1887

Chapter 26 :

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap26-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap26-2.gif

Abstract:

Long attributed to the presence of a relatively impermeable outer membrane (OM) that restricts the ready entry of antimicrobials into the cell, the intrinsic multidrug resistance of results, in fact, from the synergistic activity of the outer membrane barrier and the operation of broadly specific multidrug efflux systems that together limit antimicrobial accumulation in this organism. Chromosomally encoded multidrug efflux systems of the resistance-nodulation-division (RND) family appear to be the most significant regarding export of and, thus, resistance to clinically important antimicrobials in and, indeed, other gram-negative pathogens. Characterized by resistance to all aminoglycosides and often associated with reduced aminoglycoside accumulation, such resistance was attributed to reduced uptake owing to reduced permeability and, as such, was typically referred to as ‘’impermeability resistance.’’ Characterized by decreased susceptibility to all aminoglycosides and loss of the resistance phenotype in the absence of drug, this reversible pan-aminoglycoside resistance is referred to as adaptive resistance. Intriguingly, resistance appears to result from reduced aminoglycoside accumulation, reminiscent of impermeability resistance. A locus involved in the synthesis of periplasmic glucans, ndvB, has recently been implicated in biofilm resistance to several agents, particularly tobramycin. In one retrospective study correlating β-lactam resistance rates with β-lactam use, overall resistance to β-lactams decreased when use of ceftazidime and cefotaxime was curtailed in favor of cefepime.

Citation: Poole K. 2005. , p 355-366. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch26

