1887

Chapter 13 : Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap13-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap13-2.gif

Abstract:

This chapter focuses on the aerobic degradation of hydrocarbons, with an emphasis on alkanes, and the applications of enzymes involved in these processes for biocatalysis. Yeasts and fungi are often mentioned as alkane degraders, for example in connection with the production of single-cell proteins or organic acids and amino acids from hydrocarbons. Soluble and particulate mono-oxygenases are known to oxidize the same compounds, and some of the gene diversity detected with primers that amplify membrane-bound methane mono-oxygenase (pMMO) and soluble MMO (sMMO) genes may well be due to short-chain alkane-degrading bacteria instead of methanotrophs. The application of oxygenases in biocatalytic processes is more complicated than that of enzymes such as hydrolases, because of cofactor and oxygen requirements, the sensitive nature of many oxygenases, the toxicity of substrates and products to the biocatalyst, and the uptake of the lipophilic substrates. The best strain in this study was a hexane-degrading sp. strain HXN-200, isolated from a trickling-bed bioreactor. The oxygenases that are required for the initial activation of alkanes belong to several different enzyme classes, some of which act on medium- and long-chain alkanes, while others oxidize only short-chain alkanes. Studies of alkane hydroxylase (AH) gene diversity, coupled with information on substrate range, induction, enzyme kinetics, and host properties, should help in understanding and optimizing the biodegradative activity of indigenous hydrocarbon-degrading strains, benefit biocatalytic applications, and promote fundamental research on the activation of oxygen by enzymes and biomimetic catalysts.

Citation: van Beilen J, Witholt B. 2005. Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, p 259-276. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch13

Key Concept Ranking

Integral Membrane Proteins
0.42540237
0.42540237
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Pathways for the degradation of alkanes by terminal, subterminal, and biterminal oxidation. Terminal oxidation leads to the formation of fatty acids, which enter the β-oxidation pathway. Alternatively, ω-hydroxylation by a fatty acid mono-oxygenase or AH may take place, leading to dicarboxylic acids. Subterminal oxidation gives rise to secondary alcohols, which are oxidized to a ketone. A Baeyer-Villiger mono-oxygenase converts the ketone to an ester, which is subsequently cleaved by an esterase. (Reprinted from Oil and Gas Science and Technology [ ] with permission of the publisher.)

Citation: van Beilen J, Witholt B. 2005. Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, p 259-276. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Oxidation reactions catalyzed by AHs. See the text for details and references.

