1887

Chapter 16 : The Microbiology of Marine Oil Spill Bioremediation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

The Microbiology of Marine Oil Spill Bioremediation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap16-2.gif

Abstract:

Bioremediation, stimulating the biodegradation of spilled oil, has proven to be a safe and effective paradigm for dealing with marine oil spills. This chapter focuses on the microbiology that underpins bioremediation and addresses whether these new tools will allow insights that can substantially increase the efficacy of bioremediation treatments in the future. The most important requirement seems to be that nitrogen be available at the oil-water interface for long enough that the oil-degrading microbes become well established; the precise form of the nitrogen in the fertilizer seems to be of secondary importance. Modern molecular diagnostic tools are providing new insights into the microbial responses to an oil spill and bioremediation treatments. In most environments, a significant oil spill provides a substantial input of hydrocarbons into a system that was previously starved of such substrates. It is also important to bear in mind that the oil-degrading microbes consuming the oil are part of an ecosystem with organisms that compete for nutrients. Photosynthetic organisms also have an essentially unlimited supply of carbon in the form of CO and are typically limited by the supply of nitrogen and phosphorus, and the oil-degrading microbes will themselves become the foundation for predatory organisms. Understanding and controlling these interactions in an environmentally responsible way will also likely make bioremediation more effective.

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16

Key Concept Ranking

Microbial Ecology
0.8431013
Polycyclic Aromatic Hydrocarbons
0.6597853
Gram-Negative Bacteria
0.4443724
16s rRNA Sequencing
0.43724346
Horizontal Gene Transfer
0.40065163
0.8431013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817589.chap16
1. Al-Hasan, R. H.,, D. A. Al-Bader,, N. A. Sorkhoh,, and S. S. Radwan. 1998. Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar. Biol. 130: 521 527.
2. April, T. M.,, S. P. Abbott,, J. M. Foght,, and R. S. Currah. 1998. Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can. J. Microbiol. 44: 270 278.
3. Atlas, R. M.,, and R. Bartha. 1973. Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ. Sci. Technol. 7: 538 541.
4. Austin, B.,, J. J. Calomiris,, J. D. Walker,, and R. R. Colwell. 1977. Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl. Environ. Microbiol. 34: 60 68.
5. Baldi, F.,, N. Ivosevic,, A. Minacci,, M. Pepi,, R. Fani,, V. Svetlicic,, and V. Zutic. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl. Environ. Microbiol. 65: 2041 2048.
6. Baldi, F.,, M. Pepi,, and F. Fava. 2003. Growth of Rhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and Orimulsion. Appl. Environ. Microbiol. 69: 4689 4696.
7. Barabas, G.,, G. Vargha,, I. M. Szabo,, A. Penyige,, S. Damjanovich,, J. Szollosi,, J. Matko,, T. Hirano,, A. Matyus,, and I. Szabo. 2001. NAlkane uptake and utilisation by Streptomyces strains. Antonie Leeuwenhoek 79: 269 276.
8. Benjamin, R.C.,, J. A. Voss,, and D. A. Kunz. 1991. Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL pWW0 and NAH7. J. Bacteriol. 173: 2724 2728.
9. Berardesco, G.,, S. Dyhrman,, E. Gallagher,, and M. P. Shiaris. 1998. Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl. Environ. Microbiol. 64: 2560 2565.
10. Bogan, B. W.,, W. R. Sullivan,, K. J. Kayser,, K. D. Derr,, H. C. Aldrich,, and J. R. Paterek. 2003. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane- degrading bacterium isolated from oilfield soils. Int. J. Syst. Evol. Microbiol. 53: 1389 1395.
11. Bohannon, J.,, X. Bosch,, and J. Withgott. 2002. Scientists brace for bad tidings after spill. Science 298: 1695 1696.
12. Bossert, I.,, and R. Bartha,. 1984. The fate of petroleum in soil ecosystems, p. 435 473. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan, New York, N.Y.
13. Boufadel, M. C.,, P. Reeser,, M. T. Suidan,, B. A. Wrenn,, J. Cheng,, X. Du,, T. H. L. Huang,, and A. D. Venosa. 1999. Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ. Technol. 20: 191 199.
14. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 3068 3078.
15. Boyd, P. W.,, C. S. Law,, C. S. Wong,, Y. Nojiri,, A. Tsuda,, M. Levasseur,, S. Takeda,, R. Rivkin,, P. J. Harrison,, R. Strzepek,, J. Gower,, M. McKay,, E. Abraham,, M. Arychuk,, J. Barwell-Clarke,, W. Crawford,, D. Crawford,, M. Hale,, K. Harada,, K. Johnson,, H. Kiyosawa,, I. Kudo,, A. Marchetti,, W. Miller,, J. Needoba,, J. Nishioka,, H. Ogawa,, J. Page,, M. Robert,, H. Saito,, A. Sastri,, N. Sherry,, T. Soutar,, N. Sutherland,, Y. Taira,, F. Whitney,, S. K. Wong,, and T. Yoshimura. 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428: 549 553.
16. Braddock, J. F.,, J. E. Lindstrom,, and E. J. Brown. 1995. Distribution of hydrocarbondegrading microorganisms in sediments from Prince William Sound, Alaska, following the Exxon Valdez spill. Mar. Pollut. Bull. 30: 125 132.
17. Bragg, J. R.,, R. C. Prince,, E. J. Harner,, and R. M. Atlas. 1994. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368: 413 418.
18. Breezee, J.,, N. Cady,, and J. T. Staley. 2004. Subfreezing growth of the sea ice bacterium "Psychromonas ingrahamii." Microb. Ecol. 47: 303 304.
19. Brinkmeyer, R.,, K. Knittel,, J. Jü rgens,, H. Weyland,, R. Amann,, and E. Helmkel. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69: 6610 6619.
20. Bronchart, R. D. E.,, J. Cadron,, A. Charlier,, A. A. R. Gillot,, and W. Verstraete. 1985. A new approach in enhanced biodegradation of spilled oil; development of an oil dispersant containing oleophilic nutrients, p. 453 462. In Proceedings of the 1985 Conference on the Prevention and Control of Oil Pollution. American Petroleum Institute, Washington, D.C.
21. Brown, E. J.,, and J. E. Braddock. 1990. Sheen Screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl. Environ. Microbiol. 56: 3895 3896.
22. Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3: 351 368.
23. Chaineau, C. H.,, J. Morel,, J. Dupont,, E. Bury,, and J. Oudot. 1999. Comparison of the fuel oil biodegradation potential of hydrocarbonassimilating microorganisms isolated from a temperate agricultural soil. Sci. Total Environ. 227: 237 247.
24. Chung, W. K.,, and G. M. King. 2001. Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl. Environ. Microbiol. 67: 5585 5592.
25. Coates, J. D.,, V. K. Bhupathiraju,, L. A. Achenbach,, M. J. McInerney,, and D. R. Lovley. 2001a. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol Microbiol. 51: 581 588.
26. Coates, J. D.,, R. Chakraborty,, J. G. Lack,, S. M. O’Connor,, K. A. Cole,, K. S. Bender,, and L. A. Achenbach. 2001b. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411: 1039 1043.
27. Cooney, J. J.,, S. Wuertz,, M. M. Doolittle,, M. E. Miller,, C. M. Baisden,, K. D. Henry,, and D. M. Ricca. 1995. Marine fungi are potential agents for bioremediation of oil spills. Biodeterior. Biodegradation 9: 610 614.
28. Cravo-Laureau, C.,, R. Matheron,, J. L. Cayol,, C. Joulian,, and A. Hirschler-Rea. 2004. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 54: 77 83.
29. da Silva, M.,, C. E. Cerniglia,, J.V. Pothuluri,, V. P. Canhos,, and E. Esposito. 2003. Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J. Microbiol. Biotechnol. 19: 399 405.
30. Delille, D.,, B. Delille,, and E. Pelletier. 2002. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb. Ecol. 44: 118 126.
31. Dojka, M. A.,, P. Hugenholtz,, S. K. Haack,, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64: 3869 3877.
32. Dore, S. Y.,, Q. E. Clancy,, S. M. Rylee,, and C. F. Kulpa, Jr. 2003. Naphthalene-utilizing and mercury-resistant bacteria isolated froman acidic environment. Appl. Microbiol. Biotechnol. 63: 194 199.
