1887

Chapter 8 : Glycopeptide Resistance in Enterococci

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Glycopeptide Resistance in Enterococci, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817572/9781555813291_Chap08-2.gif

Abstract:

This chapter reviews the mode of action and the mechanism of resistance to glycopeptides, as exemplified by the vancomycin A (VanA)-type mediated by transposon Tn1546, which is widely spread in enterococci. Six types of vancomycin-resistant enterococci have been characterized on phenotypic and genotypic bases; five types possess acquired resistance (VanA, B, D, E, and G) and one type, VanC, is an intrinsic property of , , and . Classification of glycopeptide resistance is now based on the primary sequence of the structural genes for the resistance ligases rather than on the levels of resistance to glycopeptides, since the MIC ranges of vancomycin and teicoplanin against the various types overlap. VanA is the most frequently encountered type of glycopeptide resistance in enterococci. An interesting phenomenon that has developed in some VanA- and VanB-type enterococci is vancomycin dependence. Conjugal transfer of plasmids that have acquired Tn1546-like elements by transposition appears to be responsible for the spread of glycopeptide resistance in enterococci. In enterococci, major advances in the understanding of the mechanism of glycopeptide resistance have been achieved. The emergence and dissemination of high-level resistance to glycopeptides in enterococci in the past two decades has resulted in clinical isolates resistant to all antibiotics of proven efficacy. Although enterococci are not highly pathogenic, the incidence of glycopeptide resistance among clinical isolates is increasing and the enterococci have become important as nosocomial pathogens and as a reservoir of resistance genes.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8

Key Concept Ranking

Two-Component Signal Transduction Systems
0.43336728
Gene Expression and Regulation
0.40787074
0.43336728
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of Figure 1
Figure 1

Schematic representation of peptidoglycan biosynthesis and mode of action of vancomycin. The formation of complexes between the antibiotic and the C-terminal -alanyl--alanine moiety of peptidoglycan precursors prevents transfer of precursors from the lipid carrier to the peptidoglycan by transglycosylation. The reactions catalyzed by transpeptidases and ,-carboxypeptidases are also inhibited.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 2
Figure 2

Interaction between vancomycin and the C-terminal end of peptidoglycan precursors. Binding of vancomycin to the (A) -ala--ala extremity; (B) -ala--Lac extremity (substitution of the NH group by an oxygen prevents the formation of the central hydrogen bond); (C) -ala--Ser extremity (substitution of a CH group by a CHOH group induces steric hindrance to binding).

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 3
Figure 3

VanA-type glycopeptide resistance and map of Tn. (A) Schematic representation of the synthesis of peptidoglycan precursors in the VanA-type BM4147 resistant strain. (B) Organization of the operon. Open arrows represent coding sequences and indicate the direction of transcription. Open and closed arrowheads labeled IR and IR indicate the left and right inverted repeats of the transposon. The regulator and and resistance genes , , , , and are cotranscribed from promoters and , respectively.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 4
Figure 4

VanC-type glycopeptide resistance. (A) Organization of the operon. Open arrows represent coding sequences and indicate the direction of transcription. (B) Schematic representation of the synthesis of peptidoglycan precursors in the VanC-type BM4174 strain. Tri, -ala-γ--Glu--Lys.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 5
Figure 5

Comparison of the gene clusters. Open arrows represent coding sequences and indicate the direction of transcription. The guanosine plus cytosine content (% GC) is indicated in the arrows. The percentage of amino acid (aa) identity between the deduced proteins of reference strains BM4147 (VanA) (15), V583 (VanB) (53), BM4339 (VanD) (32), BM4174 (VanC) (4), BM4405 (VanE) (1), and BM4518 (VanG) (42) is indicated under the arrows. Transposon Tn (10851 bp) carries the operon and is delineated by 38-bp imperfect inverted repeats represented by arrowheads (IR and IR). Transposon Tn (65 kb) carries the gene cluster and is delineated by insertion sequences IS-like and IS in direct orientation (represented by boxes). The vertical bar in indicates the frameshift mutation leading to a predicted truncated protein.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 6
Figure 6

VanD-type glycopeptide resistance. (A) Schematic representation of the synthesis of peptidoglycan precursors in a VanD-type resistant strain. (B) Organization of the operon. Open arrows represent coding sequences and indicate the direction of transcription. Regulatory and and resistance genes , , , and are cotranscribed from promoters and , respectively. •, N-acetylmuramic acid; ○, N-acetylglucosamine; tri, -ala-g--Glu--Lys; |, undecaprenylpyrophosphate (lipid carrier).

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 7
Figure 7

Schematic representation of the synthesis of peptidoglycan precursors in a vancomycin-dependent strain. Due to inactivation of the indigenous -ala:-ala ligase (Ddl), vancomycin is required in the culture medium to induce expression of the resistance pathway, thus allowing bacterial growth.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 8
Figure 8

Schematic representation of, and regulation by, the VanRS two-component regulatory system. (A) Structure of VanR and VanS proteins. Asp, aspartate; His, histidine; P, phosphate. (B) Model for positive (phosphorylation) and negative (dephosphorylation) control of VanR by VanS.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 9
Figure 9

Schematic representation of the VanS sensor and location of the amino acid substitutions in teicoplanin-resistant mutants. H, N, Gl, F, and G2 refer to the motifs conserved in histidine protein kinases. The putative membrane-associated sensor domain (dotted black) containing transmembrane segments (black) and the putative cytoplasmic kinase domain (white) are indicated. Het, heterogeneously resistant; R, resistant; Vm, vancomycin; Te, teicoplanin.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of Figure 10
Figure 10

Phylogenetic tree derived from the alignment of -ala:-ala ligases and related enzymes.