Key Concept Ranking

Antimicrobial Peptides
0.49401346
Fourth Generation Cephalosporins
0.4267001
0.49401346
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817572.chap26
1. Akasaka, T.,, M. Tanaka,, A. Yamaguchi,, and K. Sato. 2001. Type II topoisomerase mutations in fluoroquinolone-resistant clinical strains of Pseudomonas aeruginosa isolated in 1998 and 1999, role of target enzyme in mechanism of fluoroquinolone resistance. Antimicrob. Agents Chemother. 45: 2263 2268.
2. Andrade, S. S.,, R. N. Jones,, A. C. Gales,, and H. S. Sader. 2003. Increasing prevalence of antimicrobial resistance among Pseudomonas aeruginosa isolates in Latin American medical centres, 5 year report of the SENTRY Antimicrobial Surveillance Program (1997-2001). J. Antimicrob. Chemother. 52: 140 141.
3. Bagge, N.,, O. Ciofu,, M. Hentzer,, J. I. Campbell,, M. Givskov,, and N. Hoiby. 2002. Constitutive high expression of chromosomal β-lactamase in Pseudomonas aeruginosa caused by a new insertion sequence (IS 1669) located in ampD. Antimicrob. Agents Chemother. 46: 3406 3411.
4. Barclay, M. L.,, E. J. Begg,, S. T. Chambers,, P. E. Thornley,, P. K. Pattemore,, and K. Grimwood. 1996. Adaptive resistance to tobramycin in Pseudomonas aeruginosa lung infection in cystic fibrosis. J. Antimicrob. Chemother. 37: 1155 1164.
5. Beringer, P. 2001. The clinical use of colistin in patients with cystic fibrosis. Curr. Opin. Pulm. Med. 7: 434 440.
6. Bert, F.,, C. Branger,, and N. Lambert-Zechovsky. 2002. Identification of PSE and OXA β-lactamase genes in Pseudomonas aeruginosa using PCR-restriction fragment length polymorphism. J. Antimicrob. Chemother. 50: 11 18.
7. Bert, F.,, C. Branger,, and N. Lambert-Zechovsky. 2004. Comparative activity of β-lactam agents (carbapenem excepted) against Pseudomonas aeruginosa strains with CARB or OXA ?-lactamases. Chemotherapy (Basel) 50: 31 34.
7a.. Borriello, G.,, E. Werner,, F. Roe,, A. M. Kim,, G. D. Ehrlich,, and P. S. Stewart. 2004. Oxygen limitation contributes to antibiotic tolerance of Pseudomonas aeruginosa in biofilms. Antimicrob. Agents Chemother. 48: 2659 2664.
8. Bryan, L. E.,, R. Haraphongse,, and H. M. Van den Elzen. 1976. Gentamicin resistance in clinical-isolates of Pseudomonas aeruginosa associated with diminished gentamicin accumulation and no detectable enzymatic modification. J. Antibiot. (Tokyo) 29: 743 753.
9. Bukholm, G.,, T. Tannaes,, A. B. Kjelsberg,, and N. Smith- Erichsen. 2002. An outbreak of multidrug-resistant Pseudomonas aeruginosa associated with increased risk of patient death in an intensive care unit. Infect. Control. Hosp. Epidemiol. 23: 441 446.
10. Busch-Sorensen, C.,, M. Sonmezoglu,, N. Frimodt-Moller,, T. Hojbjerg,, G. H. Miller,, and F. Espersen. 1996. Aminoglycoside resistance mechanisms in Enterobacteriaceae and Pseudomonas spp. from two Danish hospitals, correlation with type of aminoglycoside used. APMIS 104: 763 768.
10a.. Cao, B.,, H. Wang,, H. Sun,, Y. Zhu,, and M. Chen. 2004. Risk factors and clinical outcomes of nosocomial multi-drug resistant Pseudomonas aeruginosa infections. J. Hosp. Infect. 57: 112 118.
11. Cao, L.,, R. Srikumar,, and K. Poole. 2004. MexAB-OprM hyperexpression in NalC type multidrug resistant Pseudomonas aeruginosa, identification and characterization of the nalC gene encoding a repressor of PA3720-PA3719. Mol. Microbiol. 53: 1423 1436.
11a.. Castanheira, M.,, M. A. Toleman,, R. N. Jones,, F. J. Schmidt,, and T. R. Walsh. 2004. Molecular characterization of a β-lactamase gene, bla GIM-1, encoding a new subclass of metallo-β-lactamase. Antimicrob. Agents Chemother. 48: 4654 4661.
