1887

Chapter 7 : Aminoglycoside Resistance Mechanisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Aminoglycoside Resistance Mechanisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap07-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap07-2.gif

Abstract:

The major target of aminoglycosides is the bacterial ribosome, as first suggested by in vivo experiments demonstrating a marked decrease in protein synthesis following treatment of cells with aminoglycosides and in vitro experiments on bacterial extracts showing that aminoglycoside treatment resulted in repression of both initiation and elongation in protein synthesis. Chemical footprinting studies and careful correlation analysis of ribosomal mutation with aminoglycoside resistance implicated specific ribosomal proteins and the tRNA binding site (A site) of the 16S rRNA as the most important determinants of aminoglycoside binding and action. There is some evidence that, at least in , the oligopeptide binding protein, the periplasmic component of the major oligopeptide transport system, may play an important role in aminoglycoside uptake as mutants with reduced oligopeptide binding protein expression are resistant to aminoglycosides. The most common aminoglycoside kinases are APH(3')-IIIa and APH(2")-Ia [C-terminal domain of the bifunctional aminoglycoside phosphotransferase-acetyltransferase AAC(6')-APH(2")] in gram-positive organisms, and APH(3')-Ia and APH(3')-IIa in gramnegative organisms. APH(3')-I is the most common class of aminoglycoside kinase in gram-negative bacteria. ANT(2")-Ia is one of the most important determinants of aminoglycoside resistance in gram-negative organisms. However, molecular research over the last decade has resulted in an excellent understanding of the mode of action, interaction with target, and various resistance mechanisms.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7

Key Concept Ranking

Antibacterial Agents
0.45861393
0.45861393
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Sixty years of aminoglycoside discovery.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Structure and function of aminoglycoside phosphotransferases. (A) Sites of APH-catalyzed phosphorylation of 2-deoxystreptoamine aminoglycosides. (B) Structure of APH(3′)-IIIa, demonstrating the structural similarity eukaryotic Ser/Thr protein kinase A. Inset, blow up of active site region showing five conserved amino acids found in both APHs and protein kinases.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

Structure and function of aminoglycoside nucleotidyltransferases. (A) Sites of ANT-catalyzed modification of 2- deoxystreptoamine aminoglycosides. (B) Structure of one monomer of ANT(4′) with inset showing active site residues and orientation of kanamycin and ATP, which lie in the active site formed at the dimer interface.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

Structure and function of aminoglycoside acetyltransferases. (A) Sites of AAC-catalyzed acetylation of 2-deoxystreptoamine aminoglycosides. (B) Comparison of the 3D-structures of the AAC subclasses.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Semisynthetic aminoglycosides 5-sisomicin and 5--gentamicin retain antibiotic activity even against bacterial strains harboring ANT(2″), AAC(3), and AAC(2′).

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

Evasion of APH-mediated resistance by 3′-oxo analogue of kanamycin A.

Citation: Boehr D, Moore I, Wright G. 2005. Aminoglycoside Resistance Mechanisms, p 85-100. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch7
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap7
1. Acosta, M. B.,, R. C. Ferreira,, G. Padilla,, L. C. Ferreira,, and S. O. Costa. 2000. Altered expression of oligopeptide-binding protein (OppA) and aminoglycoside resistance in laboratory and clinical Escherichia coli strains. J. Med. Microbiol. 49: 409 413.
2. Aires, J. R.,, T. Kohler,, H. Nikaido,, and P. Plesiat. 1999. Involvement of an active efflux system in the natural resistance of Pseudomonas aeruginosa to aminoglycosides. Antimicrob. Agents Chemother. 43: 2624 2628.
3. Allen, N. E., , W. E. Alborn, Jr., , J. N. Hobbs, Jr.,, and H. A. Kirst. 1982. 7-Hydroxytropolone: an inhibitor of aminoglycoside- 2″-O-adenylyltransferase. Antimicrob. Agents Chemother. 22: 824 831.
4. Azucena, E.,, I. Grapsas,, and S. Mobashery. 1997. Properties of a bifunctional bacterial antibiotic resistance enzyme that catalyzes ATP-dependent 2″-phosphorylation and acetyl-CoA dependent 6″-acetylation of aminoglycosides. J. Am. Chem. Soc. 119: 2317 2318.
5. Basso, L. A.,, and J. S. Blanchard. 1998. Resistance to antitubercular drugs. Adv. Exp. Med. Biol. 456: 115 144.
6. Birge, E. A.,, and C. G. Kurland. 1969. Altered ribosomal protein in streptomycin-dependent Escherichia coli. Science 166: 1282 1284.
7. Blanchard, S. C.,, D. Fourmy,, R. G. Eason,, and J. D. Puglisi. 1998. rRNA chemical groups required for aminoglycoside binding. Biochemistry 37: 7716 7724.