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817572.chap8
1. Abadía, L.,, P. Courvalin,, and B. Périchon. 2002. vanE gene cluster of vancomycin-resistant Enterococcus faecalis BM4405. J. Bacteriol. 184:64576464.
2. Al-Obeid, S.,, D. Billot-Klein,, J. Van Heijenoort,, E. Collatz,, and L. Gutmann. 1992. Replacement of the essential penicillinbinding protein 5 by high-molecular mass PBPs may explain vancomycin-b-lactam synergy in low-level vancomycinresistant Enterococcus faecium D366. FEMS Microbiol. Lett. 91:7984.
3. Ambur, O. H.,, P. E. Reynolds,, and C. A. Arias. 2002. D-ala:D-ala ligase gene flanking the vanC cluster: evidence for presence of three ligase genes in vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 46:95100.
4. Arias, C. A.,, P. Courvalin,, and P. E. Reynolds. 2000. vanC cluster of vancomycin-resistant Enterococcus gallinarum BM4174. Antimicrob. Agents Chemother. 44:16601666.
5. Arias, C. A.,, M. Martin-Martinez,, T. L. Blundell,, M. Arthur,, P. Courvalin,, and P. E. Reynolds. 1999. Characterization and modelling of VanT: a novel, membrane-bound, serine racemase from vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 31:16531664.
6. Arias, C. A.,, J. Weisner,, J. M. Blackburn,, and P. E. Reynolds. 2000. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology 146:17271734.
7. Arthur, M.,, F. Depardieu,, L. Cabanié,, P. Reynolds,, and P. Courvalin. 1998. Requirement of the VanY and VanX D,D-peptidases for glycopeptide resistance in enterococci. Mol. Microbiol. 30:819830.
8. Arthur, M.,, F. Depardieu,, and P. Courvalin. 1999. Regulated interactions between partner and non partner sensors and responses regulators that control glycopeptide resistance gene expression in Enterococci. Microbiology 145:18491858.
9. Arthur, M.,, F. Depardieu,, G. Gerbaud,, M. Galimand,, R. Leclercq,, and P. Courvalin. 1997. The VanS sensor negatively controls VanR-mediated transcriptional activation of glycopeptide resistance genes of Tn1546 and related elements in the absence of induction. J. Bacteriol. 179:97106.
10. Arthur, M.,, F. Depardieu,, C. Molinas,, P. Reynolds,, and P. Courvalin. 1995. The vanZ gene of Tn1546 from Enterococcus faecium BM4147 confers resistance to teicoplanin. Gene 154:8792.
11. Arthur, M.,, F. Depardieu,, P. Reynolds,, and P. Courvalin. 1999. Moderate-level resistance to glycopeptide LY333328 mediated by genes of the vanA and vanB clusters in Enterococci. Antimicrob. Agents Chemother. 43:18751880.
12. Arthur, M.,, F. Depardieu,, P. Reynolds,, and P. Courvalin. 1996. Quantitative analysis of the metabolism of soluble cytoplasmic peptidoglycan precursors of glycopeptide-resistant enterococci. Mol. Microbiol. 21:3344.
13. Arthur, M.,, F. Depardieu,, H. A. Snaith,, P. E. Reynolds,, and P. Courvalin. 1994. Contribution of VanY D,D-carboxypeptidase to glycopeptide resistance in Enterococcus faecalis by hydrolysis of peptidoglycan precursors. Antimicrob. Agents Chemother. 38:18991903.
14. Arthur, M.,, C. Molinas,, and P. Courvalin. 1992. The VanS-VanR two-component regulatory system controls synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 174:25822591.
15. Arthur, M.,, C. Molinas,, F. Depardieu,, and P. Courvalin. 1993. Characterization of Tn1546, a Tn3-related transposon conferring glycopeptide resistance by synthesis of depsipeptide peptidoglycan precursors in Enterococcus faecium BM4147. J. Bacteriol. 175:117127.
16. Arthur, M.,, C. Molinas,, S. Dutka-Malen,, and P. Courvalin. 1991. Structural relationship between the vancomycin resistance protein VanH and 2-hydroxycarboxylic acid dehydrogenases. Gene 103:133134.
17. Arthur, M.,, P. Reynolds,, and P. Courvalin. 1996. Glycopeptide resistance in enterococci. Trends Microbiol. 4:401407.
18. Aslangul, E.,, M. Baptista,, B. Fantin,, F. Depardieu,, M. Arthur,, P. Courvalin,, and C. Carbon. 1997. Selection of glycopeptide- resistant mutants of VanB-type Enterococcus faecalis BM4281 in vitro and in experimental endocarditis. J. Infect. Dis. 175:598605.
19. Baptista, M.,, F. Depardieu,, P. Courvalin,, and M. Arthur. 1996. Specificity of induction of glycopeptide resistance genes in Enterococcus faecalis. Antimicrob. Agents Chemother. 40:22912295.
20. Baptista, M.,, F. Depardieu,, P. Reynolds,, P. Courvalin,, and M. Arthur. 1997. Mutations leading to increased levels of resistance to glycopeptide antibiotics in VanB-type enterococci. Mol. Microbiol. 25:93105.
21. Baptista, M.,, P. Rodrigues,, F. Depardieu,, P. Courvalin,, and M. Arthur. 1999. Single-cell analysis of glycopeptide resistance gene expression in teicoplanin-resistant mutants of a VanB-type Enterococcus faecalis. Mol. Microbiol. 32:1728.