33. Dutta, T. K.,, and S. Harayama. 2001. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol. 67: 1970 1974.
34. Dyksterhouse, S. E.,, J. P. Gray,, R. P. Herwig,, J. C. Lara,, and J. T. Staley. 1995. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbondegrading bacterium from marine sediments. Int. J. Syst. Bacteriol. 45: 116 123.
35. Eckford, R.,, F. D. Cook,, D. Saul,, J. Aislabie,, and J. Foght. 2002. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl. Environ. Microbiol. 68: 5181 5185.
36. Engelhardt, M. A.,, K. Daly,, R. P. J. Swannell,, and I. M. Head. 2001. Isolation and characterization of a novel hydrocarbon-degrading, grampositive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J. Appl. Microbiol. 90: 237 247.
37. Etkin, D. S. 1999. Historical overview of oil spills from all sources, p. 1097 1102. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
38. Feitkenhauer, H.,, R. Muller,, and H. Markl. 2003. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70°C by Thermus and Bacillus spp. Biodegradation 14: 367 372.
39. Flagan, S.,, W.-K. Ching,, and J. R. Leadbetter. 2003. Arthrobacter strain VAI-A utilizes acylhomoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol. 69: 909 916.
40. Floodgate, G. D., 1984. The fate of petroleum in marine ecosystems, p. 355 397. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan, New York, N.Y.
41. Franklin, B. 1773. Letter to W. Brownrigg. [Online.] http://jcbmac.chem.brown.edu/baird/ Chem22I/Avogadro/BenFranklin.html.
42. Gamila, H. A.,, M. B. M. Ibrahim,, and H. H. Abd El-Ghafar. 2003. The role of cyanobacterial isolated strains in the biodegradation of crude oil. Int. J. Environ. Stud. 60: 435 444.
43. Garon, D.,, L. Sage,, D. Wouessidjewe,, and F. Seigle-Murandi. 2004. Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56: 159 166.
44. Gauthier, M.,, B. Lafay,, R. Christen,, L. Fernandez,, M. Acquaviva,, P. Bonin,, and J. C. Bertrand. 1992. Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new extreme halotolerant hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42: 568 576.
45. Gaylarde, C. C.,, F. M. Bento,, and J. Kelley. 1999. Microbial contamination of stored hydrocarbon fuels and its control. Rev. Microbiol. 30: 1 10.
46. Gesell, M.,, E. Hammer,, M. Specht,, W. Francke,, and F. Schauer. 2001. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl. Environ. Microbiol. 67: 1551 1557.
47. Giles, W. R.,, K. D. Kriel,, and J. R. Stewart. 2001. Characterization and bioremediation of a weathered oil sludge. Environ. Geosci. 8: 110 122.
48. Golyshin, P. N.,, T. N. Chernikova,, W. R. Abraham,, H. Lunsdorf,, K. N. Timmis,, and M. M. Yakimov. 2002. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 52: 901 911.
49. Golyshin, P. N.,, V. A. Martins Dos Santos,, O. Kaiser,, M. Ferrer,, Y. S. Sabirova,, H. Lunsdorf,, T. N. Chernikova,, O. V. Golyshina,, M. M. Yakimov,, A. Puhler,, and K. N. Timmis. 2003. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J. Biotechnol. 106: 215 220.
50. Gradova, N. B.,, I. B. Gornova,, R. Eddaudi,, and R. N. Salina. 2003. Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils. Appl. Biochem. Microbiol. 39: 279 281.
51. Gramss, G.,, K. D. Voigt,, and B. Kirsche. 1999. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10: 51 62.
52. Grossman, M. J.,, R. C. Prince,, R. M. Garrett,, K. K. Garrett,, R. E. Bare,, K. R. O’Neil,, M. R. Sowlay,, S. M. Hinton,, K. Lee,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 2000. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic, p. 775 789. In C. R. Bell,, M. Brylinski,, and P. Johnson-Green (ed.), Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Nova Scotia, Canada.