8. Boehr, D. D.,, K. A. Draker,, K. Koteva,, M. Bains,, R. E. Hancock,, and G. D. Wright. 2003. Broad-spectrum peptide inhibitors of aminoglycoside antibiotic resistance enzymes. Chem. Biol. 10: 189 196.
9. Boehr, D. D.,, S. I. Jenkins,, and G. D. Wright. 2003. The molecular basis of the expansive substrate specificity of the antibiotic resistance enzyme aminoglycoside acetyltransferase-6′- aminoglycoside phosphotransferase-2″. The role of ASP-99 as an active site base important for acetyl transfer. J. Biol. Chem. 278: 12873 12880.
10. Boehr, D. D.,, W. S. Lane,, and G. D. Wright. 2001. Active site labeling of the gentamicin resistance enzyme AAC(6′)-APH(2″) by the lipid kinase inhibitor wortmannin. Chem. Biol. 8: 791 800.
11. Boehr, D. D.,, P. R. Thompson,, and G. D. Wright. 2001. Molecular mechanism of aminoglycoside antibiotic kinase APH(3′)-IIIa: roles of conserved active site residues. J. Biol. Chem. 276: 23929 23936.
12. Bryan, L. E.,, and H. M. Van den Elzen. 1976. Streptomycin accumulation in susceptible and resistant strains of Escherichia coli and Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 9: 928 938.
13. Bryan, L. E.,, and H. M. Van Den Elzen. 1977. Effects of membrane- energy mutations and cations on streptomycin and gentamicin accumulation by bacteria: a model for entry of streptomycin and gentamicin in susceptible and resistant bacteria. Antimicrob. Agents Chemother. 12: 163 177.
14. Burk, D. L.,, W. C. Hon,, A. K. Leung,, and A. M. Berghuis. 2001. Structural analyses of nucleotide binding to an aminoglycoside phosphotransferase. Biochemistry 40: 8756 8764.
15. Carter, A. P.,, W. M. Clemons,, D. E. Brodersen,, R. J. Morgan- Warren,, B. T. Wimberly,, and V. Ramakrishnan. 2000. Functional insights from the structure of the 30S ribosomal subunit and its interactions with antibiotics. Nature 407: 340 348.
16. Chen-Goodspeed, M.,, J. L. Vanhooke,, H. M. Holden,, and F. M. Raushel. 1999. Kinetic mechanism of kanamycin nucleotidyltransferase from Staphylococcus aureus. Bioorg. Chem. 27: 395 408.
17. Chow, J. W.,, V. Kak,, I. You,, S. J. Kao,, J. Petrin,, D. B. Clewell,, S. A. Lerner,, G. H. Miller,, and K. J. Shaw. 2001. Aminoglycoside resistance genes aph(2″)-Ib and aac(6′)-Im detected together in strains of both Escherichia coli and Enterococcus faecium. Antimicrob. Agents Chemother. 45: 2691 2694.
18. Chow, J. W.,, M. J. Zervos,, S. A. Lerner,, L. A. Thal,, S. M. Donabedian,, D. D. Jaworski,, S. Tsai,, K. J. Shaw,, and D. B. Clewell. 1997. A novel gentamicin resistance gene in Enterococcus. Antimicrob. Agents Chemother. 41: 511 514.
19. Costa, Y.,, M. Galimand,, R. Leclercq,, J. Duval,, and P. Courvalin. 1993. Characterization of the chromosomal aac(6′)- Ii gene specific for Enterococcus faecium. Antimicrob. Agents Chemother. 37: 1896 1903.
20. Cox, J. R.,, D. R. Ekman,, E. L. DiGiammarino,, A. Akal- Strader,, and E. H. Serpersu. 2000. Aminoglycoside antibiotics bound to aminoglycoside-detoxifying enzymes and RNA adopt similar conformations. Cell Biochem. Biophys. 33: 297 308.
21. Cox, J. R.,, and E. H. Serpersu. 1997. Biologically important conformations of aminoglycoside antibiotics bound to an aminoglycoside 3′-phosphotransferase as determined by transferred nuclear Overhauser effect spectroscopy. Biochemistry 36: 2353 2359.
22. Culebras, E.,, and J. L. Martinez. 1999. Aminoglycoside resistance mediated by the bifunctional enzyme 6′-N-aminoglycoside acetyltransferase-2″-O-aminoglycoside phosphotransferase. Front. Biosci. 4: D1 D8.
23. Daigle, D. M.,, D. W. Hughes,, and G. D. Wright. 1999. Prodigious substrate specificity of AAC(6′)-APH(2″), an aminoglycoside antibiotic resistance determinant in enterococci and staphylococci. Chem. Biol. 6: 99 110.
24. Daigle, D. M.,, G. A. McKay,, P. R. Thompson,, and G. D. Wright. 1999. Aminoglycoside antibiotic phosphotransferases are also serine protein kinases. Chem. Biol. 6: 11 18.
