1887

Chapter 12 : Biotechnological Upgrading of Petroleum

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Biotechnological Upgrading of Petroleum, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap12-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap12-2.gif

Abstract:

The focus on upgrading petroleum has been on sulfur, but the ability to metabolize organonitrogen compounds may be particularly important because organonitrogen compounds are associated with the majority of metals in petroleum. Sulfur is present in crude oil almost exclusively as organic sulfur. While there are multiple types of organosulfur compounds, such as mercaptans, sulfides, disulfides, and thiophenes, the most abundant form of sulfur in petroleum is usually thiophenic. Thiophenic sulfur often comprises 50 to 95% of the sulfur in crude oil and petroleum products, and alkylated derivatives of dibenzothiophene (DBT) are the most common organosulfur compounds typically found in crude oil and diesel. Integrating a biodesulfurization process into a refinery is the only way to treat a product such as diesel. Biodesulfurization could fit well with current practices in the petroleum industry if performed in conjunction with desalting and dewatering operations. The removal of organically bound nitrogen from petroleum without the loss of significant calorific value requires the selective cleavage of carbon-nitrogen bonds. The sulfur and nitrogen content is of environmental concern, due to potential sulfurous and nitrous emissions from petroleum combustion. Metals, and to a lesser extent sulfur and nitrogen, present in heavy crude oils can contaminate catalysts used in hydrodesulfurization, limiting the effectiveness of current technologies to remove sulfur and nitrogen from these oils.

Citation: Kilbane J. 2005. Biotechnological Upgrading of Petroleum, p 239-256. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch12

Key Concept Ranking

Microbial Ecology
0.688029
High-Performance Liquid Chromatography
0.4474408
0.688029
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

The 4S metabolic pathway for DBTdesulfurization. DszC, DBT monooxygenase; DszA,DBT sulfone monooxygenase; DszB, HPBSi desulfinase;DszD, NADH-FMN oxidoreductase; I, DBT; II,DBT sulfoxide; III, DBT sulfone; IV, hydroxyphenylbenzenesulfinate;V, 2-HBP.

Citation: Kilbane J. 2005. Biotechnological Upgrading of Petroleum, p 239-256. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Resting cells of GTIS10 exhibit specific desulfurization activity at higher temperatures thanresting cells of IGTS8. The amount of 2-HBP produced by the conversion of DBT by each cultureafter incubation for 24 h at various temperatures was quantified by high-performance liquid chromatography. Therate of change in the 2-HBP concentration was calculated from the linear portion of the curve, generally the first4 h of the incubation. Specific desulfurization activity values recorded are averages of three replicate samples fromthree separate experiments for a total of nine data points. The standard deviation was <10%. ♦, GTIS10;▪, IGTS8.

Citation: Kilbane J. 2005. Biotechnological Upgrading of Petroleum, p 239-256. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Carbazole degradation pathways. The top pathway illustrates the existing carbazoledegradation pathway that results with overall degradation, whereas the bottom pathway illustrates apotential pathway for the selective removal of nitrogen from carbazole that could be developed withmetabolic engineering.

Citation: Kilbane J. 2005. Biotechnological Upgrading of Petroleum, p 239-256. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch12
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap12
1. Abbad-Andaloussi, S.,, C. Lagnel,, M. Warzywoda,, and F. Monot. 2003. Multi-criteria comparison of resting cell activities of bacterial strains selected for biodesulfurization of petroleum compounds. Microb. Technol. 32:446454.
2. Arenskotter, M.,, D. Baumeister,, R. Kalscheuer,, and A. Steinbuchel. 2003. Identification and application of plasmids suitable for transfer of foreign DNA to members of the genus. Gordona. Appl. Environ. Microbiol. 69:49714974.
3. Arnold, F. H.,, L. Giver,, A. Gershenson,, H. Zhao,, and K. Miyazaki. 1999. Directed evolution of mesophilic enzymes into their thermophilic counterparts. Ann. N. Y. Acad. Sci. 870:400403.