Citation: van Beilen J, Witholt B. 2005. Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, p 259-276. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch13
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap13
1. Abbott, B. J.,, and C. T. Hou. 1973. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans. Appl. Microbiol. 26: 86 91.
2. Al-Hasan, R. H.,, M. Khanafer,, M. Eliyas,, and S. S. Radwan. 2001. Hydrocarbon accumulation by picocyanobacteria from the Arabian Gulf. J. Appl. Microbiol. 91: 533 540.
3. Angelova, B.,, and H. P. Schmauder. 1999. Lipophilic compounds in biotechnology—interactions with cells and technological problems. J. Biotechnol. 67: 13 32.
4. Anzai, Y.,, H. Kim,, J. Y. Park,, H. Wakabayashi,, and H. Oyaizu. 2000. Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int. J. Syst. Evol. Microbiol. 50: 1563 1589.
5. April, T. M.,, J. M. Foght,, and R. S. Currah. 2000. Hydrocarbon-degrading filamentous fungi isolated from flare pit soils in northern and western Canada. Can. J. Microbiol. 46: 38 49.
6. Ashraf, W.,, A. Mihdhir,, and J. C. Murrell. 1994. Bacterial oxidation of propane. FEMS Microbiol. Lett. 122: 1 6.
7. Asperger, O.,, K. Wirkner,, M. Schmidt,, and E. Flechsig. 1994. Detection of diverse cytochrome P450-dependent biooxygenation catalysts in microorganisms using a multipurpose inducer. Biocatalysis 10: 233 246.
8. Atlas, R. M.,, and R. Bartha. 1992. Hydrocarbon biodegradation and oil spill bioremediation. Adv. Microb. Ecol. 12: 287 338.
9. Baptist, J. N.,, R. K. Gholson,, and M. J. Coon. 1963. Hydrocarbon oxidation by a bacterial enzyme system. I. Products of octane oxidation. Biochim. Biophys. Acta 69: 40 47.
10. Baumann, P.,, M. Doudoroff,, and R. Y. Stanier. 1968. A study of the Moraxella group. II. Oxidative- negative species (genus Acinetobacter). J. Bacteriol. 95: 1520 1541.
11. Bell, S. G.,, E. Orton,, H. Boyd,, J. A. Stevenson,, A. Riddle,, S. Campbell,, and L. L. Wong. 2003. Engineering cytochrome P450cam into an alkane hydroxylase. Dalton Trans. 2003: 2133 2140.
12. Berekaa, M. M.,, and A. Steinbuchel. 2000. Microbial degradation of the multiply branched alkane 2,6,10,15,19,23-hexamethyltetracosane (squalane) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Appl. Environ. Microbiol. 66: 4462 4467.
13. Bogan, B. W.,, W. R. Sullivan,, K. J. Kayser,, K. D. Derr,, H. C. Aldrich,, and J. R. Peterek. 2003. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane- degrading bacterium isolated from oilfield soils. Int. J. Syst. Evol. Microbiol. 53: 1389 1395.
14. Bosetti, A.,, J. B. van Beilen,, H. Preusting,, R. G. Lageveen,, and B. Witholt. 1992. Production of primary aliphatic alcohols with a recombinant Pseudomonas strain, encoding the alkane hydroxylase enzyme system. Enzyme Microb. Technol. 14: 702 708.
15. Bourre, J. M.,, C. Cassagne,, S. Larrouquerre- Regnier,, and D. Darriet. 1977. Occurence of alkanes in brain myelin. Comparison between normal and quaking mouse. J. Neurochem. 29: 645 648.
16. Bredholt, H.,, P. Bruheim,, M. Potocky,, and K. Eimhjellen. 2002. Hydrophobicity development, alkane oxidation, and crude-oil emulsification in a Rhodococcus species. Can. J. Microbiol. 48: 295 304.
17. Britton, L. N., 1984. Microbial degradation of aliphatic hydrocarbons, p. 89 129. In D. T. Gibson (ed.), Microbial Degradation of Organic Compounds, vol. 13. Marcel Dekker, New York, N.Y.