22. Barna, J. C. J.,, and D. H. Williams. 1984. The structure and mode of action of glycopeptide antibiotics of the vancomycin group. Ann. Rev. Microbiol. 38:339357.
23. Bell, J. M.,, J. C. Paton,, and J. Turnidge. 1998. Emergence of vancomycin-resistant enterococci in Australia: phenotypic and genotypic characteristics of isolates. J. Clin. Microbiol. 36: 21872190.
24. Biavasco, E.,, E. Giovanetti,, A. Miele,, C. Vignaroli,, B. Facinelli,, and P. E. Varaldo. 1996. In vitro conjugative transfer of VanA vancomycin resistance between Enterococci and Listeriae of different species. Eur. J. Clin. Microbiol. Infect. Dis. 15: 5059.
25. Biavasco, F.,, C. Paladini,, C. Vignaroli,, G. Foglia,, E. Manso,, and P. E. Varaldo. 2001. Recovery from a single blood culture of two Enterococcus gallinarum isolates carrying both vanC-1 and vanA cluster genes and differing in glycopeptide susceptibility. Eur. J. Clin. Microbiol. Infect. Dis. 20:309314.
26. Billot-Klein, D.,, L. Gutmann,, S. Sablé,, E. Guittet,, and J. van Heijenoort. 1994. Modification of peptidoglycan precursors is a common feature of the low-level vancomycin-resistant VANB-type Enterococcus D366 and of the naturally glycopeptide- resistant species Lactobacillus casei, Pediococcus pentosaceus, Leuconostoc mesenteroides, and Enterococcus gallinarum. J. Bacteriol. 176:23982405.
27. Billot-Klein, D.,, D. Shlaes,, D. Bryant,, D. Bell,, J. van Heijenoort,, and L. Gutmann. 1996. Peptidoglycan structure of Enterococcus faecium expressing vancomycin resistance of the VanB type. Biochem. J. 313:711715.
28. Boyd, D. A.,, T. Cabral,, P. Van Caeseele,, J. Wylie,, and M. R. Mulvey. 2002. Molecular characterisation of the vanE gene cluster in vancomycin-resistant Enterococcus faecalis N00- 410 isolated in Canada. Antimicrob. Agents Chemother. 46:19771979.
29. Boyd, D. A.,, J. Conly,, H. Dedier,, G. Peters,, L. Robertson,, E. Slater,, and M. R. Mulvey. 2000. Molecular characterization of the vanD gene cluster and a novel insertion element in a vancomycin- resistant enterococcus isolated in Canada. J. Clin. Microbiol. 38:23922394.
30. Bugg, T. D. H.,, G. D. Wright,, S. Dutka-Malen,, M. Arthur,, P. Courvalin,, and C. T. Walsh. 1991. Molecular basis for vancomycin resistance in Enterococcus faecium BM4147: biosynthesis of a depsipeptide peptidoglycan precursor by vancomycin resistance proteins VanH and VanA. Biochemistry 30: 1040810415.
31. Carias, L. L.,, S. D. Rudin,, C. J. Donskey,, and L. B. Rice. 1998. Genetic linkage and cotransfer of a novel, vanBcontaining transposon (Tn5382) and a low-affinity penicillinbinding protein 5 gene in a clinical vancomycin-resistant Enterococcus faecium isolate. J. Bacteriol. 180:44264434.
32. Casadewall, B.,, and P. Courvalin. 1999. Characterization of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 181:36443648.
33. Casadewall, B.,, P. E. Reynolds,, and P. Courvalin. 2001. Regulation of expression of the vanD glycopeptide resistance gene cluster from Enterococcus faecium BM4339. J. Bacteriol. 183:34363446.
34.Centers for Disease Control and Prevention. 1993. Nosocomial enterococci resistant to vancomycin. United States. 1989-1993. Morb. Mortal. Wkly. Rep. 42:597599.
35. Cercenado, E.,, S. Unal,, C. T. Eliopoulos,, L. G. Rubin,, H. D. Isenberg,, R. C. Moellering,, and G. M. Eliopoulos. 1995. Characterization of vancomycin resistance in Enterococcus durans. J. Antimicrob. Chemother. 36:821825.
36. Clark, N. C.,, R. C. Cooksey,, B. C. Hill,, J. M. Swenson,, and F. C. Tenover. 1993. Characterization of glycopeptide-resistant enterococci from U.S. hospitals. Antimicrob. Agents Chemother. 37:23112317.
37. Dahl, K. H.,, E. W. Lundblad,, T. P. Rokenes,, O. Olsvik,, and A. Sundsfjord. 2000. Genetic linkage of the vanB2 gene cluster to Tn5382 in vancomycin-resistant enterococci and characterization of two novel insertion sequences. Microbiology 146:14691479.
38. Dahl, K. H.,, G. S. Simonsen,, O. Olsvik,, and A. Sundsfjord. 1999. Heterogeneity in the vanB gene cluster of genomically diverse clinical strains of vancomycin-resistant enterococci. Antimicrob. Agents Chemother. 43:11051110.
39. Darini, A. L.,, M. F. Palepou,, D. James,, and N. Woodford. 1999. Disruption of vanS by IS1216V in a clinical isolate of Enterococcus faecium with VanA glycopeptide resistance. Antimicrob. Agents Chemother. 43:995996.
40. Darini, A. L.,, M. F. Palepou,, and N. Woodford. 1999. Nucleotide sequence of IS1542, an insertion sequence identified within VanA glycopeptide resistance elements of enterococci. FEMS Microbiol. Lett. 173:341346.
41. De Jonge, B. L. M.,, S. Handwerger,, and D. Gage. 1996. Altered peptidoglycan composition in vancomycin-resistant Enterococcus faecalis. Antimicrob. Agents Chemother. 40:863869.