25. Daigle, D. M.,, G. A. McKay,, and G. D. Wright. 1997. Inhibition of aminoglycoside antibiotic resistance enzymes by protein kinase inhibitors. J. Biol. Chem. 272: 24755 24758.
26. Davis, B. D. 1987. Mechanism of bactericidal action of aminoglycosides. Microbiol. Rev. 51: 341 350.
27. Disney, M. D.,, S. Magnet,, J. S. Blanchard,, and P. H. Seeberger. 2004. Aminoglycoside microarrays to study antibiotic resistance. Angew Chem. Int. Ed. Engl. 43: 1591 1594.
28. Doi, Y.,, K. Yokoyama,, K. Yamane,, J. Wachino,, N. Shibata,, T. Yagi,, K. Shibayama,, H. Kato,, and Y. Arakawa. 2004. Plasmidmediated 16S rRNA methylase in Serratia marcescens conferring high-level resistance to aminoglycosides. Antimicrob. Agents Chemother. 48: 491 496.
29. Draker, K. A.,, and G. D. Wright. 2004. Molecular mechanism of the enterococcal aminoglycoside 6′-N-acetyltransferase: role of GNAT-conserved residues in the chemistry of antibiotic inactivation. Biochemistry 43: 446 454.
30. Dyda, F.,, D. C. Klein,, and A. B. Hickman. 2000. GCN5-related N-acetyltransferases: a structural overview. Annu. Rev. Biophys. Biomol. Struct. 29: 81 103.
31. Ekman, D. R.,, E. L. DiGiammarino,, E. Wright,, E. D. Witter,, and E. H. Serpersu. 2001. Cloning, overexpression, and purification of aminoglycoside antibiotic nucleotidyltransferase (2″)-Ia: conformational studies with bound substrates. Biochemistry 40: 7017 7024.
32. Ferretti, J. J.,, K. S. Gilmore,, and P. Courvalin. 1986. Nucleotide sequence analysis of the gene specifying the bifunctional 6′-aminoglycoside acetyltransferase 2″-aminoglycoside phosphotransferase enzyme in Streptococcus faecalis and identification and cloning of gene regions specifying the two activities. J. Bacteriol. 167: 631 638.
33. Fong, D. H.,, and A. M. Berghuis. 2002. Substrate promiscuity of an aminoglycoside antibiotic resistance enzyme via target mimicry. EMBO J. 21: 2323 2331.
34. Fourmy, D.,, M. I. Recht,, S. C. Blanchard,, and J. D. Puglisi. 1996. Structure of the A site of Escherichia coli 16S ribosomal RNA complexed with an aminoglycoside antibiotic. Science 274: 1367 1371.
35. Fourmy, D.,, M. I. Recht,, and J. D. Puglisi. 1998. Binding of neomycin-class aminoglycoside antibiotics to the A-site of 16 S rRNA. J. Mol. Biol. 277: 347 362.
36. Fourmy, D.,, S. Yoshizawa,, and J. D. Puglisi. 1998. Paromomycin binding induces a local conformational change in the A-site of 16 S rRNA. J. Mol. Biol. 277: 333 345.
37. Fu, K. P.,, and H. C. Neu. 1978. Activity of 5-episisomicin compared with that of other aminoglycosides. Antimicrob. Agents Chemother. 14: 194 200.
38. Galimand, M.,, P. Courvalin,, and T. Lambert. 2003. Plasmidmediated high-level resistance to aminoglycosides in Enterobacteriaceae due to 16S rRNA methylation. Antimicrob. Agents Chemother. 47: 2565 2571.
39. Gates, C. A.,, and D. B. Northrop. 1988. Determination of the rate-limiting segment of aminoglycoside nucleotidyltransferase 2″-I by pH and viscosity-dependent kinetics. Biochemistry 27: 3834 3842.
40. Gates, C. A.,, and D. B. Northrop. 1988. Substrate specificities and structure-activity relationships for the nucleotidylation of antibiotics catalyzed by aminoglycoside nucleotidyltransferase 2″-I. Biochemistry 27: 3820 3825.
41. Gerratana, B.,, W. W. Cleland,, and L. A. Reinhardt. 2001. Regiospecificity assignment for the reaction of kanamycin nucleotidyltransferase from Staphylococcus aureus. Biochemistry 40: 2964 2971.
42. Gerratana, B.,, P. A. Frey,, and W. W. Cleland. 2001. Characterization of the transition-state structure of the reaction of kanamycin nucleotidyltransferase by heavy-atom kinetic isotope effects. Biochemistry 40: 2972 2977.
43. Gray, G. S.,, and W. M. Fitch. 1983. Evolution of antibiotic resistance genes: the DNA sequence of a kanamycin resistance gene from Staphylococcus aureus. Mol. Biol. Evol. 1: 57 66.
44. Haddad, J.,, S. Vakulenko,, and S. Mobashery. 1999. An antibiotic cloaked by its own resistance enzyme. J. Am. Chem. Soc. 121: 11922 11923.