12. Cavallo, J. D.,, R. Fabre,, F. Leblanc,, M. H. Nicolas-Chanoine,, and A. Thabaut. 2000. Antibiotic susceptibility and mechanisms of β-lactam resistance in 1310 strains of Pseudomonas aeruginosa, a French multicentre study ( 1996 ). J. Antimicrob. Chemother. 46: 133 136.
13. Cavallo, J. D.,, P. Plesiat,, G. Couetdic,, F. Leblanc,, and R. Fabre. 2002. Mechanisms of β-lactam resistance in Pseudomonas aeruginosa, prevalence of OprM-overproducing strains in a French multicentre study ( 1997 ). J. Antimicrob. Chemother. 50: 1039 1043.
14. Cheer, S. M.,, J. Waugh,, and S. Noble. 2003. Inhaled tobramycin (TOBI), a review of its use in the management of Pseudomonas aeruginosa infections in patients with cystic fibrosis. Drugs 63: 2501 2520.
15. Chen, H. Y.,, M. Yuan,, and D. M. Livermore. 1995. Mechanisms of resistance to β-lactam antibiotics amongst Pseudomonas aeruginosa isolates collected in the UK in 1993. J. Med. Microbiol. 43: 300 309.
16. Chuanchuen, R.,, R. R. Karkhoff-Schweizer,, and H. P. Schweizer. 2003. High-level triclosan resistance in Pseudomonas aeruginosa is solely a result of efflux. Am. J. Infect. Control. 31: 124 127.
17. Ciofu, O. 2003. Pseudomonas aeruginosa chromosomal β-lactamase in patients with cystic fibrosis and chronic lung infection. Mechanism of antibiotic resistance and target of the humoral immune response. APMIS 2003(Suppl.): 1 47.
18. Cunha, B. A. 2002. Pseudomonas aeruginosa, resistance and therapy. Semin. Respir. Infect. 17: 231 239.
19. Daikos, G. L.,, G. G. Jackson,, V. T. Lolans,, and D. M. Livermore. 1990. Adaptive resistance to aminoglycoside antibiotics from first-exposure down-regulation. J. Infect. Dis. 162: 414 420.
20. De Champs, C.,, L. Poirel,, R. Bonnet,, D. Sirot,, C. Chanal,, J. Sirot,, and P. Nordmann. 2002. Prospective survey of β-lactamases produced by ceftazidime-resistant Pseudomonas aeruginosa isolated in a French hospital in 2000. Antimicrob. Agents Chemother. 46: 3031 3034.
21. Denton, M.,, K. Kerr,, L. Mooney,, V. Keer,, A. Rajgopal,, K. Brownlee,, P. Arundel,, and S. Conway. 2002. Transmission of colistin-resistant Pseudomonas aeruginosa between patients attending a pediatric cystic fibrosis center. Pediatr. Pulmonol. 34: 257 261.
22. Drenkard, E. 2003. Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes. Infect. 5: 1213 1219.
23. Drenkard, E.,, and F. M. Ausubel. 2002. Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416: 740 743.
24. Empey, K. M.,, R. P. Rapp,, and M. E. Evans. 2002. The effect of an antimicrobial formulary change on hospital resistance patterns. Pharmacotherapy 22: 81 87.
25. Ernst, R. K.,, E. C. Yi,, L. Guo,, K. B. Lim,, J. L. Burns,, M. Hackett,, and S. I. Miller. 1999. Specific lipopolysaccharide found in cystic fibrosis airway Pseudomonas aeruginosa. Science 286: 1561 1565.
26. Gales, A. C.,, L. C. Menezes,, S. Silbert,, and H. S. Sader. 2003. Dissemination in distinct Brazilian regions of an epidemic carbapenem- resistant Pseudomonas aeruginosa producing SPM metallo-β-lactamase. J. Antimicrob. Chemother. 52: 699 702.
27. Gales, A. C.,, H. S. Sader,, and R. N. Jones. 2002. Urinary tract infection trends in Latin American hospitals, report from the SENTRY antimicrobial surveillance program (1997-2000). Diagn. Microbiol. Infect. Dis. 44: 289 299.
28. Garcia-Rodriguez, J. A.,, and R. N. Jones. 2002. Antimicrobial resistance in gram-negative isolates from European intensive care units, data from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) programme. J. Chemother. 14: 25 32.
29. Goossens, H. 2003. Susceptibility of multi-drug-resistant Pseudomonas aeruginosa in intensive care units, results from the European MYSTIC study group. Clin. Microbiol. Infect. 9: 980 983.
30. Hachler, H.,, P. Santanam,, and F. H. Kayser. 1996. Sequence and characterization of a novel chromosomal aminoglycoside phosphotransferase gene, aph ( 3') -IIb, in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40: 1254 1256.