4. Benedik, M. J.,, P. R. Gibbs,, R. R. Riddle,, and R. C. Wilson. 1998. Microbial denitrogenation of fossil fuels. Trends Biotechnol. 16:390395.
5. Castorena, G.,, C. Suarez,, I. Valdez,, G. Amador,, L. Fernandez,, and S. LeBorgne. 2002. Sulfurselective desulfurization of dibenzothiophene and diesel oil by newly isolated Rhodococcus sp. strains. FEMS Microbiol. Lett. 215:157161.
6. Chang, J. H.,, S. K. Rhee,, Y. K. Chang,, and H. N. Chang. 1998. Desulfurization of diesel oils by a newly isolated dibenzothiophene-degrading Nocardia sp. strain CYKS2. Biotechnol. Prog. 14: 851855.
7. Coco, W. M.,, W. E. Levinson,, M. J. Crist,, H. J. Hektor,, A. Darzins,, P. T. Pienkos,, C. H. Squires,, and D. J. Monticello. 2001. DNA shuffling method for generating highly recombined genes and evolved enzymes. Nat. Biotechnol. 19:354359.
8. Creaser, C. S.,, F. Krokos,, K. E. O’Neill,, M. J. C. Smith,, and P. G. McDowell. 1993. Selective chemical ionization of nitrogen and sulfur heterocycles in petroleum fractions by ion trap mass spectroscopy. J. Am. Soc. Mass Spectrom. 4:322326.
9. Dabbs, E. R. 1998. Cloning of genes that have environmental and clinical importance from Rhodococci and related bacteria. Antonie Leeuwenhoek 74:155168.
10. DeMot, R.,, I. Nagy,, A. DeSchrijver,, P. Pattanapipitpaisal,, G. Schoofs,, and J. Vanderleyden. 1997. Structural analysis of the 6 kb cryptic plasmid pFAJ2600 from Rhodococcus erythropolis N186/21 and construction of Escherichia coli-Rhodococcus shuttle vectors. Microbiology 143:31373147.
11. Denis-Larose, C.,, H. Bergeron,, D. Labbe,, C. W. Greer,, J. Hawari,, M. J. Grossman,, B. M. Sankey,, and P. C. Lau. 1998. Characterization of the basic replicon of Rhodococcus plasmid pSOX and development of a Rhodococcus-Escherichia coli shuttle vector. Appl. Environ. Microbiol. 64:43634367.
12. Denis-Larose, C.,, D. Labbe,, H. Bergeron,, A. M. Jones,, C. W. Greer,, J. al-Hawari,, M. J. Grossman,, B. M. Sankey,, and P. C. Lau. 1997. Conservation of plasmid-encoded dibenzothiophene desulfurization genes in several rhodococci. Appl. Environ. Microbiol. 63:29152919.
13. Drew, L. J., 1996. Petroleum, p. 342476. In J. I. Kroschwitz, and M. Howe-Grant (ed.), Kirk-Othmer Encyclopedia of Chemical Technology, 4th ed., vol. 18. John Wiley & Sons, New York, N.Y.
14. Duarte, G. F.,, A. S. Rosado,, L. Seldin,, W. de Araujo,, and J. D. van Elsas. 2001. Analysis of bacterial community structure in sulfurous-oilcontaining soils and detection of species carrying dibenzothiophene desulfurization (dsz) genes. Appl. Environ. Microbiol. 67:10521062.
15. Franchi, E.,, F. Rodriguez,, L. Serbolisca,, and F. de Ferra. 2003. Vector development, isolation of new promoters and enhancement of the catalytic activity of the Dsz enzyme complex in Rhodococcus sp. strains. Oil Gas Sci. Technol. Rev. IFP 58:515520.
16. Frerichs-Deeken, U.,, B. Goldenstedt,, R. Gahl- Janβen,, R. Kappl,, J. Hu¨ ttermann,, and S. Fretzner. 2003. Functional expression of the quinoline 2-oxidoreductase genes (qorMSL) in Pseudomonas putida KT2440 pUF1 and in Pseudomonas putida 86-1 Δqor pUF1 and analysis of the Qor proteins. Eur. J. Biochem. 270:15671577.