42. Depardieu, F.,, M. G. Bonora,, P. E. Reynolds,, and P. Courvalin. 2003. The vanG glycopeptide resistance operon from Enterococcus faecalis revisited. Mol. Microbiol. 50:931948.
43. Depardieu, F.,, P. Courvalin,, and T. Msadek. 2003. A six amino acid deletion, partially overlapping the VanSB G2 ATP-binding motif, leads to constitutive glycopeptide resistance in VanBtype Enterococcus faecium. Mol. Microbiol. 50:10691083.
44. Depardieu, F.,, M. Kolbert,, H. Pruul,, J. Bell,, and P. Courvalin. 2004. Characterisation of new VanD-type Vancomycin Resistant Enterococcus faecium and Enterococcus faecalis. Antimicrob. Agents Chemother. 48:38923904.
45. Depardieu, F.,, P. E. Reynolds,, and P. Courvalin. 2003. VanDtype vancomycin-resistant Enterococcus faecium 10/96A. Antimicrob. Agents Chemother. 47:718.
46. Dever, L. L.,, S. M. Smith,, S. Handwerger,, and R. H. Eng. 1995. Vancomycin-dependent Enterococcus faecium isolated from stool following oral vancomycin therapy. J. Clin. Microbiol. 33:27702773.
47. Domingo, M. C.,, A. Huletsky,, R. Giroux,, K. Boissinot,, A. Bernal,, F. J. Picard,, and M. G. Bergeron. 2003. Characterization of a vanD gene cluster from anaerobic bacterium of the normal flora of human bowel. 43rd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC, Chicago, Illinois), Abs. C2-2166.
48. Dutka-Malen, S.,, B. Blaimont,, G. Wauters,, and P. Courvalin. 1994. Emergence of high-level resistance to glycopeptides in Enterococcus gallinarum and Enterococcus casseliflavus. Antimicrob. Agents Chemother. 38:16751677.
49. Dutka-Malen, S.,, R. Leclercq,, V. Coutant,, J. Duval,, and P. Courvalin. 1990. Phenotypic and genotypic heterogeneity of glycopeptide resistance determinants in gram-positive bacteria. Antimicrob. Agents Chemother. 34:18751879.
50. Dutta, I.,, and P. E. Reynolds. 2002. Biochemical and genetic characterization of the vanC-2 vancomycin resistance gene cluster of Enterococcus casseliflavus ATCC 25788. Antimicrob. Agents Chemother. 46:31253132.
51. Dutta, I.,, and P. E. Reynolds. 2003. The vanC-3 vancomycin resistance gene cluster of Enterococcus flavescens CCM439. J. Antimicrob. Chemother. 51:703706.
52. Eliopoulos, G. M. 1997. Vancomycin-resistant enterococci. Mechanism and clinical relevance. Infect. Dis. Clin. North Am. 11:851865.
53. Evers, S.,, and P. Courvalin. 1996. Regulation of VanB-type vancomycin resistance gene expression by the VanSB-VanRB two-component regulatory system in Enterococcus faecalis V583. J. Bacteriol. 178:13021309.
54. Evers, S.,, P. E. Reynolds,, and P. Courvalin. 1994. Sequence of the vanB and ddl genes encoding D-alanine:D-Lactate and D-alanine:D-alanine ligases in vancomycin-resistant Enterococcus faecalis V583. Gene 140:97102.
55. Fines, M.,, B. Perichon,, P. Reynolds,, D. F. Sahm,, and P. Courvalin. 1999. VanE, a new type of acquired glycopeptide resistance in Enterococcus faecalis BM4405. Antimicrob. Agents Chemother. 43:21612164.
56. Flannagan, S. E.,, J. W. Chow,, S. M. Donabedian,, W. J. Brown,, M. B. Perri,, M. J. Zervos,, Y. Ozawa,, and D. B. Clewell. 2003. Plasmid content of a vancomycin-resistant Enterococcus faecalis isolate from a patient also colonized by Staphylococcus aureus with a VanA phenotype. Antimicrob. Agents Chemother. 47:39543959.
57. Fontana, R.,, M. Ligozzi,, A. Mazzariol,, G. Veneri,, and G. Cornaglia. 1998. Resistance of enterococci to ampicillin and glycopeptide antibiotics in Italy. The Italian Surveillance Group for Antimicrobial Resistance. Clin. Infect. Dis. 27 Suppl 1:S84S86.
58. Fontana, R.,, M. Ligozzi,, F. Pittaluga,, and G. Satta. 1996. Intrinsic penicillin resistance in enterococci. Microb. Drug Resist. 2:209213.
59. Fraimow, H. S.,, D. L. Jungkind,, D. W. Lander,, D. R. Delso,, and J. L. Dean. 1994. Urinary tract infection with an Enterococcus faecalis isolate that requires vancomycin for growth. Ann. Intern. Med. 121:2226.
60. Frieden, T. R.,, S. S. Munsiff,, D. E. Low,, B. M. Willey,, G. Williams,, Y. Faur,, W. Eisner,, S. Warren,, and B. Kreiswirth. 1993. Emergence of vancomycin-resistant enterococci in New York City. Lancet 342:7679.
61. Garnier, F.,, S. Taourit,, P. Glaser,, P. Courvalin,, and M. Galimand. 2000. Characterization of transposon Tn1549, conferring VanB-type resistance in Enterococcus spp. Microbiology 146:14811489.
62. Gay Elisha, B.,, and P. Courvalin. 1995. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Leuconostoc mesenteroides and Lactobacillus spp. Gene 152: 7983.
63. Gold, H. S. 2001. Vancomycin-resistant enterococci: mechanisms and clinical observations. Clin. Infect. Dis. 33:210219.
64. Gold, H. S.,, S. Unal,, E. Cercenado,, C. Thauvin-Eliopoulos,, G. M. Eliopoulos,, C. B. Wennersten, , and R. C. Moellering, Jr. 1993. A gene conferring resistance to vancomycin but not teicoplanin in isolates of Enterococcus faecalis and Enterococcus faecium demonstrates homology with vanB, vanA, and vanC genes of enterococci. Antimicrob. Agents Chemother. 37:16041609.