53. Gurtler, V.,, and B. C. Mayall. 2001. Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int. J. Syst. Evol. Microbiol. 51: 3 16.
54. Hamann, C.,, J. Hegemann,, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173: 255 263.
55. Hao, R.,, A. Lu,, and G. Wang. 2004. Crude-oildegrading thermophilic bacterium isolated from an oil field. Can. J. Microbiol. 50: 175 182.
56. Harayama, S.,, H. Kishira,, Y. Kasai,, and K. Shutsubo. 1999. Petroleumbiodegradation inmarine environments. J. Mol. Microbiol. Biotechnol. 1: 63 70.
57. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rosselló -Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65: 999 1004.
58. Head, I.,, and R. P. J. Swannell. 1999. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10: 234 239.
59. Hedlund, B. P.,, and J. T. Staley. 2001. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Syst. Evol. Microbiol. 51: 61 66.
60. Hedlund, B. P.,, A. D. Geiselbrecht,, T. J. Bair,, and J.T. Staley. 1999. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol. 65: 251 259.
61. Hess, A.,, B. Zarda,, D. Hahn,, A. Haner,, D. Stax,, P. Hohener,, and J. Zeyer. 1997. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 63: 2136 2141.
62. Hofrichter, M.,, K. Scheibner,, I. Schneegaβ,, and W. Fritsche. 1998. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 64: 399 404.
63. Huber, B.,, K. Riedel,, M. Kothe,, M. Givskov,, S. Molin,, and L. Eberl. 2002. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol. Microbiol. 46: 411 426.
64. Ilori, M. O.,, D. Amund,, and C. K. Robinson. 2000. Ultrastructure of two oil-degrading bacteria isolated from the tropical soil environment. Folia Microbiol. 45: 259 262.
65. Iwabuchi, T.,, and S. Harayama. 1998. Biochemical and genetic characterization of trans-2'- carboxybenzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain. J. Bacteriol. 180: 945 949.
66. Iwabuchi, N.,, M. Sunairi,, M. Urai,, C. Itoh,, H. Anzai,, M. Nakajima,, and S. Harayama. 2002. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68: 2337 2343.
67. Jeon, C. O.,, W. Park,, W. C. Ghiorse,, and E. L. Madsen. 2004. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Syst. Evol. Microbiol. 54: 93 97.
68. Juhasz, A. L.,, G. A. Stanley,, and M. L. Britz. 2000. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol. 30: 396 401.
69. Kasai, Y.,, H. Kishira,, and S. Harayama. 2002. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl. Environ. Microbiol. 68: 5625 5633.
70. Kasai, Y.,, K. Shindo,, S. Harayama,, and N. Misawa. 2003. Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl. Environ. Microbiol. 69: 6688 6697.
71. Kato, T.,, M. Haruki,, T. Imanaka,, M. Morikawa,, and S. Kanaya. 2001. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J. Biosci. Bioeng. 91: 64 70.
72. Kemp, P. F.,, and J. Y. Aller. 2004. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47: 161 177.
73. Koren, O.,, V. Knezevic,, E. Z. Ron,, and E. Rosenberg. 2003. Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl. Environ. Microbiol. 69: 6337 6339.
74. Kotterman, M. J. J.,, E. H. Vis,, and J. A. Field. 1998. Successive mineralization and detoxification of benzo[ a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64: 2853 2858.
75. Kummer, C.,, P. Schumann,, and E. Stackebrandt. 1999. Gordonia alkanivorans sp. nov., isolated from tarcontaminated soil. Int. J. Syst.Bacteriol. 49: 1513 1522.
76. Ladousse, A.,, and B. Tramier. 1991. Results of 12 years of research in spilled oil bioremediation: Inipol EAP22, p. 577 582. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
77. Lambert, M.,, S. Kremer,, O. Sterner, andH.Anke. 1994. Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl. Environ. Microbiol. 60: 3597 3601.
78. Lange, J.,, E. Hammer,, M. Specht,, W. Francke,, and F. Schauer. 1998. Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl. Microbiol. Biotechnol. 50: 364 368.