17. Galan, P.,, E. Diaz,, and J. L. Garcia. 2000. Enhancing desulfurization by engineering a flavin reductase-encoding gene cassette in recombinant biocatalysts. Environ. Microbiol. 2:687694.
18. Gallagher, J. R.,, E. S. Olson,, and D. C. Stanley. 1993. Microbial desulfurization of dibenzothiophene: a sulfur-specific pathway. FEMS Microbiol. Lett. 107:3135.
19. Gilbert, S. C.,, J. Morton,, S. Buchanan,, C. Oldfield,, and A. McRoberts. 1998. Isolation of a unique benzothiophene-desulphurizing bacterium, Gordona sp. strain 213E (NCIMB 40816), and characterization of the desulphurization pathway. Microbiology 144:25452553.
20. Gray, K.A.,, O. S. Pogrebinsky,, G. T. Mrachko,, L. Xi,, D. J. Monticello,, and C. H. Squires. 1996. Molecular mechanisms of biocatalytic desulfurization of fossil fuels. Nat. Biotechnol. 14:17051709.
21. Habe, H.,, Y. Ashikawa,, Y. Saiki,, T. Yoshida,, H. Nojiri,, and T. Omori. 2002. Sphingomonas sp. strain KA1, carrying a carbazole dioxygenase gene homologue, degrades chlorinated dibenzo-p-dioxins in soil. FEMS Microbiol. Lett. 211:4349.
22. Harris, J. R. 1996. Use desalting for FCC feedstocks. Hydrocarbon Process. 75:6368.
23. Hegedus, L. L.,, and R. W. McCabe. 1981. Catalyst poisoning. Catalyst Rev. 23:377476.
24. Hirasawa, K.,, Y. Ishii,, M. Kobayashi,, K. Koizumi,, and K. Maruhashi. 2001. Improvement of desulfurization activity in Rhodococcus erythropolis KA2-5-1 by genetic engineering. Biosci. Biotechnol. Biochem. 65:239246.
25. Hoseki, J.,, T. Yano,, Y. Koyama,, S. Kuramitsu,, and H. Kagamiyama. 1999. Directed evolution of thermostable kanamycin-resistance gene: a convenient selection marker for Thermus thermophilus. J. Biochem. (Tokyo) 126:951956.
26. Hsu, C. S.,, K. Qian,, and W. K. Robbins. 1994. Nitrogen speciation of polar petroleum compounds by compound class separation and online liquid chromatography-mass spectrometry (LC-MS). J. High Resolut. Chromatogr. 17:271276.
27. Huffman, G. P.,, N. Shah,, F. E. Huggins,, L. M. Stock,, K. Chatterjee,, J. J. Kilbane II,, and M. M. Chou. 1995. Sulfur speciation of desulfurized coals by XANES spectroscopy. Fuel 74:549555.
28. Ishii, Y.,, J. Konoshi,, H. Okada,, K. Hirasawa,, T. Onaka,, and M. Suzuki. 2000a. Operon structure and functional analysis of the genes encoding thermophilic desulfurizing enzymes of Paenibacillus sp. A11-2. Biochem. Biophys. Res. Commun. 270:8188.
29. Ishii, Y.,, J. Konoshi,, M. Suzuki,, and K. Maruhashi. 2000b. Cloning and expression of the gene encoding the thermophilic NAD(P)HFMN oxidoreductase coupling with the desulfurization enzymes from Paenibacillus sp. A11-2. J. Biosci. Bioeng. 90:591599.
30. Ishii, Y.,, T. Ohshiro,, Y. Aoi,, M. Suzuki,, and Y. Izumi. 2000c. Identification of the gene encoding a NAD(P)H-flavin oxidoreductase coupling with dibenzothiophene (DBT)-desulfurizing enzymes from the DBT-non-desulfurizing bacterium Paenibacillus polymyxa A-1. J. Biosci. Bioeng. 90: 220222.
31. Isoda, T.,, S. Nagao,, X. Ma,, Y. Korai,, and I. Mochida. 1996. Hydrodesulfurization pathway of 4,6-dimethyldibenzothiophene through isomerization over Y-zeolite containing CoMo/Al2O3 catalyst. Energy Fuels 10:10781082.