65. Gorby, G. L., , and J. E. Peacock, Jr. 1988. Erysipelothrix rhusiopathiae endocarditis: microbiologic, epidemiologic, and clinical features of an occupational disease. Rev. Infect. Dis. 10:317325.
66. Gordon, S.,, J. M. Swenson,, B. C. Hill,, N. E. Pigott,, R. R. Facklam,, R. C. Cooksey,, C. Thornsberry,, W. R. Jarvis,, and F. C. Tenover. 1992. Antimicrobial susceptibility patterns of common and unusual species of enterococci causing infections in the United States. J. Clin. Microbiol. 30:23732378.
67. Grayson, M. L.,, G. M. Eliopoulos,, C. B. Wennersten,, K. L. Ruoff,, P. C. De Girolami,, M. J. Ferraro, , and R. C. Moellering, Jr. 1991. Increasing resistance to b-lactam antibiotics among clinical isolates of Enterococcus faecium: a 22-year review at one institution. Antimicrob. Agents Chemother. 35:21802184.
68. Green, M.,, J. H. Shlaes,, K. Barbadora,, and D. M. Shlaes. 1995. Bacteremia due to vancomycin-dependent Enterococcus faecium. Clin. Infect. Dis. 20:712714.
69. Grohs, P.,, L. Gutmann,, R. Legrand,, B. Schoot,, and J. L. Mainardi. 2000. Vancomycin resistance is associated with serine- containing peptidoglycan in Enterococcus gallinarum. J. Bacteriol. 182:62286232.
70. Hall, L. M. C.,, H. Y. Chen,, and R. J. Williams. 1992. Vancomycin- resistant Enterococcus durans. Lancet 340:1105.
71. Handwerger, S.,, and A. Kolokathis. 1990. Induction of vancomycin resistance in Enterococcus faecium by inhibition of transglycosylation. FEMS Microbiol. Lett. 70:167170.
72. Handwerger, S.,, M. J. Pucci,, and A. Kolokathis. 1990. Vancomycin resistance is encoded on a pheromone response plasmid in Enterococcus faecium 228. Antimicrob. Agents Chemother. 34:358360.
73. Handwerger, S.,, M. J. Pucci,, K. J. Volk,, J. Liu,, and M. Lee. 1994. Vancomycin-resistant Leuconostoc mesenteroides and Lactobacillus casei synthesize cytoplasmic peptidoglycan precursors that terminate in lactate. J. Bacteriol. 176:260264.
74. Handwerger, S.,, and J. Skoble. 1995. Identification of chromosomal mobile element conferring high-level vancomycin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 39:24462453.
75. Handwerger, S.,, J. Skoble,, L. F. Discotto,, and M. J. Pucci. 1995. Heterogeneity of the vanA gene cluster in clinical isolates of enterococci from the northeastern United States. Antimicrob. Agents Chemother. 39:362368.
76. Hanrahan, J.,, C. Hoyen,, and L. B. Rice. 2000. Geographic distribution of a large mobile element that transfers ampicillin and vancomycin resistance between Enterococcus faecium strains. Antimicrob. Agents Chemother. 44:13491351.
77. Hashimoto, Y.,, K. Tanimoto,, Y. Ozawa,, T. Murata,, and Y. Ike. 2000. Amino acid substitutions in the VanS sensor of the VanA-type vancomycin-resistant Enterococcus strains result in high-level vancomycin resistance and low-level teicoplanin resistance. FEMS Microbiol. Lett. 185:247254.
78. Hayden, M. K.,, G. M. Trenholme,, J. E. Schultz,, and D. F. Sahm. 1993. In vivo development of teicoplanin resistance in a VanB Enterococcus faecium isolate. J. Infect. Dis. 167:12241227.
79. Holman, T. R.,, Z. Wu,, B. L. Wanner,, and C. T. Walsh. 1994. Identification of the DNA-binding site for the phosphorylated VanR protein required for vancomycin resistance in Enterococcus faecium. Biochemistry 33:46254631.
80. Jensen, L. B. 1998. Internal size variations in Tn1546-like elements due to the presence of IS1216V. FEMS Microbiol. Lett. 169:349354.
81. Jones, R. N.,, H. S. Sader,, M. E. Erwin,, and S. C. Anderson. 1995. Emerging multiply resistant enterococci among clinical isolates. I. Prevalence data from 97 medical center surveillance study in the United States. Enterococcus Study Group. Diagn. Microbiol. Infect. Dis. 21:8593.
82. Kacica, M.,, and L. C. McDonald. 2004. Vancomycin-resistant Staphylococcus aureus-New York, 2004. Morb. Mortal. Wkly. Rep. 53:322323.
83. Kawalec, M.,, M. Gniadkowski,, J. Kedzierska,, A. Skotnicki,, J. Fiett,, and W. Hryniewicz. 2001. Selection of a teicoplaninresistant Enterococcus faecium mutant during an outbreak caused by vancomycin-resistant enterococci with the VanB phenotype. J. Clin. Microbiol. 39:42744282.
84. Krogstad, D. J.,, and A. R. Pargwette. 1980. Defective killing of enterococci: a common property of antimicrobial agents acting on the cell wall. Antimicrob. Agents Chemother. 17:965968.
85. Lambert, E.,, C. McCullough,, G. Coombs,, J. Pearson,, F. O’Brien,, J. Bell,, A. Berry,, and K. Christiansen. 2002. Multiple isolation of Enterococcus faecalis with VanE glycopeptide resistance in Australia. 42nd Interscience Conference on Antimicrobial Agents and Chemotherapy (ICAAC, San Diego, California), Abs. C2-1118.