45. Hancock, R. E. 1981. Aminoglycoside uptake and mode of action— with special reference to streptomycin and gentamicin. I. Antagonists and mutants. J. Antimicrob. Chemother. 8: 249 276.
46. Hegde, S. S.,, F. Javid-Majd,, and J. S. Blanchard. 2001. Overexpression and mechanistic analysis of chromosomally encoded aminoglycoside 2′-N-acetyltransferase (AAC(2′)-Ic) from Mycobacterium tuberculosis. J. Biol. Chem. 276: 45876 45881.
47. Hodel-Christian, S. L.,, and B. E. Murray. 1991. Characterization of the gentamicin resistance transposon Tn5281 from Enterococcus faecalis and comparison to staphylococcal transposons Tn4001 and Tn4031. Antimicrob. Agents Chemother. 35: 1147 1152.
48. Hon, W. C.,, G. A. McKay,, P. R. Thompson,, R. M. Sweet,, D. S. Yang,, G. D. Wright,, and A. M. Berghuis. 1997. Structure of an enzyme required for aminoglycoside antibiotic resistance reveals homology to eukaryotic protein kinases. Cell 89: 887 895.
49. Kabins, S. A.,, and C. Nathan. 1978. In vitro activity of 5- episisomicin in bacteria resistant to other aminoglycoside antibiotics. Antimicrob. Agents Chemother. 14: 391 397.
50. Kashiwagi, K.,, A. Miyaji,, S. Ikeda,, T. Tobe,, C. Sasakawa,, and K. Igarashi. 1992. Increase of sensitivity to aminoglycoside antibiotics by polyamine-induced protein (oligopeptidebinding protein) in Escherichia coli. J. Bacteriol. 174: 4331 4333.
51. Kashiwagi, K.,, M. H. Tsuhako,, K. Sakata,, T. Saisho,, A. Igarashi,, S. O. da Costa,, and K. Igarashi. 1998. Relationship between spontaneous aminoglycoside resistance in Escherichia coli and a decrease in oligopeptide binding protein. J. Bacteriol. 180: 5484 5488.
52. Kaufhold, A.,, A. Podbielski,, T. Horaud,, and P. Ferrieri. 1992. Identical genes confer high-level resistance to gentamicin upon Enterococcus faecalis, Enterococcus faecium, and Streptococcus agalactiae. Antimicrob. Agents Chemother. 36: 1215 1218.
53. Kim, C.,, J. Haddad,, S. B. Vakulenko,, S. O. Meroueh,, Y. Wu,, H. Yan,, and S. Mobashery. 2004. Fluorinated aminoglycosides and their mechanistic implication for aminoglycoside 3′- phosphotransferases from gram-negative bacteria. Biochemistry 43: 2373 2383.
54. Kirst, H. A.,, G. G. Marconi,, F. T. Counter,, P. W. Ensminger,, N. D. Jones,, M. O. Chaney,, J. E. Toth,, and N. E. Allen. 1982 . Synthesis and characterization of a novel inhibitor of an aminoglycoside- inactivating enzyme. J. Antibiot. (Tokyo) 35: 1651 1657.
55. Kondo, S.,, A. Tamura,, S. Gomi,, Y. Ikeda,, T. Takeuchi,, and S. Mitsuhashi. 1993. Structures of enzymatically modified products of arbekacin by methicillin resistant Staphylococcus aureus. J. Antibiot. 46: 310 315.
56. Leclerc, D.,, P. Melancon,, and L. Brakier-Gingras. 1991. Mutations in the 915 region of Escherichia coli 16S ribosomal RNA reduce the binding of streptomycin to the ribosome. Nucleic. Acids Res. 19: 3973 3977.
57. Levy, S. B. 1992. The Antibiotic Paradox. Plenum Press, New York, N.Y.
58. Lovering, A. M.,, L. O. White,, and D. S. Reeves. 1987. AAC(1): a new aminoglycoside-acetylating enzyme modifying the Cl aminogroup of apramycin. J. Antimicrob. Chemother. 20: 803 813.
59. Magnet, S.,, P. Courvalin,, and T. Lambert. 1999. Activation of the cryptic aac( 6′)- Iy aminoglycoside resistance gene of Salmonella by a chromosomal deletion generating a transcriptional fusion. J. Bacteriol. 181: 6650 6655.
60. Martel, A.,, M. Masson,, N. Moreau,, and F. Le Goffic. 1983. Kinetic studies of aminoglycoside acetyltransferase and phosphotransferase from Staphylococcus aureus RPAL. Relationship between the two activities. Eur. J. Biochem. 133: 515 521.
61. Masuda, N.,, E. Sakagawa,, S. Ohya,, N. Gotoh,, H. Tsujimoto,, and T. Nishino. 2000. Contribution of the MexX-MexYoprM efflux system to intrinsic resistance in Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 44: 2242 2246.