32. Kassler, P. 1996. World energy demand outlook. Energy Explor. Exploit. 14:229242.
33. Kayser, K. J.,, B. A. Bielaga-Jones,, K. Jackowski,, O. Odusan,, and J. J. Kilbane II. 1993. Utilization of organosulfur compounds by axenic and mixed cell cultures of Rhodococcus rhodochrous IGTS8. J. Gen. Microbiol. 139:31233129.
34. Kayser, K. J.,, L. Cleveland,, H.-S. Park,, J.-H. Kwak,, A. Kolhatkar,, and J. J. Kilbane II. 2002. Isolation and characterization of a moderate thermophile, Mycobacterium phlei GTIS10, capable of dibenzothiophene desulfurization. Appl. Microbiol. Biotechnol. 59:737746.
35. Kilbane, J. J., II. 1989. Desulfurization of coal: the microbial solution. Trends Biotechnol. 7:97101.
36. Kilbane, J. J., II,, A. Daram,, J. Abbasian,, and K. J. Kayser. 2002. Isolation and characterization of carbazole-degrading bacterium Sphingomonas sp. GTIN11. Biochem. Biophys. Res. Commun. 297:242248.
37. Kilbane, J. J.,, R. Ranganathan,, K. J. Kayser,, L. Cleveland,, C. Ribiero,, and M. M. Linhares. 2000. Selective removal of nitrogen from quinoline and petroleum by Pseudomonas ayucida IGTN9m. Appl. Environ. Microbiol. 66:688693.
38. Kim, H.,, J. M. Vohs,, and R. J. Gorte. 2001. Direct oxidation of sulfur-containing fuels in a solid oxide fuel cell. Chem. Commun. (Cambridge) 22:23342335.
39. Kim, T.-S.,, H. Y. Kim,, and B. H. Kim. 1990. Petroleum desulfurization by Desulfovibrio desulfuricans M6 using electrochemically supplied reducing equivalent. Biotechnol. Lett. 12:757760.
40. Kirimura, K.,, H. Nakagawa,, K. Tsuji,, K. Matsuda,, R. Kurane,, and S. Usami. 1999. Selective and continuous degradation of carbazole contained in petroleum oil by resting cells of Sphingomonas sp. CDH-7. Biosci. Biotechnol. Biochem. 63:15631568.
41. Kirimura, K.,, T. Furuya,, Y. Nishii,, Y. Ishii,, K. Kino,, and S. Usami. 2001. Biodesulfurization of dibenzothiophene and its derivatives through the selective cleavage of carbon-sulfur bonds by a moderately thermophilic bacterium Bacillus subtilus WU-S2B. J. Biosci. Bioeng. 91:262266.
42. Kobayashi, M.,, K. Horiuchi,, O. Yoshikawa,, K. Hirasawa,, Y. Ishii,, K. Fujino,, H. Sugiyama,, and K. Maruhashi. 2001. Kinetic analysis of microbial desulfurization of model and light gas oils containing multiple alkyl dibenzothiophenes. Biosci. Biotechnol. Biochem. 65:298304.
43. Kobayashi, M.,, T. Onaka,, Y. Ishii,, J. Konishi,, M. Takaki,, H. Okada,, Y. Ohta,, K. Koizumi,, and M. Suzuki. 2000. Desulfurization of alkylated forms of both dibenzothiophene and benzothiophene by a single bacterial strain. FEMS Microbiol. Lett. 187:123126.
44. Konishi, J.,, H. Okada,, K. Hirasawa,, Y. Ishii,, and K. Maruhashi. 2002. Comparison of the substrate specificity of the two bacterial desulfurization systems. Biotechnol. Lett. 24:18631867.
45. Konishi, J.,, T. Onaka,, Y. Ishii,, and M. Suzuki. 2000. Demonstration of the carbon-sulfur bond targeted desulfurization of benzothiophene by thermophilic Paenibacillus sp. strain A11-2 capable of desulfurizing dibenzothiophene. FEMS Microbiol. Lett. 187:151154.