31. Hall-Stoodley, L.,, J. W. Costerton,, and P. Stoodley. 2004. Bacterial biofilms, from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2: 95 108.
32. Hassett, D. J.,, J. Cuppoletti,, B. Trapnell,, S. V. Lymar,, J. J. Rowe,, Y. S. Sun,, G. M. Hilliard,, K. Parvatiyar,, M. C. Kamani,, D. J. Wozniak,, S. H. Hwang,, T. R. McDermott,, and U. A. Ochsner. 2002. Anaerobic metabolism and quorum sensing by Pseudomonas aeruginosa biofilms in chronically infected cystic fibrosis airways, rethinking antibiotic treatment strategies and drug targets. Adv. Drug Deliv. Rev. 54: 1425 1443.
33. He, G. X.,, T. Kuroda,, T. Mima,, Y. Morita,, T. Mizushima,, and T. Tsuchiya. 2004. An H_-coupled multidrug efflux pump, PmpM, a member of the MATE family of transporters, from Pseudomonas aeruginosa. J. Bacteriol. 186: 262 265.
34. Higgins, P. G.,, A. C. Fluit,, D. Milatovic,, J. Verhoef,, and F. J. Schmitz. 2003. Mutations in GyrA, ParC, MexR and NfxB in clinical isolates of Pseudomonas aeruginosa. Int. J. Antimicrob. Agents 21: 409 413.
35. Hoban, D. J.,, D. J. Biedenbach,, A. H. Mutnick,, and R. N. Jones. 2003. Pathogen of occurrence and susceptibility patterns associated with pneumonia in hospitalized patients in North America, results of the SENTRY Antimicrobial Surveillance Study ( 2000 ). Diagn. Microbiol. Infect. Dis. 45: 279 285.
36. Hocquet, D.,, X. Bertrand,, T. Kohler,, D. Talon,, and P. Plesiat. 2003. Genetic and phenotypic variations of a resistant Pseudomonas aeruginosa epidemic clone. Antimicrob. Agents Chemother. 47: 1887 1894.
37. Hocquet, D.,, C. Vogne,, F. El Garch,, A. Vejux,, N. Gotoh,, A. Lee,, O. Lomovskaya,, and P. Plesiat. 2003. MexXY-OprM efflux pump is necessary for adaptive resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 47: 1371 1375.
37a.. Islam, S.,, S. Jalal,, and B. Wretlind. 2004. Expression of the MexXY efflux pump in amikacin-resistant isolates of Pseudomonas aeruginosa. Clin. Microbiol. Infect. 10: 877 883.
38. Jones, R. N.,, J. T. Kirby,, M. L. Beach,, D. J. Biedenbach,, and M. A. Pfaller. 2002. Geographic variations in activity of broadspectrum β-lactams against Pseudomonas aeruginosa, summary of the worldwide SENTRY Antimicrobial Surveillance Program (1997-2000). Diagn. Microbiol. Infect. Dis. 43: 239 243.
39. Jones, R. N.,, H. S. Sader,, and M. L. Beach. 2003. Contemporary in vitro spectrum of activity summary for antimicrobial agents tested against 18569 strains non-fermentative Gram-negative bacilli isolated in the SENTRY Antimicrobial Surveillance Program (1997-2001). Int. J. Antimicrob. Agents 22: 551 556.
40. Karlowsky, J. A.,, D. J. Hoban,, S. A. Zelenitsky,, and G. G. Zhanel. 1997. Altered denA and anr gene expression in aminoglycoside adaptive resistance in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 40: 371 376.
41. Karlowsky, J. A.,, M. H. Saunders,, G. A. Harding,, D. J. Hoban,, and G. G. Zhanel. 1996. In vitro characterization of aminoglycoside adaptive resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 40: 1387 1393.
42. Kettner, M.,, P. Milosovic,, M. Hletkova,, and J. Kallova. 1995. Incidence and mechanisms of aminoglycoside resistance in Pseudomonas aeruginosa serotype O11 isolates. Infection 23: 380 383.
43. Koljalg, S.,, P. Naaber,, and M. Mikelsaar. 2002. Antibiotic resistance as an indicator of bacterial chlorhexidine susceptibility. J. Hosp. Infect. 51: 106 113.
43a.. Lambert, R. J. 2004. Comparative analysis of antibiotic and antimicrobial biocide susceptibility data in clinical isolates of methicillin-sensitive Staphylococcus aureus, methicillin-resistant Staphylococcus aureus and Pseudomonas aeruginosa between 1989 and 2000. J. Appl. Microbiol. 97: 699 711.