62. McKay, G. A.,, J. Roestamadji,, S. Mobashery,, and G. D. Wright. 1996. Recognition of aminoglycoside antibiotics by enterococcal- staphylococcal aminoglycoside 3′-phosphotransferase type IIIa: role of substrate amino groups. Antimicrob. Agents Chemother. 40: 2648 2650.
63. McKay, G. A.,, P. R. Thompson,, and G. D. Wright. 1994. Broad spectrum aminoglycoside phosphotransferase type III from Enterococcus: overexpression, purification, and substrate specificity. Biochemistry 33: 6936 6944.
64. McKay, G. A.,, and G. D. Wright. 1995. Kinetic mechanism of aminoglycoside phosphotransferase type IIIa. Evidence for a Theorell-Chance mechanism. J. Biol. Chem. 270: 24686 24692.
65. McKay, G. A.,, and G. D. Wright. 1996. Catalytic mechanism of enterococcal kanamycin kinase (APH(3′)-IIIa): viscosity, thio, and solvent isotope effects support a Theorell-Chance mechanism. Biochemistry 35: 8680 8685.
66. Mehta, R.,, and W. S. Champney. 2003. Neomycin and paromomycin inhibit 30S ribosomal subunit assembly in Staphylococcus aureus. Curr. Microbiol. 47: 237 243.
67. Miller, G. H.,, F. J. Sabatelli,, R. S. Hare,, Y. Glupczynski,, P. Mackey,, D. Shlaes,, K. Shimizu,, and K. J. Shaw. 1997. The most frequent aminoglycoside resistance mechanisms—changes with time and geographic area: a reflection of aminoglycoside usage patterns? Aminoglycoside Resistance Study Groups. Clin. Infect. Dis. 24( Suppl. 1): S46 S62.
68. Miller, M. H.,, S. C. Edberg,, L. J. Mandel,, C. F. Behar,, and N. H. Steigbigel. 1980. Gentamicin uptake in wild-type and aminoglycoside-resistant small-colony mutants of Staphylococcus aureus. Antimicrob. Agents Chemother. 18: 722 729.
69. Mine, T.,, Y. Morita,, A. Kataoka,, T. Mizushima,, and T. Tsuchiya. 1999. Expression in Escherichia coli of a new multidrug efflux pump, MexXY, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 43: 415 417.
70. Moazed, D.,, and H. F. Noller. 1987. Interaction of antibiotics with functional sites in 16S ribosomal RNA. Nature 327: 389 394.
71. Montandon, P. E.,, R. Wagner,, and E. Stutz. 1986. E. coli ribosomes with a C912 to U base change in the 16S rRNA are streptomycin resistant. EMBO J. 5: 3705 3708.
72. Moore, R. A.,, D. DeShazer,, S. Reckseidler,, A. Weissman,, and D. E. Woods. 1999. Efflux-mediated aminoglycoside and macrolide resistance in Burkholderia pseudomallei. Antimicrob. Agents Chemother. 43: 465 470.
73. Murakami, S.,, R. Nakashima,, E. Yamashita,, and A. Yamaguchi. 2002. Crystal structure of bacterial multidrug efflux transporter AcrB. Nature 419: 587 593.
74. Nurizzo, D.,, S. C. Shewry,, M. H. Perlin,, S. A. Brown,, J. N. Dholakia,, R. L. Fuchs,, T. Deva,, E. N. Baker,, and C. A. Smith. 2003. The crystal structure of aminoglycoside-3′-phosphotransferase- IIa, an enzyme responsible for antibiotic resistance. J. Mol. Biol. 327: 491 506.
75. Ozaki, M.,, S. Mizushima,, and M. Nomura. 1969. Identification and functional characterization of the protein controlled by the streptomycin-resistant locus in E. coli. Nature 222: 333 339.
76. Papadopoulou, B.,, and P. Courvalin. 1988. Dispersal in Campylobacter spp. of aphA-3, a kanamycin resistance determinant from gram-positive cocci. Antimicrob. Agents Chemother. 32: 945 948.
77. Pedersen, L. C.,, M. M. Benning,, and H. M. Holden. 1995. Structural investigation of the antibiotic and ATP-binding sites in kanamycin nucleotidyltransferase. Biochemistry 34: 13305 13311.
78. Poirel, L.,, T. Lambert,, S. Turkoglu,, E. Ronco,, J. Gaillard,, and P. Nordmann. 2001. Characterization of Class 1 integrons from Pseudomonas aeruginosa that contain the bla(VIM-2) carbapenem-hydrolyzing beta-lactamase gene and of two novel aminoglycoside resistance gene cassettes. Antimicrob. Agents Chemother. 45: 546 552.