46. Konishi, J.,, Y. Ishii,, T. Onaka,, K. Okumura,, and M. Suzuki. 1997. Thermophilic carbonsulfur- bond-targeted biodesulfurization. Appl. Environ. Microbiol. 63:31643169.
47. Krawiec, S. 1990. Bacterial desulfurization of thiophenes: screening techniques and some speculations regarding the biochemical and genetic bases. Dev. Ind. Microbiol. 31:103114.
48. Larkin, M. J.,, R. DeMot,, L. A. Kulakov,, and I. Nagy. 1998. Applied aspects of Rhodococcus genetics. Antonie Leeuwenhoek 74:133153.
49. LeBorgne, S.,, and R. Quintero. 2003. Biotechnology processes for the refining of petroleum. Fuel Process. Technol. 1641:115.
50. Mason, B. 2003. Calculations illustrate fossil-fuel crisis. http://www.climateark.org/articles/reader.asp?linkid=26679.
51. Matsubara, T.,, T. Oshiro,, Y. Nishina,, and Y. Izumi. 2001. Purification, characterization, and overexpression of flavin reductase involved in dibenzothiophene desulfurization by Rhodococcus erythropolis D-1. Appl. Environ. Microbiol. 67:11791184.
52. Matsui, T.,, K. Hirasawa,, K. I. Koizumi,, K. Maruhashi,, and R. Kurane. 2001. Optimization of the copy number of dibenzothiophene desulfurizing genes to increase the desulfurization activity of recombinant Rhodococcus sp. Biotechnol. Lett. 23:17151718.
53. Matsui, T.,, K.-I. Noda,, Y. Tanaka,, K. Maruhashi,, and R. Kurane. 2002. Recombinant Rhodococcus sp. strain TO9 can desulfurize DBT in the presence of inorganic sulfate. Curr. Microbiol. 45:240244.
54. Matsui, T.,, T. Onaka,, Y. Tanaka,, T. Tezuka,, M. Sazuki,, and R. Kurane. 2000. Alkylated benzothiophene desulfurization by Rhodococcus sp. strain T09. Biosci. Biotechnol. Biochem. 64:596599.
55. McFarland, B. L. 1999. Biodesulfurization. Curr. Opin. Microbiol. 2:257264.
56. McFarland, B. L.,, D. B. Boron,, W. Deever,, J. A. Meyer,, A. R. Johnson,, and R. M. Atlas. 1998. Biocatalytic sulfur removal from fuels: applicability for producing low sulfur gasoline. Crit. Rev. Microbiol. 24:99147.
57. Mitra-Kirtley, S.,, O. C. Mullins,, J. van Elp,, S. J. George,, J. Chen,, and S. P. Cramer. 1993. Determination of the nitrogen chemical structures in petroleum asphaltenes using XANES spectroscopy. J. Am. Chem. Soc. 115:252258.
58. Mogollon, L.,, R. Rodriguez,, W. Larrota,, C. Ortiz,, and R. Torres. 1998. Biocatalytic removal of nickel and vanadium from petroporphyrins and asphaltenes. Appl. Biochem. Biotechnol. 70–72:765777.
59. Monticello, D. J. 2000. Biodesulfurization and the upgrading of petroleum distillates. Curr. Opin. Biotechnol. 11:540546.
60. Monticello, D. J.,, and W. R. Finnerty. 1985. Microbial desulfurization of fossil fuels. Annu. Rev. Microbiol. 39:371389.
61. Moore, J. C., and F. H. Arnold. 1996. Directed evolution of a para-nitrobenzyl esterase for aqueousorganic solvents. Nat. Biotechnol. 14:458467.
62. Mushrush, G. W.,, E. J. Beal,, D. R. Hardy,, and J. M. Hughes. 1999. Nitrogen compound distribution in middle distillate fuels derived from petroleum, oil shale, and tar sand sources. Fuel Process. Technol. 61:197201.