44. Langaee, T. Y.,, M. Dargis,, and A. Huletsky. 1998. An ampD gene in Pseudomonas aeruginosa encodes a negative regulator of AmpC β-lactamase expression. Antimicrob. Agents Chemother. 42: 3296 3300.
45. Lewis, K. 2001. Riddle of biofilm resistance. Antimicrob. Agents Chemother. 45: 999 1007.
46. Li, J.,, J. Turnidge,, R. Milne,, R. L. Nation,, and K. Coulthard. 2001. In vitro pharmacodynamic properties of colistin and colistin methanesulfonate against Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 45: 781 785.
47. Li, X.-Z.,, K. Poole,, and H. Nikaido. 2003. Contributions of MexAB-OprM and an EmrE homologue to intrinsic resistance of Pseudomonas aeruginosa to aminoglycosides and dyes. Antimicrob. Agents Chemother. 47: 27 33.
48. Livermore, D. M. 1995. β-lactamases in laboratory and clinical resistance. Clin. Microbiol. Rev. 8: 557 584.
49. Livermore, D. M. 2001. Of Pseudomonas, porins, pumps and carbapenems. J. Antimicrob. Chemother. 47: 247 250.
49a.. Llanes, C.,, D. Hocquet,, C. Vogne,, D. Benali-Baitich,, C. Neuwirth,, and P. Plesiat. 2004. Clinical strains of Pseudomonas aeruginosa overproducing MexAB-OprM and MexXY efflux pumps simultaneously. Antimicrob. Agents Chemother. 48: 1797 1802.
50. Lomovskaya, O.,, and W. Watkins. 2001. Inhibition of efflux pumps as a novel approach to combat drug resistance in bacteria. J. Mol. Microbiol. Biotechnol. 3: 225 236.
51. Loughlin, M. F.,, M. V. Jones,, and P. A. Lambert. 2002. Pseudomonas aeruginosa cells adapted to benzalkonium chloride show resistance to other membrane-active agents but not to clinically relevant antibiotics. J. Antimicrob. Chemother. 49: 631 639.
52. Macfarlane, E. L.,, A. Kwasnicka,, and R. E. Hancock. 2000. Role of Pseudomonas aeruginosa PhoP-phoQ in resistance to antimicrobial cationic peptides and aminoglycosides. Microbiology 146: 2543 2554.
53. Macfarlane, E. L.,, A. Kwasnicka,, M. M. Ochs,, and R. E. Hancock. 1999. PhoP-PhoQ homologues in Pseudomonas aeruginosa regulate expression of the outer-membrane protein OprH and polymyxin B resistance. Mol. Microbiol. 34: 305 316.
54. MacLeod, D. L.,, L. E. Nelson,, R. M. Shawar,, B. B. Lin,, L. G. Lockwood,, J. E. Dirk,, G. H. Miller,, J. L. Burns,, and R. L. Garber. 2000. Aminoglycoside-resistance mechanisms for cystic fibrosis Pseudomonas aeruginosa isolates are unchanged by longterm, intermittent, inhaled tobramycin treatment. J. Infect. Dis. 181: 1180 1184.
55. Mah, T. F.,, B. Pitts,, B. Pellock,, G. C. Walker,, P. S. Stewart,, and G. A. O’Toole. 2003. A genetic basis for Pseudomonas aeruginosa biofilm antibiotic resistance. Nature 426: 306 310.
56. Masuda, N.,, E. Sakagawa,, S. Ohya,, N. Gotoh,, H. Tsujimoto,, and T. Nishino. 2000. Contribution of the MexX-MexY-OprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44: 2242 2246.
57. McPhee, J. B.,, S. Lewenza,, and R. E. Hancock. 2003. Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa. Mol. Microbiol. 50: 205 217.
58. Miller, G. H.,, F. J. Sabatelli,, R. S. Hare,, Y. Glupczynski,, P. Mackey,, D. Shlaes,, K. Shimizu,, and K. J. Shaw. 1997. The most frequent aminoglycoside resistance mechanisms—changes with time and geographic area, a reflection of aminoglycoside usage patterns? Aminoglycoside Resistance Study Groups. Clin. Infect. Dis. 24 (Suppl. 1): S46 S62.
59. Miller, G. H.,, F. J. Sabatelli,, L. Naples,, R. S. Hare,, and K. J. Shaw. 1994. Resistance to aminoglycosides in Pseudomonas. Aminoglycoside Resistance Study Groups. Trends Microbiol. 2: 347 353.
60. Morita, Y.,, T. Murata,, T. Mima,, S. Shiota,, T. Kuroda,, T. Mizushima,, N. Gotoh,, T. Nishino,, and T. Tsuchiya. 2003. Induction of mexCD-oprJ operon for a multidrug efflux pump by disinfectants in wild-type Pseudomonas aeruginosa PAO1. J. Antimicrob. Chemother. 5: 991 994.