79. Poole, K. 2001. Multidrug resistance in gram-negative bacteria. Curr. Opin. Microbiol. 4: 500 508.
80. Riccio, M. L.,, J. D. Docquier,, E. Dell’Amico,, F. Luzzaro,, G. Amicosante,, and G. M. Rossolini. 2003. Novel 3-Naminoglycoside acetyltransferase gene, aac( 3) -Ic, from a Pseudomonas aeruginosa integron. Antimicrob. Agents Chemother. 47: 1746 1748.
81. Roestamadji, J.,, I. Grapsas,, and S. Mobashery. 1995. Loss of individual electrostatic interactions between aminoglycoside antibiotics and resistance enzymes as an effective means to overcoming bacterial drug resistance. J. Am. Chem. Soc. 117: 11060 11069.
82. Roestamadji, J.,, I. Grapsas,, and S. Mobashery. 1995. Mechanism- based inactivation of bacterial aminoglycoside 3′- phosphotransferases. J. Am. Chem. Soc. 117: 80 84.
83. Roestamadji, J.,, and S. Mobashery. 1998. The use of neamine as a molecular template: inactivation of bacterial antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa. Bioorg. Med. Chem. Lett. 8: 3483 3488.
84. Rosenberg, E. Y.,, D. Ma,, and H. Nikaido. 2000. AcrD of Escherichia coli is an aminoglycoside efflux pump. J. Bacteriol. 182: 1754 1756.
85. Rouch, D. A.,, M. E. Byrne,, Y. C. Kong,, and R. A. Skurray. 1987. The aacA-aphD gentamicin and kanamycin resistance determinant of Tn4001 from Staphylococcus aureus: expression and nucleotide sequence analysis. J. Gen. Microbiol. 133: 3039 3052.
86. Sakon, J.,, H. H. Liao,, A. M. Kanikula,, M. M. Benning,, I. Rayment,, and H. M. Holden. 1993. Molecular structure of kanamycin nucleotidyltransferase determined to 3.0Å-resolution. Biochemistry 32: 11977 11984.
87. Saleh, N. A.,, A. Zwiefak,, W. Peczynska-Czoch,, M. Mordarski,, and G. Pulverer. 1988. New inhibitors for aminoglycosideadenylyltransferase. Zentralbl. Bakteriol. Mikrobiol. Hyg. [ A]. 270: 66 75.
88. Santanam, P.,, and F. H. Kayser. 1978. Purification and characterization of an aminoglycoside inactivating enzyme from Staphylococcus epidermidis FK109 that nucleotidylates the 4′- and 4″-hydroxyl groups of the aminoglycoside antibiotics. J. Antibiot. (Tokyo) 31: 343 351.
89. Schatz, A.,, E. Bugie,, and S. A. Waksman. 1944. Streptomycin, a substance exibiting antibiotic activity against Gram-positive and Gram-negative bacteria. Proc. Soc. Exp. Biol. Med. 55: 66 69.
90. Schatz, A.,, E. Bugie,, and S. A. Waksman. 1973. Selman Abraham Waksman, Ph.D. 22 July 1888—16 August 1973. Streptomycin reported. Ann. Intern. Med. 79: 678.
91. Schwocho, L. R.,, C. P. Schaffner,, G. H. Miller,, R. S. Hare,, and K. J. Shaw. 1995. Cloning and characterization of a 3- Naminoglycoside acetyltransferase gene, aac( 3) -Ib, from Pseudomonas aeruginosa. Antimicrob. Agents Chemother. 39: 1790 1796.
92. Sigmund, C. D.,, M. Ettayebi,, and E. A. Morgan. 1984. Antibiotic resistance mutations in 16S and 23S ribosomal RNA genes of Escherichia coli. Nucleic Acids Res. 12: 4653 63.
93. Siregar, J. J.,, S. A. Lerner,, and S. Mobashery. 1994. Purification and characterization of aminoglycoside 3′-phosphotransferase type IIa and kinetic comparison with a new mutant enzyme. Antimicrob. Agents Chemother. 38: 641 647.
94. Siregar, J. J.,, K. Miroshnikov,, and S. Mobashery. 1995. Purification, characterization, and investigation of the mechanism of aminoglycoside 3′-phosphotransferase type Ia. Biochemistry 34: 12681 12688.
95. Sobel, M. L.,, G. A. McKay,, and K. Poole. 2003. Contribution of the MexXY multidrug transporter to aminoglycoside resistance in Pseudomonas aeruginosa clinical isolates. Antimicrob. Agents Chemother. 47: 3202 3207.
96. Sucheck, S. J.,, A. L. Wong,, K. M. Koeller,, D. D. Boehr,, K.-A. Draker,, P. Sears,, G. D. Wright,, and C.-H. Wong. 2000. Design of bifunctional antibiotics that target bacterial rRNA and inhibit resistance-causing enzymes. J. Am. Chem. Soc. 122: 5230 5231.
97. Sunada, A.,, M. Nakajima,, Y. Ikeda,, S. Kondo,, and K. Hotta. 1999. Enzymatic 1-N-acetylation of paromomycin by an actinomycete strain #8 with multiple aminoglycoside resistance and paromomycin sensitivity. J. Antibiot. (Tokyo) 52: 809 814.