79. Lee, K.,, and S. deMora. 1999. In situ bioremediation strategies for oiled shoreline environments. Environ. Technol. 20: 783 794.
80. LeFloch, S.,, F. X. Merlin,, M. Guillerme,, C. Dalmazzone,, and P. LeCorre. 1999. A field experimentation on bioremediation: BIOREN. Environ. Technol. 20: 897 907.
81. Le Petit, J.,, J. C. Bertrand,, M. H. N’Guyen,, and S. Tagger. 1975. On the taxonomy and physiology of bacteria utilizing hydrocarbons in the sea. Ann. Microbiol. (Paris) 126: 367 380.
82. Lessard, R. R.,, and G. DeMarco. 2000. The significance of oil spill dispersants. Spill Sci. Technol. Bull. 6: 59 68.
83. Lewis, A.,, and D. Aurand. 1997. Putting Dispersants to Work: Overcoming Obstacles. API technical report IOSC-004. 1997 International Oil Spill Conference issue paper. American Petroleum Institute, Washington, D.C.
84. Limpert, E.,, W. A. Stahel,, and M. Abbt. 2001. Log-normal distributions across the sciences: keys and clues. BioScience 51: 341 352.
85. Lindstrom, J. E.,, and J. F. Braddock. 2002. Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500. Mar. Pollut. Bull. 44: 739 747.
86. Liu, A.,, E. Garcia-Dominguez,, E. D. Rhine,, and L. Y. Young. 2004. A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol. Ecol. 48: 328 332.
87. Lunel, T.,, J. Rusin,, C. Halliwell,, and L. Davies. 1997. The net environmental benefit of a successful dispersant operation at the Sea Empress incident, p. 185 194. In Proceedings of the 1997 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
88. Lunel, T.,, K. Lee,, R. Swannell,, P. Wood,, J. Rusin,, N. Bailey,, C. Halliwell,, L. Davies,, M. Sommerville,, A. Dobie,, D. Mitchell,, and M. McDonagh. 1996. Shoreline clean up during the Sea Empress incident: the role of surf washing (clay oil flocculation), dispersants and bioremediation, p. 1521 1540. In Proceedings of the Nineteenth Arctic and Marine Oil Spill Program Seminar. Environment Canada, Calgary, Alberta, Canada.
89. Macnaughton, S. J.,, J. R. Stephen,, A. D. Venosa,, G. A. Davis,, Y.-J. Chang,, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65: 3566 3574.
90. Macnaughton, S. J.,, R. Swannell,, F. Daniel,, and L. Bristow. 2003. Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci. Technol. Bull. 8: 179 186.
91. Maki, H.,, N. Hirayama,, T. Hiwatari,, K. Kohata,, H. Uchiyama,, M. Watanabe,, F. Yamasaki,, and M. Furuki. 2003. Crude oil bioremediation field experiment in the Sea of Japan. Mar. Pollut. Bull. 47: 74 77.
92. Maruyama, A.,, H. Ishiwata,, K. Kitamura,, M. Sunamura,, T. Fujita,, M. Matsuo,, and T. Higashihara. 2003. Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb. Ecol. 46: 442 453.
93. Mauersberger, S.,, H. J. Wang,, C. Gaillardin,, G. Barth,, and J. M. Nicaud. 2001. Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J. Bacteriol. 183: 5102 5109.
94. Meyer, S.,, R. Moser,, A. Neef,, U. Stahl,, and P. Kampfer. 1999. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145: 1731 1741.
95. Michel, J.,, and B. L. Benggio. 1995. Testing and use of shoreline cleaning agents during the Morris J. Berman spill, p. 197 202. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
96. Middelhoven, W. J.,, G. Scorzetti,, and J. W. Fell. 2000. Trichosporon veenhuisii sp. nov., an alkaneassimilating anamorphic basidiomycetous yeast. Int. J. Syst. Evol. Microbiol. 50: 381 387.
97. Mikolasch, A.,, E. Hammer,, and F. Schauer. 2003. Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl. Environ. Microbiol. 69: 1670 1679.