63. Nakayama, N.,, T. Matsubara,, T. Oshiro,, Y. Moroto,, Y. Kawata,, K. Koizumi,, Y. Hirakawa,, M. Suzuki,, K. Muruhashi,, Y. Izumi,, and R. Kurane. 2002.Anovel enzyme, 2'-hydroxybiphenyl- 2-sulfinate desulfinase (DszB), from a dibenzothiophene- desulfurizing bacterium Rhodococcus erythropolis KA2-5-1: gene overexpression and enzyme characterization. Biochim. Biophys. Acta 1598:122130.
64. Noda, K.-I.,, K. Watanabe,, and K. Maruhashi. 2003. Isolation of the Pseudomonas aeruginosa gene affecting uptake of dibenzothiophene in n-tetradecane. J. Biosci. Bioeng. 95:504511.
65. Nojiri, H.,, J.-W. Nam,, M. Kosaka,, K. I. Morii,, T. Takemura,, K. Furihata,, H. Yamane,, and T. Omori. 1999. Diverse oxygenations catalyzed by carbazole 1,9a-dioxygenase from Pseudomonas sp. strain CA10. J. Bacteriol. 181:31053113.
66. O’Connor, P.,, L. A. Gerritsen,, J. R. Pearch,, P. H. Desai,, S. Yanik,, and A. Humphries. 1991. Improved resin processing. Hydrogen Process. 11: 7684.
67. Ohshiro, T.,, Y. Aoi,, K. Torii,, and Y. Izumi. 2002. Flavin reductase coupling with two monooxygenases involved in dibenzothiophene desulfurization: purification and characterization from a non-desulfurizing bacterium Paenibacillus polymyxa A-1. Appl. Microbiol. Biotechnol. 59:649657.
68. Oichiyama, N.,, T. Omori,, and T. Kodama. 1993. Biodegradation of carbazole by Pseudomonas spp. CA06 and CA10. Biosci. Biotechnol. Biochem. 57:455460.
69. Oldfield, C.,, N. T. Wood,, S. C. Gilbert,, F. D. Murray,, and F. R. Faure. 1998. Desulphurisation of benzothiophene and dibenzothiophene by actinomycete organisms belonging to the genus Rhodococcus, and related taxa. Antonie Leeuwenhoek 74:119132.
70. Oldfield, C.,, O. Pogebinski,, J. Simmonds,, E. S. Olson,, and C. F. Kulpa. 1997. Elucidation of the metabolic pathway for dibenzothiophene desulphurization by Rhodococcus sp. strain IGTS8 (ATCC 53968). Microbiology 143:29612973.
71. Omori, T.,, L. Monna,, Y. Saiki,, and T. Kodama. 1992. Desulfurization of dibenzothiophene by Corynebacterium sp. strain SY1. Appl. Environ. Microbiol. 58:911915.
72. Onaka, T.,, J. Konishi,, Y. Ishii,, and K. Maruhashi. 2001. Desulfurization characteristics of thermophilic Paenibacillus sp. strain A11-2 against asymmetrically alkylated dibenzothiophenes. J. Biosci. Bioeng. 92:193196.
73. Oyama, S. T.,, and Y.-K. Lee. 2003. Transition metal phosphides: new catalysts for hydroprocessing. Am. Chem. Soc. Fuel Chem. Div. 48:173174.
74. Pacheco, M. A.,, E. A. Lange,, P. T. Pienkos,, L.- Q. Yu,, M. P. Rouse,, Q. Lin,, and L. K. Linguist. 1999. Recent Advances in Biodesulfurization of Diesel Fuel. National Petrochemical and Refiners Association, San Antonio, Tex.
75. Patel, S.,, J. J. Kilbane II,, and D. A. Webster. 1997. Biodesulfurization of dibenzothiophene in hydrophobic media by Rhodococcus sp. strain IGTS8. J. Chem. Technol. Biotechnol. 69:100106.
76. Piddington, C. S.,, B. R. Kovacevich,, and J. Rambosek. 1995. Sequence and molecular characterization of a DNA region encoding the dibenzothiophene desulfurization operon of Rhodococcus sp. strain IGTS8. Appl. Environ. Microbiol. 61:468475.