98. Sutherland, R. 1995. Beta-Lactam/beta-lactamase inhibitor combinations: development, antibacterial activity and clinical applications. Infection 23: 191 200.
99. Tai, P. C.,, B. J. Wallace,, and B. D. Davis. 1978. Streptomycin causes misreading of natural messenger by interacting with ribosomes after initiation. Proc. Natl. Acad. Sci. USA 75: 275 279.
100. Tai, P. C.,, B. J. Wallace,, E. L. Herzog,, and B. D. Davis. 1973. Properties of initiation-free polysomes of Escherichia coli. Biochemistry 12: 609 615.
101. Taylor, D. E.,, W. Yan,, L. K. Ng,, E. K. Manavathu,, and P. Courvalin. 1988. Genetic characterization of kanamycin resistance in Campylobacter coli. Ann. Inst. Pasteur. Microbiol. 139: 665 676.
102. Thal, L. A.,, J. W. Chow,, J. E. Patterson,, M. B. Perri,, S. Donabedian,, D. B. Clewell,, and M. J. Zervos. 1993. Molecular characterization of highly gentamicin-resistant Enterococcus faecalis isolates lacking high-level streptomycin resistance. Antimicrob. Agents Chemother. 37: 134 137.
103. Thompson, P. R.,, D. D. Boehr,, A. M. Berghuis,, and G. D. Wright. 2002. Mechanism of aminoglycoside antibiotic kinase APH(3′)-IIIa: role of the nucleotide positioning loop. Biochemistry 41: 7001 7007.
104. Thompson, P. R.,, D. W. Hughes,, N. P. Cianciotto,, and G. D. Wright. 1998. Spectinomycin kinase from Legionella pneumophila. Characterization of substrate specificity and identification of catalytically important residues. J. Biol. Chem. 273: 14788 14795.
105. Thompson, P. R.,, D. W. Hughes,, and G. D. Wright. 1996. Mechanism of aminoglycoside 3′-phosphotransferase type IIIa: His188 is not a phosphate-accepting residue. Chem. Biol. 3: 747 755.
106. Thompson, P. R.,, D. W. Hughes,, and G. D. Wright. 1996. Regiospecificity of aminoglycoside phosphotransferase from Enterococci and Staphylococci (APH(3′)-IIIa). Biochemistry 35: 8686 8695.
107. Thompson, P. R.,, J. Schwartzenhauer,, D. W. Hughes,, A. M. Berghuis,, and G. D. Wright. 1999. The COOH terminus of aminoglycoside phosphotransferase (3′)-IIIa is critical for antibiotic recognition and resistance. J. Biol. Chem. 274: 30697 30706.
108. Trieu-Cuot, P.,, and P. Courvalin. 1983. Nucleotide sequence of the Streptococcus faecalis plasmid gene encoding the 3′5″- aminoglycoside phosphotransferase type III. Gene 23: 331 341.
109. Tsai, S. F.,, M. J. Zervos,, D. B. Clewell,, S. M. Donabedian,, D. F. Sahm,, and J. W. Chow. 1998. A new high-level gentamicin resistance gene, aph( 2″)- Id, in Enterococcus spp. Antimicrob. Agents Chemother. 42: 1229 1232.
110. Ubukata, K.,, N. Yamashita,, A. Gotoh,, and M. Konno. 1984. Purification and characterization of aminoglycosidemodifying enzymes from Staphylococcus aureus and Staphylococcus epidermidis. Antimicrob. Agents Chemother. 25: 754 759.
111. Umezawa, H.,, Y. Nishimura,, T. Tsuchiya,, and S. Umezawa. 1972. Syntheses of 6′-N-methyl-kanamycin and 3′,4′-dideoxy- 6′-N-methylkanamycin B active against resistant strains having 6′-N-acetylating enzymes. J. Antibiot. (Tokyo) 25: 743 745.
112. Umezawa, H.,, M. Okanishi,, S. Kondo,, K. Hamana,, R. Utahara,, K. Maeda,, and S. Mitsuhashi. 1967. Phosphorylative inactivation of aminoglycopside antibioics by Escherichia coli carrying R factor. Science 157: 1559 1561.
113. Umezawa, H.,, M. Okanishi,, R. Utahara,, K. Maeda,, and S. Kondo. 1967. Isolation and structure of kanamycin inactivated by a cell free system of kanamycin-resistant E. coli. J. Antibiot. (Tokyo) 20: 136 141.
114. Umezawa, H.,, M. Ueda,, K. Maeda,, K. Yagishita,, S. Kando,, Y. Okami,, R. Utahara,, Y. Osato,, K. Nitta,, and T. Kakeuchi. 1957. Production and isolation of a new antibiotic kanamycin. J. Antibiot. 10: 181 189.