98. Mueller, J. G.,, C. E. Cerniglia,, and P. H. Pritchard,. 1996. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons, p. 125 194. In R. L. Crawford, and D. L. Crawford (ed.), Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
99. Narro, M. L.,, C. E. Cerniglia,, C. Van Baalen,, and D. T. Gibson. 1992. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol. 58: 1351 1359.
100. National Research Council. 1989. Using Oil Dispersants on the Sea. National Academies Press, Washington ,D.C.
101. National Research Council. 2002. Oil in the Sea III: Inputs, Fates and Effects. National Academies Press , Washington,D.C.
102. Nauman, S. A. 1991. Shoreline clean-up: equipment and operations, p. 141 148. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
103. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev,, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433 446.
104. Novotny, C.,, P. Erbanova,, T. Cajthaml,, N. Rothschild,, C. Dosoretz,, and V. Sasek. 2000. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biotechnol. 54: 850 853.
105. Odokumal, L. O.,, and A. A. Dickson. 2003. Bioremediation of a crude oil polluted tropical rain forest soil. Global J. Environ. Sci. 2: 29 40.
106. Olivieri, R.,, P. Bacchin,, A. Robertiello,, N. Oddo,, L. Degen,, and A. Tonolo. 1976. Microbial degradation of oil spills enhanced by a slow-release fertilizer. Appl. Environ. Microbiol. 31: 629 634.
107. Oudot, J. 2000. Biodegradability of the Erika fuel oil. C. R. Acad. Sci. III 323: 945 950.
108. Oudot, J.,, J. Dupont,, S. Haloui,, and M. F. Roquebert. 1993. Biodegradation potential of hydrocarbon-assimilating tropical fungi. Soil Biol. Biochem. 25: 1167 1173.
109. Owens, E. H.,, J. R. Harper,, W. Robson,, and P. D. Boehm. 1987. Fate and persistence of crude oil stranded on a sheltered beach. Arctic 40: 109 123.
110. Padden, A. N.,, F. A. Rainey,, D. P. Kelly,, and A. P. Wood. 1997. Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grow on substituted thiophenes. Int. J. Syst. Bacteriol. 47: 394 401.
111. Pan, F.,, Q. Yang,, Y. Zhang,, S. Zhang,, and M. Yang. 2004. Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnol. Lett. 26: 803 806.
112. Parales, R. E.,, J. L. Ditty,, and C. S. Harwood. 2000. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66: 4098 4104.
113. Parales, R. E.,, and C. S. Harwood. 2002. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5: 266 273.
114. Pelletier, E.,, D. Delille,, and B. Delille. 2004. Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar. Environ. Res. 57: 311 327.
115. Pickard, M. A.,, R. Roman,, R. Tinoco,, and R. Vazquez-Duhalt. 1999. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65: 3805 3809.
116. Pirnik, M. P.,, R. M. Atlas,, and R. Bartha. 1974. Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J. Bacteriol. 119: 868 878.
117. Prantera, M. T.,, A. Drozdowicz,, S. G. Leite,, and A. S. Rosado. 2002. Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol. Lett. 24: 85 89.
118. Prenafeta-Boldú , F. X.,, J. Vervoort,, J. T. C. Grotenhuis,, and J. W. van Groenestijn. 2002. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl. Environ. Microbiol. 68: 2660 2665.
119. Prince, R. C. 1993. Petroleum spill bioremediation in marine environments. Crit. Rev. Microbiol. 19: 217 242.
120. Prince, R.,, and R. Atlas,. Bioremediation of marine oil spills. In R. M. Atlas, and J. Philp (ed.), Bioremediation: Applied Microbial Solutions for Real- World Environmental Cleanup, in press. ASM Press, Washington, D.C.
121. Prince, R. C.,, and J. R. Bragg. 1997. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediation J. 1: 97 104.
122. Prince, R. C.,, and J. R. Clark,. 2004. Bioremediation of marine oil spills, p. 495 512. In R. Vazquez-Duhalt, and R. Quintero-Ramirez (ed.), Studies in Surface Science and Catalysis, vol. 151. Petroleum Biotechnology. Elsevier, Amsterdam, The Netherlands.