86. Leclercq, R.,, E. Derlot,, J. Duval,, and P. Courvalin. 1988. Plasmid-mediated resistance to vancomycin and teicoplanin in Enterococcus faecium. N. Engl. J. Med. 319:157161.
87. Leclercq, R.,, E. Derlot,, M. Weber,, J. Duval,, and P. Courvalin. 1989. Transferable vancomycin and teicoplanin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 33: 1015.
88. Leclercq, R.,, S. Dutka-Malen,, J. Duval,, and P. Courvalin. 1992. Vancomycin resistance gene vanC is specific to Enterococcus gallinarum. Antimicrob. Agents Chemother. 36:20052008.
89. Lee, W. G.,, J. Y. Huh,, S. R. Cho,, and Y. A. Lim. 2004. Reduction in glycopeptide resistance in vancomycin-resistant enterococci as a result of vanA cluster rearrangements. Antimicrob. Agents Chemother. 48:13791381.
90. Lee, W. G.,, and W. Kim. 2003. Identification of a novel insertion sequence in vanB2-containing Enterococcus faecium. Lett. Appl. Microbiol. 36:186190.
91. Lewis, C. M.,, and M. J. Zervos. 1990. Clinical manifestations of enterococcal infection. Eur. J. Clin. Microbiol. Infect. Dis. 9:111117.
92. Ligozzi, M.,, G. Lo Cascio,, and R. Fontana. 1998. vanA gene cluster in a vancomycin-resistant clinical isolate of Bacillus circulans. Antimicrob. Agents Chemother. 42:20552059.
93. Ligozzi, M.,, F. Pittaluga,, and R. Fontana. 1996. Modification of penicillin-binding protein 5 associated with high-level ampicillin resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 40:354357.
94. Low, D. E.,, N. Keller,, A. Barth,, and R. N. Jones. 2001. Clinical prevalence, antimicrobial susceptibility, and geographic resistance patterns of enterococci: results from the SENTRY Antimicrobial Surveillance Program, 1997-1999. Clin. Infect. Dis. 32 Suppl 2:S133S145.
95. MacKinnon, M. G.,, M. A. Drebot,, and G. J. Tyrrell. 1997. Identification and characterization of IS1476, an insertion sequence- like element that disrupts VanY function in a vancomycin- resistant Enterococcus faecium strain. Antimicrob. Agents Chemother. 41:18051807.
96. Marshall, C. G.,, G. Broadhead,, B. K. Leskiw,, and G. D. Wright. 1997. D-ala-D-ala ligases from glycopeptide antibioticproducing organisms are highly homologous to the enterococcal vancomycin-resistance ligases VanA and VanB. Proc. Natl. Acad. Sci. USA 94:64806483.
97. Marshall, C. G.,, I. A. Lessard,, I. Park,, and G. D. Wright. 1998. Glycopeptide antibiotic resistance genes in glycopeptideproducing organisms. Antimicrob. Agents Chemother. 42: 22152220.
98. Marshall, C. G.,, and G. D. Wright. 1998. DdlN from vancomycin- producing Amycolatopsis orientalis C329.2 is a VanA homologue with D-alanyl-D-Lactate ligase activity. J. Bacteriol. 180:57925795.
99. Marshall, C. G.,, and G. D. Wright. 1997. The glycopeptide antibiotic producer Streptomyces toyocaensis NRRL15009 has both D-alanyl-D-alanine and D-alanyl-D-Lactate ligases. FEMS Microbiol. Lett. 157:295299.
100. McGregor, K. F.,, C. Nolan,, H. K. Young,, M. F. Palepou,, L. Tysall,, and N. Woodford. 2001. Prevalence of the vanB2 gene cluster in VanB glycopeptide-resistant enterococci in the United Kingdom and the Republic of Ireland and its association with a Tn5382-like element. Antimicrob. Agents Chemother. 45: 367368.
101. McKessar, S. J.,, A. M. Berry,, J. M. Bell,, J. D. Turnidge,, and J. C. Paton. 2000. Genetic characterization of vanG, a novel vancomycin resistance locus of Enterococcus faecalis. Antimicrob. Agents Chemother. 44:32243228.
102. Meziane-Cherif, D.,, M.-A. Badet-Denisot,, S. Evers,, P. Courvalin,, and B. Badet. 1994. Purification and characterization of the VanB ligase associated with type B vancomycin resistance in Enterococcus faecalis V583. FEBS Lett. 354:140142.
103. Moellering, R. C., Jr. 1991. The enterococcus: a classic example of the impact of antimicrobial resistance on therapeutic options. J. Antimicrob. Chemother. 28:112.
104. Murray, B. E. 1992. Beta-lactamase-producing enterococci. Antimicrob. Agents Chemother. 36:23552359.
105. Murray, B. E. 1990. The life and times of the Enterococcus. Clin. Microbiol. Rev. 3:4665.
106. Navarro, F.,, and P. Courvalin. 1994. Analysis of genes encoding D-alanine:D-alanine ligase-related enzymes in Enterococcus casseliflavus and Enterococcus flavescens. Antimicrob. Agents Chemother. 38:17881793.
107. Nieto, M.,, and H. R. Perkins. 1971. Modifications of the acyl-D-alanyl-D-alanine terminus affecting complex-formation with vancomycin. Biochem. J. 123:789803.
108. Noble, W. C.,, Z. Virani,, and R. G. A. Cree. 1992. Co-transfer of vancomycin and other resistance genes from Enterococcus faecalis NCTC 12201 to Staphylococcus aureus. FEMS Microbiol. Lett. 93:195198.