61. Moskowitz, S. M.,, R. K. Ernst,, and S. I. Miller. 2004. PmrAB, a two-component regulatory system of Pseudomonas aeruginosa that modulates resistance to cationic antimicrobial peptides and addition of aminoarabinose to lipid A. J. Bacteriol. 186: 575 579.
62. Mutnick, A. H.,, P. R. Rhomberg,, H. S. Sader,, and R. N. Jones. 2004. Antimicrobial usage and resistance trend relationships from the MYSTIC Programme in North America (1999-2001). J. Antimicrob. Chemother. 53: 290 296.
63. Naas, T.,, and P. Nordmann. 1999. OXA-type ?-lactamases. Curr. Pharm. Des 5: 865 879.
64. Nicas, T. I.,, and R. E. W. Hancock. 1980. Outer membrane proten H1 of Pseudomonas aeruginosa, involvement in adaptive and mutational resistance to ethylenediaminetetraacetate, polymyxin B, and gentamicin. J. Bacteriol. 143: 872 878.
65. Nordmann, P.,, and M. Guibert. 1998. Extended-spectrum _- lactamases in Pseudomonas aeruginosa. J. Antimicrob. Chemother. 42: 128 131.
66. Nordmann, P.,, and L. Poirel. 2002. Emerging carbapenemases in gram-negative aerobes. Clin. Microbiol. Infect. 8: 321 331.
67. Oh, H.,, J. Stenhoff,, S. Jalal,, and B. Wretlind. 2003. Role of efflux pumps and mutations in genes for topoisomerases II and IV in fluoroquinolone-resistant Pseudomonas aeruginosa strains. Microb. Drug Resist. 9: 323 328.
68. Okamoto, K.,, N. Gotoh,, and T. Nishino. 2002. Alterations of susceptibility of Pseudomonas aeruginosa by overproduction of multidrug efflux systems, MexAB-OprM, MexCD-OprJ, and MexXY/OprM to carbapenems, substrate specificities of the efflux systems. J. Infect. Chemother. 8: 371 373.
68a.. Obritsch, M. D.,, D. N. Fish,, R. Maclaren,, and R. Jung. 2004. National surveillance of antimicrobial resistance in Pseudomonas aeruginosa isolates obtained from intensive care unit patients from 1993 to 2002. Antimicrob. Agents Chemother. 48: 4606 4610.
69. Pai, H.,, J. Kim,, J. Kim,, J. H. Lee,, K. W. Choe,, and N. Gotoh. 2001. Carbapenem resistance mechanisms in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 45: 480 484.
70. Pirnay, J. P.,, D. de Vos,, C. Cochez,, F. Bilocq,, J. Pirson,, M. Struelens,, L. Duinslaeger,, P. Cornelis,, M. Zizi,, and A. Vanderkelen. 2003. Molecular epidemiology of Pseudomonas aeruginosa colonization in a burn unit, persistence of a multidrug-resistant clone and a silver sulfadiazine-resistant clone. J. Clin. Microbiol. 41: 1192 1202.
71. Pitt, T. L.,, M. Sparrow,, M. Warner,, and M. Stefanidou. 2003. Survey of resistance of Pseudomonas aeruginosa from UK patients with cystic fibrosis to six commonly prescribed antimicrobial agents. Thorax 58: 794 796.
72. Poole, K. 2000. Efflux-mediated resistance to fluoroquinolones in gram-negative bacteria. Antimicrob. Agents Chemother. 44: 2233 2241.
73. Poole, K. 2001. Multidrug efflux pumps and antimicrobial resistance in Pseudomonas aeruginosa and related organisms. J. Mol. Microbiol. Biotechnol. 3: 255 264.
74. Poole, K. 2002. Mechanisms of bacterial biocide and antibiotic resistance. J. Appl. Microbiol. 92 (Suppl. 1): 55S 64S.
75. Poole, K. 2002. Outer membranes and efflux, the path to multidrug resistance in gram-negative bacteria. Curr. Pharm. Biotechnol. 3: 77 98.
76. Poole, K. 2003. Overcoming multidrug resistance in gram-negative bacteria. Curr. Opin. Investig. Drugs 4: 139.
77. Poole, K. 2004. Aminoglycoside resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49: 479 487.
78. Poole, K. 2004. Efflux-mediated multiresistance in Gram-negative bacteria. Clin. Microbiol. Infect. 10: 12 26.
79. Poole, K. 2004. Resistance to β-lactam antibiotics. Cell. Mol. Life Sci. 61: 2200 2223.