18. Broadway, N. M.,, F. M. Dickinson,, and C. Ratledge. 1993. The enzymology of dicarboxylic acid formation by Corynebacterium sp. strain 7E1C grown on n-alkanes. J. Gen. Microbiol. 139: 1337 1344.
19. Bühler, M.,, and J. Schindler,. 1984. Aliphatic hydrocarbons, p. 329 385. In K. Kieslich (ed.), Biotransformations, vol. 6a. Verlag Chemie Weinheim, Weinheim, Germany.
20. Cardini, G.,, and P. Jurtshuk. 1970. The enzymatic hydroxylation of n-octane by Corynebacterium sp. strain 7E1C. J. Biol. Chem. 245: 2789 2796.
21. Chang, D. 2003. Regio- and Stereoselective Hydroxylations with Sphingomonas sp. HXN-200. Swiss Federal Institute of Technology, Zürich, Switzerland.
22. Chang, D.,, B. Witholt,, and Z. Li. 2000. Preparation of (S)-N-substituted 4-hydroxy-pyrrolidine- 2-ones by regio- and stereoselective hydroxylation with Sphingomonas sp. HXN-200. Org. Lett. 2: 3949 3952.
23. Chang, D.,, H.-J. Feiten,, K.-H. Engesser,, J. B. van Beilen,, B. Witholt,, and Z. Li. 2002. Practical syntheses of N-substituted 3-hydroxyazetidines and 4-hydroxypiperidines by hydroxylation with Sphingomonas sp. HXN-200. Org. Lett. 4: 1859 1862.
24. Chang, H. S.,, and L. Alvarez Cohen. 1995. Transformation capacities of chlorinated organics by mixed cultures enriched on methane, propane, toluene, or phenol. Biotechnol. Bioeng. 45: 440 449.
25. Clifford, K. H.,, G. T. Phillips,, and A. F. Marx. August 1991. Process for the preparation of substituted phenoxy propanoic acids. U.S. patent 5,037,759.
26. Crespo, R.,, M. P. Juarez,, G. M. Dal Bello,, S. Padin,, G. C. Fernandez,, and N. Pedrini. 2002. Increased mortality of Acanthoscelides obtectus by alkane-grown Beauveria bassiana. Biocontrol 47: 685 696.
27. Davies, H. G.,, R. H. Green,, D. R. Kelly,, and S. M. Roberts. 1989. Biotransformations in Preparative Organic Chemistry. Academic Press, London, United Kingdom.
28. de Smet, M.-J.,, H. Wijnberg,, and B. Witholt. 1981. Synthesis of 1,2-epoxyoctane by Pseudomonas oleovorans during growth in a two-phase system containing high concentrations of 1-octene. Appl. Environ. Microbiol. 42: 811 816.
29. Duetz, W. A.,, J. B. van Beilen,, and B. Witholt. 2001. Using proteins in their natural environment: potential and limitations of microbial whole-cell hydroxylations in applied biocatalysis. Curr. Opin. Biotechnol. 12: 419 425.
30. Ehrlich, H. L. 2002. Geomicrobiology, 4th ed. Marcel Dekker, Inc., Basel, Switzerland.
31. Engelhardt, M. A.,, K. Daly,, R. P. J. Swannell,, and I. M. Head. 2001. Isolation and characterization of a novel hydrocarbon-degrading, gram-positive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J. Appl. Microbiol. 90: 237 247.
32. Feitkenhauer, H.,, R. Müller,, and H. Ma¨rkl. 2003. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70°C by Thermus and Bacillus spp. Biodegradation 14: 367 372.
33. Flitsch, S. L.,, S. J. Aitken,, C. S.-Y. Chow,, G. Grogan,, and A. Staines. 1999. Biohydroxylation reactions catalyzed by enzymes and whole-cell systems. Bioorg. Chem. 27: 81 90.
34. Foster, J. W. 1962. Hydrocarbons as substrates for microorganisms. Antonie Leeuwenhoek 28: 241 274.
