceptibility to methicillin in a patient with recurrent bacteremia. Clin. Infect. Dis. 36: 1609 1612.
47. Noble, W. C.,, Z. Virani,, and R. G. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 72: 195 198.
48. Okuma, K.,, K. Iwakawa,, J. D. Turnidge,, W. B. Grubb,, J. M. Bell,, F. G. O’Brien,, G. W. Coombs,, J. W. Pearman,, F. C. Tenover,, M. Kapi,, C. Tiensasitorn,, T. Ito,, and K. Hiramatsu. 2002. Dissemination of new methicillin-resistant Staphylococcus aureus clones in the community. J. Clin. Microbiol. 40: 4289 4294.
49. Oliveira, G. A.,, A. M. Dell’Aquila,, R. L. Masiero,, C. E. Levy,, M. S. Gomes,, L. Cui,, K. Hiramatsu,, and E. M. Mamizuka. 2001. Isolation in Brazil of nosocomial Staphylococcus aureus with reduced susceptibility to vancomycin. Infect. Control Hosp. Epidemiol. 22: 443 448.
50. O’Neill, A. J.,, and I. Chopra. 2003. Lack of evidence for involvement of hypermutability in emergence of vancomycinintermediate Staphylococcus aureus. Antimicrob. Agents Chemother. 47: 1484 1485. (Letter.)
51. Paton, R.,, T. Snell,, F. X. Emmanuel,, and R. S. Miles. 2001. Glycopeptide resistance in an epidemic strain of methicillin-resistant Staphylococcus aureus. J. Antimicrob. Chemother. 48: 941 942.
52. Perichon, B.,, and P. Courvalin. 2000. Update on vancomycin resistance. Int. J. Clin. Pract. 54: 250 254.
53. Ploy, M. C.,, C. Grelaud,, C. Martin,, L. de Lumley,, and F. Denis. 1998. First clinical isolate of vancomycin-intermediate Staphylococcus aureus in a French hospital. Lancet 351: 1212.
54. Rotun, S. S.,, V. McMath,, D. J. Schoonmaker,, P. S. Maupin,, F. C. Tenover,, B. C. Hill,, and D. M. Ackman. 1999. Staphylococcus aureus with reduced susceptibility to vancomycin isolated from a patient with fatal bacteremia. Emerg. Infect. Dis. 5: 147 149.
55. Schaaff, F.,, A. Reipert,, and G. Bierbaum. 2002. An elevated mutation frequency favors development of vancomycin resistance in Staphylococcus aureus. Antimicrob. Agents Chemother. 46: 3540 3548.
56. Severin, A.,, K. Tabei,, F. Tenover,, M. Chung,, N. Clarke,, and A. Tomasz. 2004. High level oxacillin and vancomycin resistance and altered cell wall composition in Staphylococcus aureus carrying the staphylococcal mecA and the enterococcal vanA gene complex. J. Biol. Chem. 279: 3398 3407.
57. Sieradzki, K.,, T. Leski,, J. Dick,, L. Borio,, and A. Tomasz. 2003. Evolution of a vancomycin-intermediate Staphylococcus aureus strain in vivo: multiple changes in the antibiotic resistance phenotypes of a single lineage of methicillin-resistant S. aureus under the impact of antibiotics administered for chemotherapy. J. Clin. Microbiol. 41: 1687 1693.
58. Sieradzki, K.,, and A. Tomasz. 1996. A highly vancomycinresistant laboratory mutant of Staphylococcus aureus. FEMS Microbiol. Lett. 142: 161 166.
59. Sieradzki, K.,, S. W. Wu,, and A. Tomasz. 1999. Inactivation of the methicillin resistance gene mecA in vancomycin-resistant Staphylococcus aureus. Microb. Drug Resist. 5: 253 257.
60. Smith, T. L.,, M. L. Pearson,, K. R. Wilcox,, C. Cruz,, M. V. Lancaster,, B. Robinson-Dunn,, F. C. Tenover,, M. J. Zervos,, J. D. Band,, E. White,, and W. R. Jarvis. 1999. Emergence of vancomycin resistance in Staphylococcus aureus. Glycopeptide- Intermediate Staphylococcus aureusWorking Group. N. Engl. J. Med. 340: 493 501.