80. Rennie, R. P.,, R. N. Jones,, and A. H. Mutnick. 2003. Occurrence and antimicrobial susceptibility patterns of pathogens isolated from skin and soft tissue infections, report from the SENTRY Antimicrobial Surveillance Program (United States and Canada, 2000). Diagn. Microbiol. Infect. Dis. 45: 287 293.
81. Rhomberg, P. R.,, R. N. Jones,, and H. S. Sader. 2004. Results from the Meropenem Yearly Susceptibility Test Information Collection (MYSTIC) Programme, report of the 2001 data from 15 United States medical centres. Int. J. Antimicrob. Agents 23: 52 59.
82. Riccio, M. L.,, J. D. Docquier,, E. Dell’Amico,, F. Luzzaro,, G. Amicosante,, and G. M. Rossolini. 2003. Novel 3-N-aminoglycoside acetyltransferase gene, aac( 3) -Ic, from a Pseudomonas aeruginosa integron. Antimicrob. Agents Chemother. 47: 1746 1748.
83. Sabtcheva, S.,, M. Galimand,, G. Gerbaud,, P. Courvalin,, and T. Lambert. 2003. Aminoglycoside resistance gene ant( 4') -IIb of Pseudomonas aeruginosa BM4492, a clinical isolate from Bulgaria. Antimicrob. Agents Chemother. 47: 1584 1588.
84. Sasaki, M.,, E. Hiyama,, Y. Takesue,, M. Kodaira,, T. Sueda,, and T. Yokoyama. 2004. Clinical surveillance of surgical imipenemresistant Pseudomonas aeruginosa infection in a Japanese hospital. J. Hosp. Infect. 56: 111 118.
85. Shaw, K. J.,, R. S. Hare,, F. J. Sabatelli,, M. Rizzo,, C. A. Cramer,, L. Naples,, S. Kocsi,, H. Munayyer,, P. Mann,, G. H. Miller,, L. Verbist,, H. van Landuyt,, Y. Glupczynski,, M. Catalano,, and M. Woloj. 1991. Correlation between aminoglycoside resistance profiles and DNA hybridization of clinical isolates. Antimicrob. Agents Chemother. 35: 2253 2261.
85a.. Sobel, M. L.,, D. Hocquet,, L. Cao,, P. Plesiat,, and K. Poole. 2005. Mutations in PA3574 ( nalD) lead to increased MexABOprM expression and multidrug resistance in lab and clinical isolates of Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 49: 1782 1786.
86. Sobel, M. L.,, G. A. McKay,, and K. Poole. 2003. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47: 3202 3207.
86a.. Sobel, M. L.,, S. Neshat,, and K. Poole. 2005. Mutations in PA2491 ( mexS) promote MexT-dependent mexEF-oprN expression and multidrug resistance in a clinical strain of Pseudomonas aeruginosa. J. Bacteriol. 187: 1246 1253.
87. Tabata, A.,, H. Nagamune,, T. Maeda,, K. Murakami,, Y. Miyake,, and H. Kourai. 2003. Correlation between resistance of Pseudomonas aeruginosa to quaternary ammonium compounds and expression of outer membrane protein OprR. Antimicrob. Agents Chemother. 47: 2093 2099.
88. Toleman, M. A.,, K. Rolston,, R. N. Jones,, and T. R. Walsh. 2003. Molecular and biochemical characterization of OXA- 45, an extended-spectrum class 2d' β-lactamase in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 47: 2859 2863.
89. Unal, S.,, R. Masterton,, and H. Goossens. 2004. Bacteraemia in Europe-antimicrobial susceptibility data from the MYSTIC surveillance programme. Int. J. Antimicrob. Agents 23: 155 163.
90. Vogne, C.,, J. R. Aires,, C. Bailly,, D. Hocquet,, and P. Plesiat. 2004. Role of the multidrug efflux system MexXY in the emergence of moderate resistance to aminoglycosides among Pseudomonas aeruginosa isolates from patients with cystic fibrosis. Antimicrob. Agents Chemother. 48: 1676 1680.
91. Weldhagen, G. F.,, L. Poirel,, and P. Nordmann. 2003. Ambler class A extended-spectrum _-lactamases in Pseudomonas aeruginosa, novel developments and clinical impact. Antimicrob. Agents Chemother. 47: 2385 2392.
92. Ziha-Zarifi, I.,, C. Llanes,, T. Koehler,, J.-C. Pechere,, and P. Plesiat. 1999. In vivo emergence of multidrug-resistant mutants of Pseudomonas aeruginosa overexpressing the active efflux system MexA-MexB-OprM. Antimicrob. Agents Chemother. 43: 287 291.