35. Fu, H.,, M. Newcomb,, and C. H. Wong. 1991. Pseudomonas oleovorans monooxygenase catalyzed asymmetric epoxidation of allyl alcohol derivatives and hydroxylation of a hypersensitive radical probe with the radical ring opening state exceeding the oxygen rebound state. J. Am. Chem. Soc 113: 5878 5880.
36. Fukui, S.,, and A. Tanaka. 1980. Production of useful compounds from alkane media in Japan. Adv. Biochem. Eng. 17: 1 35.
37. Glieder, A.,, E. T. Farinas,, and F. H. Arnold. 2002. Laboratory evolution of a soluble, selfsufficient, highly active alkane hydroxylase. Nat. Biotechnol. 20: 1135 1139.
38. Golyshin, P. N.,, T. Chernikova,, W. R. Abraham,, H. Lünsdorf,, K. N. Timmis,, and M. M. Yakimov. 2002. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 52: 901 911.
39. Hamamura, N.,, R. T. Storfa,, L. Semprini,, and D. J. Arp. 1999. Diversity in butane monooxygenases among butane-grown bacteria. Appl. Environ. Microbiol. 65: 4586 4593.
40. Hamamura, N.,, C. M. Yeager,, and D. J. Arp. 2001. Two distinct monooxygenases for alkane oxidation in Nocardioides sp. strain CF8. Appl. Environ. Microbiol. 67: 4992 4998.
41. Harayama, S.,, H. Kishira,, Y. Kasai,, and K. Shutsubo. 1999. Petroleum biodegradation in marine environments. J. Mol. Microbiol. Biotechnol. 1: 63 70.
42. Hayaishi, O.,, M. Katagiri,, and S. Rothberg. 1955. Mechanism of the pyrocatechase reaction. J. Am. Chem. Soc. 77: 5450 5451.
43. Holland, H. L. 1991. Organic Synthesis with Oxidative Enzymes. VCH Publishers, Inc., New York, N.Y.
44. Hou, C. T.,, M. A. Jackson,, M. O. Bagby,, and L. A. Becker. 1994. Microbial oxidation of cumene by octane-grown cells. Appl. Microbiol. Biotechnol. 41: 178 182.
45. Huybregtse, R.,, and A. C. van der Linden. 1964. Oxidation of α-olefins by a Pseudomonas. Reactions involving the double bond. Antonie Leeuwenhoek 30: 185 196.
46. Iida, T.,, T. Sumita,, A. Ohta,, and M. Takagi. 2000. The cytochrome P450ALK multigene family of an n-alkane-assimilating yeast, Yarrowia lipolytica: cloning and characterization of genes coding for new CYP52 family members. Yeast 16: 1077 1087.
47. Johnstone, S. L.,, G. T. Phillips,, B. W. Robertson,, P. D. Watts,, M. A. Bertola,, H. S. Koger,, and A. F. Marx,. 1986. Stereoselective synthesis of S-(-)- β-blockers via microbially produced epoxide intermediates, p. 387 392. In C. Laane,, J. Tramper,, and M. D. Lilly (ed.), Biocatalysis in Organic Media. Elsevier, Amsterdam, The Netherlands.
48. Kaserer, H. 1906. Ueber die Oxidation des Wasserstoffes und des Methans durch Mikroorganismen. Zentbl. Bakteriol. Abt. 2 15: 573 576.
49. Katopodis, A. G.,, H. A. Smith,, and S. W. May. 1988. New oxyfunctionalization capabilities for ohydroxylases: asymmetric aliphatic sulfoxidation and branched ether demethylation. J. Am. Chem. Soc. 110: 897 899.
50. Kiener, A. 1992. Enzymatic oxidation of methyl groups on aromatic heterocycles: a versatile method for the preparation of heteroaromatic carboxylic acids. Angew. Chem. Int. Ed. Engl. 31: 774 775.
51. Kok, M.,, R. Oldenhuis,, M. P. G. van der Linden,, P. Raatjes,, J. Kingma,, P. H. van Lelyveld,, and B. Witholt. 1989. The Pseudomonas oleovorans alkane hydroxylase gene. Sequence and expression. J. Biol. Chem. 264: 5435 5441.
52. Kolattukudy, P. E. (ed.). 1976. Chemistry and Biochemistry of Natural Waxes. Elsevier Scientific Publishing Co., Amsterdam, The Netherlands.