77. Pienkos, P. T. 2002. Gasoline Biodesulfurization. U.S. Department of Energy final report DOE/ID/ 13570.
78. Reeson, S. 1996. Heavy fuel oil:acceptable? Available? Affordable? Energy World 235:911.
79. Reichmuth, D. S.,, J. H. Hittle,, H. W. Blanch,, and J. D. Keasling. 2000. Biodesulfurization of dibenzothiophene in Escherichia coli is enhanced by expression of a Vibrio harveyi oxidoreductase gene. Biotechnol. Bioeng. 67:7278.
80. Rhee, S. K.,, J. H. Chang,, Y. K. Chang,, and H. N. Chang. 1998. Desulfurization of dibenzothiophene and diesel oils by a newly isolated Gordona strain, CYKS1. Appl. Environ. Microbiol. 64:23272331.
81. Riddle, R. R.,, P. R. Gibbs,, R. C. Wilson,, and M. J. Benedik. 2003. Recombinant carbazoledegrading strains for enhanced petroleum processing. J. Ind. Microbiol. Biotechnol. 30:612.
82. Sandhya, S. 1996. Microbial crude oil desulfurization— a challenge and perspective. Ind. J. Microbiol. 36:17.
83. Schneider, J.,, R. J. Grosser,, K. Jayasimhuli,, W. Xue,, B. Kinkle,, and D. Warsharsky. 2000. Biodegradation of carbazole by Ralstonia sp. RJGII.123 isolated from a hydrocarbon contaminated soil. Can. J. Microbiol. 46:269277.
84. Serbolisca, L.,, F. de Ferra,, and I. Margarit. 1999. Manipulation of the DNA coding for the desulphurizing activity in a new isolate of Arthrobacter sp. Appl. Microbiol. Biotechnol. 52:122126.
85. Shennan, J. L. 1996. Microbial attack on sulfurcontaining hydrocarbons: implications for the biodesulfurization of oils and coals. J. Chem. Technol. Biotechnol. 67:109123.
86. Shepherd, J. M.,, and G. Lloyd-Jones. 1998. Novel carbazole degradation genes of Sphingomonas CB3: sequence analysis, transcription, and molecular ecology. Biochem. Biophys. Res. Commun. 247: 129135.
87. Shong, R. G. 1999. Bioprocessing of crude oils. Div. Fuel Chem. Am. Chem. Soc. 44:14.
88. Speight, J. G. 1980. The Chemistry and Technology of Petroleum. Marcel Dekker, Inc., New York, N.Y.
89. Vesely, M.,, M. Patek,, J. Nesvera,, A. Cejkova,, J. Masak,, and V. Jirku. 2003. Host-vector system for phenol-degrading Rhodococcus erythropolis based on Corynebacterium plasmids. Appl. Microbiol. Biotechnol. 61:523527.
90. Watanabe, K.,, K. Noda,, Y. Ohta,, and K. Maruhashi. 2002. Desulfurization of light gas oil by a novel recombinant strain of Pseudomonas aeruginosa. Biotechnol. Lett. 24:897903.
91. Watkins, L. M.,, R. Rodriguez,, D. Schneider,, R. Broderick,, M. Cruz,, R. Chambers,, E. Ruckman,, M. Cody,, and G. T. Mrachko. 2003. Purification and characterization of the aromatic desulfinase 2-(2'-hydroxybiphenyl)benzensulfinate desulfinase. Arch. Biochem. Biophys. 415:1423.
92. Yano, T.,, and H. Kagamiyama. 2001. Directed evolution of ampicillin-resistant activity from a functionally unrelated DNA fragment: a laboratory model of molecular evolution. Proc. Natl. Acad. Sci. USA 98:903907.
93. Yano, T.,, S. Oue,, and H. Kagamiyama. 1998. Directed evolution of an aspartate aminotransferase with new substrate specificities. Proc. Natl. Acad. Sci. USA 95:55115515.
94. Yoshikawa, O.,, Y. Ishii,, K.-I. Koizumi,, T. Ohshiro,, Y. Izumi,, and K. Maruhashi. 2002. Enhancement and stabilization of desulfurization activity of Rhodococcus erythropolis KA2-5-1 by feeding ethanol and sulfur components. J. Biosci. Bioeng. 94:447452.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error