109. Palepou, M. F.,, A. M. Adebiyi,, C. H. Tremlett,, L. B. Jensen,, and N. Woodford. 1998. Molecular analysis of diverse elements mediating VanA glycopeptide resistance in enterococci. J. Antimicrob. Chemother. 42:605612.
110. Patel, R.,, K. Piper,, F. R. Cockerill, 3rd, J. M. Steckelberg, and A. A. Yousten. 2000. The biopesticide Paenibacillus popilliae has a vancomycin resistance gene cluster homologous to the enterococcal VanA vancomycin resistance gene cluster. Antimicrob. Agents Chemother. 44:705709.
111. Patel, R.,, J. R. Uhl,, P. Kohner,, M. K. Hopkins,, J. M. Steckelberg,, B. Kline,, and F. R. Cockerill, 3rd. 1998. DNA sequence variation within vanA, vanB, vanC-1, and vanC-2/3 genes of clinical Enterococcus isolates. Antimicrob. Agents Chemother. 42:202205.
112. Patterson, J. E.,, A. H. Sweeney,, M. Simm,, N. Carley,, R. Mangi,, J. Sabetta,, and R. W. Lyons. 1995. Analysis of 110 serious enterococcal infections. Epidemiology, antibiotic susceptibility, and outcome. Medicine 74:191200.
113. Périchon, B.,, B. Casadewall,, P. Reynolds,, and P. Courvalin. 2000. Glycopeptide-resistant Enterococcus faecium BM4416 is a VanD-type strain with an impaired D-alanine:D-alanine ligase. Antimicrob. Agents Chemother. 44:13461348.
114. Périchon, B.,, P. E. Reynolds,, and P. Courvalin. 1997. VanDtype glycopeptide-resistant Enterococcus faecium BM4339. Antimicrob. Agents Chemother. 41:20162018.
115. Pootoolal, J.,, M. G. Thomas,, C. G. Marshall,, J. M. Neu,, B. K. Hubbard,, C. T. Walsh,, and G. D. Wright. 2002. Assembling the glycopeptide antibiotic scaffold: The biosynthesis of A47934 from Streptomyces toyocaensis NRRL15009. Proc. Natl. Acad. Sci. USA 99:89628967.
116. Poyart, C.,, C. Pierre,, G. Quesne,, B. Pron,, P. Berche,, and P. Trieu-Cuot. 1997. Emergence of vancomycin resistance in the genus Streptococcus: characterization of a vanB transferable determinant in Streptococcus bovis. Antimicrob. Agents Chemother. 41:2429.
117. Quintiliani, R., Jr., and P. Courvalin. 1996. Characterization of Tn1547, a composite transposon flanked by the IS16 and IS256-like elements, that confers vancomycin resistance in Enterococcus faecalis BM4281. Gene 172:18.
118. Quintiliani, R., Jr., and P. Courvalin. 1994. Conjugal transfer of the vancomycin resistance determinant vanB between enterococci involves the movement of large genetic elements from chromosome to chromosome. FEMS Microbiol. Lett. 119:359364.
119. Quintiliani, R., Jr.,, S. Evers,, and P. Courvalin. 1993. The vanB gene confers various levels of self-transferable resistance to vancomycin in enterococci. J. Infect. Dis. 167:12201223.
120. Reynolds, P. E. 1998. Control of peptidoglycan synthesis in vancomycin-resistant enterococci: D,D-peptidases and D,D-carboxypeptidases. Cell Mol. Life Sci. 54:325331.
121. Reynolds, P. E. 1989. Structure, biochemistry and mechanism of action of glycopeptide antibiotics. Eur. J. Clin. Microbiol. Infect. Dis. 8:943950.
122. Reynolds, P. E.,, C. A. Arias,, and P. Courvalin. 1999. Gene vanXYC encodes D,D-dipeptidase (VanX) and D,D-carboxypeptidase (VanY) activities in vancomycin-resistant Enterococcus gallinarum BM4174. Mol. Microbiol. 34:341349.
123. Reynolds, P. E.,, F. Depardieu,, S. Dutka-Malen,, M. Arthur,, and P. Courvalin. 1994. Glycopeptide resistance mediated by enterococcal transposon Tn1546 requires production of VanX for hydrolysis of D-alanyl-D-alanine. Mol. Microbiol. 13:10651070.
124. Reynolds, P. E.,, H. A. Snaith,, A. J. Maguire,, S. Dutka-Malen,, and P. Courvalin. 1994. Analysis of peptidoglycan precursors in vancomycin-resistant Enterococcus gallinarum BM4174. Biochem. J. 301:58.
125. Rice, L. B. 2001. Emergence of vancomycin-resistant enterococci. Emerg. Infect. Dis. 7:183187.
126. Rice, L. B.,, L. L. Carias,, C. L. Donskey,, and S. D. Rudin. 1998. Transferable, plasmid-mediated vanB-type glycopeptide resistance in Enterococcus faecium. Antimicrob. Agents Chemother. 42:963964.
127. Rosato, A.,, J. Pierre,, D. Billot-Klein,, A. Buu-Hoi,, and L. Gutmann. 1995. Inducible and constitutive expression of resistance to glycopeptides and vancomycin dependence in glycopeptide- resistant Enterococcus avium. Antimicrob. Agents Chemother. 39:830833.
128. Ruoff, K. L.,, L. de la Maza,, M. J. Murtagh,, J. D. Spargo,, and M. J. Ferraro. 1990. Species identities of enterococci isolated from clinical specimens. J. Clin. Microb. 28:435437.
129. Rybkine, T.,, J. L. Mainardi,, W. Sougakoff,, E. Collatz,, and L. Gutmann. 1998. Penicillin-binding protein 5 sequence alterations in clinical isolates of Enterococcus faecium with different levels of beta-lactam resistance. J. Infect. Dis. 178:159163.