53. Labinger, J. A.,, and J. E. Bercaw. 2002. Understanding and exploiting C-H bond activation. Nature 417: 507 514.
54. Lehman, L. R.,, and J. D. Stewart. 2001. Filamentous fungi: potentially useful catalysts for the biohydroxylations of non-activated carbon centers. Curr. Org. Chem. 5: 439 470.
55. Li, Z.,, H.-J. Feiten,, J. B. van Beilen,, W. Duetz,, and B. Witholt. 1999. Preparation of optically active N-benzyl-3-hydroxypyrrolidine by enzymatic hydroxylation. Tetrahedron Asymmetry 10: 1323 1333.
56. Li, Z.,, H.-J. Feiten,, D. Chang,, W. A. Duetz,, J. B. van Beilen,, and B. Witholt. 2001. Preparation of (R)- and (S)-N-protected-3-hydroxypyrrolidines by hydroxylation with Sphingomonas sp. HXN-200, a highly active, regio-and stereoselective, and easy to handle biocatalyst. J. Org. Chem. 66: 8424 8430.
57. Lindley, N. D. 1995. Bioconversion and biodegradation of aliphatic hydrocarbons. Can. J. Bot. Rev. Can. Bot. 73: S1034 S1042.
58. Lukins, H. B.,, and J. W. Foster. 1963. Utilization of hydrocarbons and hydrogen by mycobacteria. Z. Allg. Mikrobiol. 3: 251 264.
59. Macnaughton, S. J.,, J. R. Stephen,, A. D. Venosa,, G. A. Davis,, Y. J. Chang,, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566 3574.
60. Maeng, J. H.,, Y. Sakai,, Y. Tani,, and N. Kato. 1996. Isolation and characterization of a novel oxygenase that catalyzes the first step of n-alkane oxidation in Acinetobacter sp. strain M-1. J. Bacteriol. 178: 3695 3700.
61. Maier, T.,, H.-H. Foerster,, O. Asperger,, and U. Hahn. 2001. Molecular characterization of the 56-kDa CYP153 from Acinetobacter sp. EB104. Biochem. Biophys. Res. Commun. 286: 652 658.
62. Margesin, R.,, S. Gander,, G. Zacke,, A. M. Gounot,, and F. Schinner. 2003a. Hydrocarbon degradation and enzyme activities of cold-adapted bacteria and yeasts. Extremophiles 7: 451 458.
63. Margesin, R.,, D. Labbe,, F. Schinner,, C. W. Greer,, and L. G. Whyte. 2003b. Characterization of hydrocarbon-degrading microbial populations in contaminated and pristine alpine soils. Appl. Environ. Microbiol. 69: 3085 3092.
64. Marin, M. M.,, T. H. M. Smits,, J. B. van Beilen,, and F. Rojo. 2001. The alkane hydroxylase gene of Burkholderia cepacia RR10 is under catabolite repression control. J. Bacteriol. 183: 4202 4209.
65. Marin, M.,, L. Yuste,, and F. Rojo. 2003. Differential expression of the components of the two alkane hydroxylases from Pseudomonas aeruginosa. J. Bacteriol. 185: 3232 3237.
66. Mathys, R. G.,, A. Schmid,, and B. Witholt. 1999. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation. Biotechnol. Bioeng. 64: 459 477.
67. Matsui, T.,, and K. Furuhashi. 1995. Asymmetric oxidation of isopropylmoieties of aliphatic and aromatic hydrocarbons by Rhodococcus sp. 11B. Biosci. Biotechnol. Biochem. 59: 1342 1344.
68. May, S. W.,, and B. J. Abbott. 1972. Enzymatic epoxidation. I. Alkane epoxidation by the ohydroxylation system of Pseudomonas oleovorans. Biochem. Biophys. Res. Commun. 48: 1230 1234.
69. Mikolasch, A.,, E. Hammer,, and F. Schauer. 2003. Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl. Environ. Microbiol. 69: 1670 1679.
70. Murrell, J. C.,, B. Gilbert,, and I. R. McDonald. 2000. Molecular biology and regulation of methane monooxygenase. Arch. Microbiol. 173: 325 332.
71. National Research Council. 2002. Oil in the Sea III: Inputs, Fates, and Effects. National Academies Press, Washington, D.C.
72. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev,, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G . stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433 446.
73. Ohkuma, M.,, T. Zimmer,, T. Iida,, W. H. Schunck,, A. Ohta,, and M. Takagi. 1998. Isozyme function of n-alkane-inducible cytochromes P450 in Candida maltosa revealed by sequential gene disruption. J. Biol. Chem. 273: 3948 3953.
74. Ooyama, J.,, and J. W. Foster. 1965. Bacterial oxidation of cycloparaffinic hydrocarbons. Antonie Leeuwenhoek 31: 45 65.
75. Padda, R. S.,, K. K. Pandey,, S. Kaul,, V. D. Nair,, R. K. Jain,, S. K. Basu,, and T. Chakrabarti. 2001. A novel gene encoding a 54 kDa polypeptide is essential for butane utilization by Pseudomonas sp. IMT37. Microbiology 147: 2479 2491.
76. Park, M. O.,, M. Tanabe,, K. Hirata,, and K. Miyamoto. 2001. Isolation and characterization of a bacterium that produces hydrocarbons extra-cellularly which are equivalent to light oil. Appl. Microbiol. Biotechnol. 56: 448 452.
77. Peñuelas, J.,, and J. Llusià. 2003. BVOCs: plant defense against climate warming. Trends Plant Sci. 8: 105 109.
78. Rahn, O. 1906. Ein Paraffin zersetzender Schimmelpilz. Zentbl. Bakteriol. Abt. 2 16: 382 384.
79. Ratajczak, A.,, W. Geiβdörfer, andW.Hillen. 1998. Alkane hydroxylase from Acinetobacter sp. strain ADP- 1 is encoded by alkM and belongs to a new family of bacterial integral-membrane hydrocarbon hydroxylases. Appl. Environ. Microbiol. 64: 1175 1179.
80. Röling, W. F. M.,, M. G. Milner,, D. M. Jones,, K. Lee,, F. Daniel,, R. J. P. Swannell,, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537 5548.
81. Savage, T. J.,, B. S. Hamilton,, and R. Croteau. 1996. Biochemistry of short-chain alkanes. Tissuespecific biosynthesis of n-heptane in Pinus jeffreyi. Plant Physiol. 110: 179 186.
82. Scheller, U.,, T. Zimmer,, D. Becher,, F. Schauer,, and W. H. Schunck. 1998. Oxygenation cascade in conversion of n-alkanes to α,ω-dioic acids catalyzed by cytochrome P450 52A3. J. Biol. Chem. 273: 32528 32534.
83. Schiestl, F. P.,, M. Ayasse,, H. F. Paulus,, C. Löfstedt,, B. S. Hansson,, F. Ibarra,, and W. Francke. 1999. Orchid pollination by sexual swindle. Nature 399: 421 422.
84. Schmitz, C.,, I. Goebel,, S. Wagner,, A. Vomberg,, and U. Klinner. 2000. Competition between n-alkane- assimilating yeasts and bacteria during colonization of sandy soil microcosms. Appl . Microbiol. Biotechnol. 54: 126 132.
85. Sluis, M. K.,, L. A. Sayavedra Soto,, and D. J. Arp. 2002. Molecular analysis of the soluble butane monooxygenase from ‘Pseudomonas butanovora.’ Microbiology 148: 3617 3629.
86. Smits, T. H. M.,, M. Röthlisberger,, B. Witholt,, and J. B. van Beilen. 1999. Molecular screening for alkane hydroxylase genes in gram-negative and gram-positive strains. Environ. Microbiol. 1: 307 318.
87. Smits, T. H. M.,, S. B. Balada,, B. Witholt,, and J. B. van Beilen. 2002. Functional analysis of alkane hydroxylases from gram-negative and gram-positive bacteria. J. Bacteriol. 184: 1733 1742.
88. Smits, T. H. M.,, B. Witholt,, and J. B. van Beilen. 2003. Functional characterization of genes involved in alkane oxidation by Pseudomonas aeruginosa. Antonie Leeuwenhoek 84: 193 200.