115. Umezawa, H.,, S. Umezawa,, T. Tsuchiya,, Y. Okazaki,, R. Muto,, and Y. Nishimura. 1971. 3′,4′-dideoxy-kanamycin B active against kanamycin-resistant Escherichia coli and Pseudomonas aeruginosa. J. Antibiot. (Tokyo) 24: 485 487.
116. Vetting, M.,, S. L. Roderick,, S. Hegde,, S. Magnet,, and J. S. Blanchard. 2003. What can structure tell us about in vivo function? The case of aminoglycoside-resistance genes. Biochem. Soc. Trans. 31: 520 522.
117. Vetting, M. W.,, S. S. Hegde,, F. Javid-Majd,, J. S. Blanchard,, and S. L. Roderick. 2002. Aminoglycoside 2′-N-acetyltransferase from Mycobacterium tuberculosis in complex with coenzyme A and aminoglycoside substrates. Nat. Struct. Biol. 9: 653 658.
118. Waitz, J. A.,, G. H. Miller, , E. Moss, Jr.,, and P. J. Chiu. 1978. Chemotherapeutic evaluation of 5-episisomicin (Sch 22591), a new semisynthetic aminoglycoside. Antimicrob. Agents Chemother. 13: 41 48.
119. Waksman, S.,, and H. B. Woodruff. 1940. Bacteriostatic and bactericidal substances produced by soil Actinomyces. Proc. Soc. Exp. Biol. Med. 45: 609 614.
120. Waksman, S. A.,, and H. A. Lechevalier. 1949. Neomycin, a new antibiotic active against streptomycin-resistant bacteria, including tuberculosis organisms. Science 109: 305 307.
121. Wallace, B. J.,, P. C. Tai,, E. L. Herzog,, and B. D. Davis. 1973. Partial inhibition of polysomal ribosomes of Escherichia coli by streptomycin. Proc. Natl. Acad. Sci. USA 70: 1234 1237.
122. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Killgore,, and F. C. Tenover. 2003. Genetic analysis of a highlevel vancomycin-resistant isolate of Staphylococcus aureus. Science 302: 1569 1571.
123. Weinstein, M. J.,, G. M. Luedemann,, E. M. Oden,, G. H. Wagman,, J. P. Rosselet,, J. A. Marquez,, C. T. Coniglio,, W. Charney,, H. L. Herzog,, and J. Black. 1963. Gentamicin, a new antibiotic complex from Micromonospora. J. Med. Chem. 6: 463 464.
124. Westbrock-Wadman, S.,, D. R. Sherman,, M. J. Hickey,, S. N. Coulter,, Y. Q. Zhu,, P. Warrener,, L. Y. Nguyen,, R. M. Shawar,, K. R. Folger,, and C. K. Stover. 1999. Characterization of a Pseudomonas aeruginosa efflux pump contributing to aminoglycoside impermeability. Antimicrob. Agents Chemother. 43: 2975 2983.
125. Williams, J. W.,, and D. B. Northrop. 1979. Synthesis of a tight-binding, multisubstrate analog inhibitor of gentamicin acetyltransferase I. J. Antibiot. (Tokyo) 32: 1147 1154.
126. Wolf, E.,, A. Vassilev,, Y. Makino,, A. Sali,, Y. Nakatani,, and S. K. Burley. 1998. Crystal structure of a GCN5-related Nacetyltransferase: Serratia marcescens aminoglycoside 3-Nacetyltransferase. Cell 94: 439 449.
127. Woodcock, J.,, D. Moazed,, M. Cannon,, J. Davies,, and H. F. Noller. 1991. Interaction of antibiotics with A- and P-sitespecific bases in 16S ribosomal RNA. EMBO J. 10: 3099 3103.
128. Wybenga-Groot, L. E.,, K. Draker,, G. D. Wright,, and A. M. Berghuis. 1999. Crystal structure of an aminoglycoside 6′-N-acetyltransferase: defining the GCN5-related N-acetyltransferase superfamily fold. Structure Fold. Des. 7: 497 507.
129. Yang, Y.,, J. Roestamadji,, S. Mobashery,, and R. Orlando. 1998. The use of neamine as a molecular template: identification of active site residues in the bacterial antibiotic resistance enzyme aminoglycoside 3′-phosphotransferase type IIa by mass spectroscopy. Bioorg. Med. Chem. Lett. 8: 3489 3494.
130. Yokoyama, K.,, Y. Doi,, K. Yamane,, H. Kurokawa,, N. Shibata,, K. Shibayama,, T. Yagi,, H. Kato,, and Y. Arakawa. 2003. Acquisition of 16S rRNA methylase gene in Pseudomonas aeruginosa. Lancet 362: 1888 1893.
131. Yoshizawa, S.,, D. Fourmy,, and J. D. Puglisi. 1998. Structural origins of gentamicin antibiotic action. EMBO J. 17: 6437 6448.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error