130. Sahm, D. F.,, L. Free,, and S. Handwerger. 1995. Inducible and constitutive expression of vanC-1 encoded resistance to vancomycin in Enterococcus gallinarum. Antimicrob. Agents Chemother. 39:14801484.
131. Schaberg, D. R.,, D. H. Culver,, and R. P. Gaynes. 1991. Major trends in the microbial etiology of nosocomial infection. Am. J. Med. 91:7275.
132. Schouten, M. A.,, R. J. Willems,, W. A. Kraak,, J. Top,, J. A. Hoogkamp-Korstanje,, and A. Voss. 2001. Molecular analysis of Tn1546-like elements in vancomycin-resistant enterococci isolated from patients in Europe shows geographic transposon type clustering. Antimicrob. Agents Chemother. 45:986989.
133. Sievert, D. M.,, M. L. Boulton,, G. Stolman,, D. Johnson,, M. G. Stobierski,, F. P. Downes,, P. A. Somsel,, J. T. Rudrik,, W. J. Brown,, W. Hafeez,, T. Lundstrom,, E. Flanagan,, R. Johnson,, J. Mitchell,, and S. Chang. 2002. Staphylococcus aureus resistant to vancomycin. Morb. Mortal. Wkly. Rep. 51:565567.
134. Sifaoui, F.,, and L. Gutmann. 1997. Vancomycin dependence in a vanA-producing Enterococcus avium strain with a nonsense mutation in the natural D-ala:D-ala ligase gene. Antimicrob. Agents Chemother. 41:1409.
135. Simonsen, G. S.,, M. R. Myhre,, K. H. Dahl,, O. Olsvik,, and A. Sundsfjord. 2000. Typeability of Tn1546-like elements in vancomycin- resistant enterococci using long-range PCRs and specific analysis of polymorphic regions. Microb. Drug Resist. 6: 4957.
136. Stinear, T. P.,, D. C. Olden,, P. D. Johnson,, J. K. Davies,, and M. L. Grayson. 2001. Enterococcal vanB resistance locus in anaerobic bacteria in human faeces. Lancet 357:855856.
137. Tenover, F. C.,, L. M. Weigel,, P. C. Appelbaum,, L. K. McDougal,, J. Chaitram,, S. McAllister,, N. Clark,, G. Killgore,, C. M. O’Hara,, L. Jevitt,, J. B. Patel,, and B. Bozdogan. 2004. Vancomycin-resistant Staphylococcus aureus isolate from a patient in Pennsylvania. Antimicrob. Agents Chemother. 48:275280.
138. Torres, C.,, J. A. Reguera,, M. J. Sanmartin,, J. C. Perez-Diaz,, and F. Baquero. 1994. vanA-mediated vancomycin-resistant Enterococcus spp. in sewage. J. Antimicrob. Chemother. 33:553561.
139. Uttley, A. H.,, C. H. Collins,, J. Naidoo,, and R. C. Georges. 1988. Vancomycin resistant enterococci. Lancet i:5758.
140. Uttley, A. H. C.,, R. C. George,, J. Naidoo,, N. Woodford,, A. P. Johnson,, C. H. Collins,, D. Morrison,, A. J. Gilfillan,, L. E. Fitch,, and J. Heptonstall. 1989. High-level vancomycinresistant enterococci causing hospital infections. Epidem. Infect. 103:173181.
141. Van Bambeke, F.,, M. Chauvel,, P. E. Reynolds,, H. S. Fraimow,, and P. Courvalin. 1999. Vancomycin-dependent Enterococcus faecalis clinical isolates and revertant mutants. Antimicrob. Agents Chemother. 43:4147.
142. Weigel, L. M.,, D. B. Clewell,, S. R. Gill,, N. C. Clark,, L. K. McDougal,, S. E. Flannagan,, J. F. Kolonay,, J. Shetty,, G. E. Killgore,, and F. C. Tenover. 2003. Genetic analysis of a highlevel vancomycin-resistant isolate of Staphylococcus aureus. Science 302:15691571.
143. Willems, R. J.,, J. Top,, N. van den Braak,, A. van Belkum,, D. J. Mevius,, G. Hendriks,, M. van Santen-Verheuvel,, and J. D. van Embden. 1999. Molecular diversity and evolutionary relationships of Tn1546-like elements in enterococci from humans and animals. Antimicrob. Agents Chemother. 43:483491.
144. Woodford, N.,, A. M. Adebiyi,, M. F. Palepou,, and B. D. Cookson. 1998. Diversity of VanA glycopeptide resistance elements in enterococci from humans and nonhuman sources. Antimicrob. Agents Chemother. 42:502508.
145. Woodford, N.,, A. P. Johnson,, D. Morrison,, and D. C. E. Speller. 1995. Current perspectives on glycopeptide resistance. Clin. Microbiol. Rev. 8:585615.
146. Woodford, N.,, B. L. Jones,, Z. Baccus,, H. A. Ludlam,, and D. F. J. Brown. 1995. Linkage of vancomycin and high-level gentamicin resistance genes on the same plasmid in a clinical isolate of Enterococcus faecalis. J. Antimicrob. Chemother. 35:179184.
147. Woodford, N.,, D. Morrison,, A. P. Johnson,, A. C. Bateman,, J. G. Hastings,, T. S. Elliott,, and B. Cookson. 1995. Plasmidmediated vanB glycopeptide resistance in enterococci. Microb. Drug. Resist. 1:235240.
148. Wright, G. D.,, T. R. Holman,, and C. T. Walsh. 1993. Purification and characterization of VanR and the cytosolic domain of VanS: a two-component regulatory system required for vancomycin resistance in Enterococcus faecium BM4147. Biochemistry 32:50575063.

Tables

Generic image for table
Table 1

Glycopeptide resistance in enterococci

Citation: Depardieu F, Courvalin P. 2005. Glycopeptide Resistance in Enterococci, p 101-123. In White D, Alekshun M, McDermott P (ed), Frontiers in Antimicrobial Resistance. ASM Press, Washington, DC. doi: 10.1128/9781555817572.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error