89. Söhngen, N. L. 1906. Ueber Bakterien, welche Methan als Kohlenstoffnahrung und Energiequelle gebrauchen. Zentbl. Bakteriol. Abt. 2 15: 513 517.
90. Söhngen, N. L. 1913. Benzin, Petroleum, Paraffinöl und Paraffin als Kohlenstoff- und Energiequelle fu¨ r Mikroben. Zentbl. Bakteriol. Abt. 2 37: 595 609.
91. Spigno, G.,, C. Pagella,, M. D. Fumi,, R. Molteni,, and D. M. De Faveri. 2003. VOCs removal from waste gases: gas-phase bioreactor for the abatement of hexane by Aspergillus niger. Chem. Eng. Sci. 58: 739 746.
92. Sullivan, J. P.,, D. Dickinson,, and H. A. Chase. 1998. Methanotrophs, Methylosinus trichosporium OB3b, sMMO, and their application to bioremediation. Crit. Rev. Microbiol. 24: 335 373.
93. Tani, A.,, T. Ishige,, Y. Sakai,, and N. Kato. 2001. Gene structures and regulation of the alkane hydroxylase complex in Acinetobacter sp. strain M- 1. J. Bacteriol. 183: 1819 1823.
94. Ueno, R.,, N. Urano,, S. Wada,, and S. Kimura. 2002. Optimization of heterotrophic culture conditions for n-alkane utilization and phylogenetic position based on the 18S rDNA sequence of a thermotolerant Prototheca zopfii strain. J. Biosci. Bioeng. 94: 160 165.
95. van Beilen, J. B. 1994. Alkane oxidation by Pseudomonas oleovorans: genes and proteins. Ph.D. thesis. University of Groningen, Groningen, The Netherlands.
96. van Beilen, J. B.,, J. Kingma,, and B. Witholt. 1994a. Substrate specificity of the alkane hydroxylase of Pseudomonas oleovorans GPo1. Enzyme Microb. Technol. 16: 904 911.
97. van Beilen, J. B.,, M. G. Wubbolts,, and B. Witholt. 1994b. Genetics of alkane oxidation by Pseudomonas oleovorans. Biodegradation 5: 161 174.
98. van Beilen, J. B.,, S. Panke,, S. Lucchini,, A. G. Franchini,, M. Röthlisberger,, and B. Witholt. 2001. Analysis of Pseudomonas putida alkane degradation gene clusters and flanking insertion sequences: evolution and regulation of the alk-genes. Microbiology 147: 1621 1630.
99. van Beilen, J. B.,, T. H. M. Smits,, L. G. Whyte,, S. Schorcht,, M. Röthlisberger,, T. Plaggemeier,, K.-H. Engesser,, and B. Witholt. 2002. Alkane hydroxylase homologues in gram-positive strains. Environ. Microbiol. 4: 676 682.
100. van Beilen, J. B.,, W. A. Duetz,, A. Schmid,, and B. Witholt. 2003a. Practical issues in the application of oxygenases. Trends Biotechnol. 21: 170 177.
101. van Beilen, J. B.,, Z. Li,, W. A. Duetz,, T. H. M. Smits,, and B. Witholt. 2003b. Diversity of alkane hydroxylase systems in the environment. Oil Gas Sci. Technol. 58: 427 440.
102. van Beilen, J. B.,, E. G. Funhoff,, A. van Loon,, A. Just,, L. Kaysser,, M. Bouza,, R. Holtackers,, M. Röthlisberger,, Z. Li,, and B. Witholt. Submitted for publication.
103. van Beilen, J. B.,, R. Holtackers,, D. Lu¨ scher,, U. Bauer,, B. Witholt,, and W. A. Duetz. 2005. Biocatalytic production of perillyl alcohol from limonene by using a novel Mycobacterium sp. cytochrome P450 alkane hydroxylase expressed in Pseudomonas putida. Appl. Environ. Microbiol. 71: 1737 1744.
104. van Beilen, J. B.,, M. Marin,, T. H. M. Smits,, M. Röthlisberger,, A. Franchini,, B. Witholt,, and F. Rojo. 2004. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol. 6: 264 273.
105. van Beilen, J. B.,, T. H. M. Smits,, S. B. Balada,, F. Roos,, T. Brunner,, and B. Witholt. 2005. Getting a hold on alkanes: identification of an amino acid position that determines the substrate range of integral-membrane alkane hydroxylases. J. Bacteriol. 187: 85 91.