61. Snowden, M. A.,, and H. R. Perkins. 1990. Peptidoglycan crosslinking in Staphylococcus aureus. Eur. J. Biochem. 191: 373 377.
62. Tanaka, T.,, K. Okuzumi,, A. Iwamoto,, and K. Hiramatsu. 1995. A retrospective study on methicillin-resistant Staphylococcus aureus clinical strains in Tokyo University Hospital. J. Infect. Chemother. 1: 40 49.
63. Tenover, F. C.,, M. V. Lancaster,, B. C. Hill,, C. D. Steward,, S. A. Stocker,, G. A. Hancock,, C. M. O’Hara,, N. C. Clark,, and K. Hiramatsu. 1998. Characterization of staphylococci with reduced susceptibility to vancomycin and other glycopeptides. J. Clin. Microbiol. 36: 1020 1027.
64. Trakulsomboon, S.,, S. Danchaivijitr,, Y. Rongrungruang,, C. Dhiraputra,, W. Susaemgrat,, T. Ito,, and K. Hiramatsu. 2001. First report of methicillin-resistant Staphylococcus aureus with reduced susceptibility to vancomycin in Thailand. J. Clin. Microbiol. 39: 591 595.
65. Tsakris, A.,, E. Papadimitriou,, J. Douboyas,, F. Stylianopoulou,, and E. Manolis. 2002. Emergence of vancomycin-intermediate Staphylococcus aureus and S. sciuri, Greece. Emerg. Infect. Dis. 8: 536 537.
66. Ward, P. B.,, P. D. Johnson,, E. A. Grabsch,, B. C. Mayall,, and M. L. Grayson. 2001. Treatment failure due to methicillinresistant Staphylococcus aureus (MRSA) with reduced susceptibility to vancomycin. Med. J. Aust. 175: 480 483.
67. Watanakunakorn, C. 1990. In-vitro selection of resistance of Staphylococcus aureus to teicoplanin and vancomycin. J. Antimicrob. Chemother. 25: 69 72.
68. Wong, S. S.,, P. L. Ho,, P. C. Woo,, and K. Y. Yuen. 1999. Bacteremia caused by staphylococci with inducible vancomycin heteroresistance. Clin. Infect. Dis. 29: 760 767.
69. Wootton, M.,, R. A. Howe,, R. Hillman,, T. R. Walsh,, P. M. Bennett,, and A. P. MacGowan. 2001. A modified population analysis profile (PAP) method to detect hetero-resistance to vancomycin in Staphylococcus aureus in a UK hospital. J. Antimicrob. Chemother. 47: 399 403.
70. Yamashoji, S.,, I. Manome,, and M. Ikedo. 2001. Menadionecatalyzed O 2− production by Escherichia coli cells: application of rapid chemiluminescent assay to antimicrobial susceptibility testing. Microbiol. Immunol. 45: 333 340.

Tables

Generic image for table
Table 1

Isolation of hetero-VISA, VISA, and VRSA strains from various countries

UK, United Kingdom; MI, Michigan; NJ, New Jersey; NY, New York; IL, Illinois; PA, Pennsylvania; and MN, Minnesota.

with reduced vancomycin susceptibility.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21
Generic image for table
Table 2

Hetero-VISA strain Mu3 is composed of cells of various colony size classes

CSC, colony size class: RC, regular colony formed after 24 h; SC, small colony after 24 h; PC, pinpoint colony formed after 24 h; C2, colony formed after 48 h; C3, colony formed after 72h.

C2 and C3 are mostly unstable. One stable strain each was analyzed in this study.

Citation: Hiramatsu K, Kapi M, Tajima Y, Cui L, Ito T, Trakulsomboon S. 2005. Advances in Vancomycin Resistance: , p 289-298. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch21

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error