Tables

Generic image for table
Table 1.

Efflux determinants of antimicrobial resistance in

Modified from Poole ( ).

Antimicrobial efflux systems are identified according to the families of bacterial drug efflux systems to which they belong. Resistance-nodulation-division (RND) family pumps are typically tripartite and include as additional components the membrane fusion protein (MFP) and the outer membrane factor (OMF). The multidrug and toxic compound extrusion (MATE) and small multidrug resistance (SMR) family drug pumps described to date in are single-component pumps.

wt/+, efflux system is known to be expressed in wild-type (wt) cells (under laboratory growth conditions). wt/− mutant/++, efflux system is expressed in wt cells, but expression is enhanced in resistant strains. wt/− mutant/+, efflux system is not expressed in wt cells but is expressed in resistant strains. In instances where the nature of the mutation leading to enhanced efflux gene expression is known, the gene is indicated along with the relative level of gene expression.

AG, aminoglycosides; BAC, benzalkonium chloride; BL, β-lactams; CM, chloramphenicol; CIP, ciprofloxacin; ER, erythromycin; FQ, fluoroquinolones; ML, macrolides; NOR, norfloxacin; NV, novobiocin; SM, sulfonamides; TC, tetracycline; TG, tigecycline; TS, triclosan; TP, trimethorpim. In instances where only one member of a class of antimicrobial has been tested or is known to be a substrate for a given pump, that member is identified. Where several members of an antimicrobial class are known to be substrates, the class is identified rather than the actual compounds tested.

Efflux of triclosan but not the other antimicrobials is provided by MexJK-OpmH.

Citation: Poole K. 2005. , p 355-366. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch26
Generic image for table
Table 2.

Summary of recent studies documenting the incidence of antimicrobial resistance in clinical isolates of

Citation: Poole K. 2005. , p 355-366. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch26
Generic image for table
Table 3.

β-Lactamases of

See reference for more details.

Citation: Poole K. 2005. , p 355-366. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch26

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error