106. van Beilen, J. B.,, and B. Witholt,. 2004. Alkane degradation by pseudomonads, p. 397 423. In J. L. Ramos (ed.), The Pseudomonads, vol. 3. Kluwer Academic Publishers, Dordrecht, The Netherlands.
107. van der Linden, A. C. 1963. Epoxidation of aolefins by heptane-grown Pseudomonas cells. Biochim. Biophys. Acta 77: 157 159.
108. vanHamme, J. D.,, A. Singh,, and O. P. Ward. 2003. Recent advances in petroleum microbiology. Microbiol. Mol. Biol. Rev. 67: 503 549.
109. van Ravenswaay Claasen, J. C.,, and A. C. van der Linden. 1971. Substrate specificity of the paraffin hydroxylase of Pseudomonas aeruginosa. Antonie Leeuwenhoek 37: 339 352.
110. Walker, J. D.,, and R. S. Pore. 1978. Growth of Prototheca isolates on n-hexadecane and mixed-hydrocarbon substrate. Appl. Environ. Microbiol. 35: 694 697.
111. Whyte, L. G.,, J. Hawari,, E. Zhou,, L. Bourbonnière,, W. E. Inniss,, and C. W. Greer. 1998. Biodegradation of variable-chain-length alkanes at low temperatures by a psychrotrophic Rhodococcus sp. Appl. Environ. Microbiol. 64: 2578 2584.
112. Whyte, L. G.,, A. Schultz,, J. B. van Beilen,, A. P. Luz,, D. Pellizari,, D. Labbé,, and C. W. Greer. 2002a. Prevalence of alkane monooxygenase genes in arctic and antarctic hydrocarbon-contaminated and pristine soils. FEMS Microbiol. Ecol. 41: 141 150.
113. Whyte, L. G.,, T. H. M. Smits,, D. Labbé,, B. Witholt,, C. W. Greer,, and J. B. van Beilen. 2002b. Cloning and characterization of multiple alkane hydroxylase systems in Rhodococcus spp. strains Q15 and 16531. Appl. Environ. Microbiol. 68: 5933 5942.
114. Widdel, F.,, and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259 276.
115. Witholt, B.,, M. J. de Smet,, J. Kingma,, J. B. van Beilen,, M. Kok,, R. G. Lageveen,, and G. Eggink. 1990. Bioconversions of aliphatic compounds by Pseudomonas oleovorans in multiphase biorectors: background and economic potential. Trends Biotechnol. 8: 46 52.
116. Yadav, J. S.,, and J. C. Loper. 1999. Multiple P450alk (cytochrome P450 alkane hydroxylase) genes from the halotolerant yeast Debaryomyces hansenii. Gene 226: 139 146.
117. Yakimov, M. M.,, P. N. Golyshin,, S. Lang,, E. R. B. Moore,, W.-R. Abraham,, H. Lünsdorf,, and K. N. Timmis. 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48: 339 348.
118. Yakimov, M. M.,, H. Lünsdorf,, and P. N. Golyshin. 2003. Thermoleophilum album and Thermoleophilum minutum are culturable representatives of group 2 of the Rubrobacteridae (Actinobacteria). Int. J. Syst. Evol. Microbiol. 53: 377 380.
119. ZoBell, C. E. 1950. Assimilation of hydrocarbons by microorganisms. Adv. Enzymol. 10: 443 486.

Tables

Generic image for table
TABLE 1

Genera containing isolates that aerobically degrade aliphatic hydrocarbons

Citation: van Beilen J, Witholt B. 2005. Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, p 259-276. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch13
Generic image for table
TABLE 2

Enzyme classes shown to be involved in the oxidation of alkanes

Citation: van Beilen J, Witholt B. 2005. Diversity, Function, and Biocatalytic Applications of Alkane Oxygenases, p 259-276. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch13

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error