123. Prince, R. C.,, R. E. Bare,, G. N. George,, C. E. Haith,, M. J. Grossman,, J. R. Lute,, D. L. Elmendorf,, V. Minak-Bernero,, J. D. Senius,, L. G. Keim,, R. R. Chianelli,, S. M. Hinton,, and A. R. Teal. 1993. The effect of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska, p. 469 475. In Proceedings of the 1993 International Oil Spill Conference, American Petroleum Institute, Washington, D.C.
124. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim,, K. Lee,, G. J. Holtom,, P. Lambert,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 1999. Bioremediation of a marine oil spill in the Arctic, p. 227 232. In B. C. Alleman, and A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds. Battelle Press, Columbus, Ohio.
125. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim, K, Lee, G. J. Holtom, P. Lambert, G. A. Sergy, E. H. Owens, and C. C. Guénette. 2003a. Bioremediation of stranded oil on an Arctic shoreline. Spill Sci. Technol. Bull. 8: 303 312.
126. Prince, R. C.,, R. M. Garrett,, R. E. Bare,, M. J. Grossman,, G. T. Townsend,, J. M. Suflita,, K. Lee,, E. H. Owens,, G. A. Sergy,, J. F. Braddock,, J. E. Lindstrom,, and R. R. Lessard. 2003b. The roles of photooxidation and biodegradation in longterm weathering of crude and heavy fuel oils. Spill Sci. Technol. Bull. 8: 145 156.
127. Rabus, R.,, R. Nordhaus,, W. Ludwig,, and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfatereducing bacterium. Appl. Environ. Microbiol. 59: 1444 1451.
128. Raghukumar, C.,, V. Vipparty,, J. J. David,, and D. Chandramohan. 2001. Degradation of crude oil by marine cyanobacteria. Appl. Microbiol. Biotechnol. 57: 433 436.
129. Ravelet, C.,, S. Krivobok,, L. Sage,, and R. Steiman. 1999. Biodegradation of pyrene by sediment fungi. Chemosphere 40: 557 563.
130. Redfield, A. C. 1958. The biological control of the chemical factors in the environment. Am. Sci. 46: 1 18.
131. Rike, A. G.,, K. B. Haugen,, M. Børresen,, B. Engene,, and P. Kolstad. 2003. In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Regions Sci. Technol. 37: 97 120.
132. Robertson, W.J.,, J.P. Bowman,, P.D. Franzmann,, and B. J. Mee. 2001. Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater. Int. J. Syst. Evol. Microbiol. 51: 133 140.
133. Rö ling, W. F. M.,, M. G. Milner,, D. M. Jones,, K. Lee,, F. Daniel,, R. P. J. Swannell,, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68: 5537 5548.
134. Rö ling, W. F. M.,, I. R. Couto de Brito,, R. P. J. Swannell,, and I. M. Head. 2004a. Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol. 70: 2614 2620.
135. Rö ling, W. F. M.,, M. G. Milner,, D. M. Jones,, F. Fratepietro,, R. P. J. Swannell,, F. Daniel,, and I. M. Head. 2004b. Bacterial community dynamics and hydrocarbon degradation during a fieldscale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70: 2603 2613.
136. Romine, M. F.,, L. C. Stillwell,, K. K. Wong,, S. J. Thurston,, E. C. Sisk,, C. Sensen,, T. Gaasterland,, J. K. Fredrickson,, and J. D. Saffer. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181: 1585 1602.
137. Rosenberg, E.,, R. Legman,, A. Kushmaro,, R. Taube,, E. Adler, andE.Z.Ron. 1992. Petroleum bioremediation—a multiphase problem. Biodegradation 3: 337 350.
138. Saadoun, I.,, M. A. al-Akhras,, and J. Abu-Ashour. 1999. Bacterial degradation of hydrocarbons as evidenced by respirometric analysis. Microbios 100: 19 25.
139. Sack, U.,, T. M. Heinze,, J. Deck,, C. E. Cerniglia,, R. Martens,, F. Zadrazil,, and W. Fritsche. 1997. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl. Environ. Microbiol. 63: 3919 3925.
140. Santas, R.,, A. Korda,, A. Tenente,, K. Buchholz,, and P. Santas. 1999. Mesocosm assays of oil spill bioremediation with oleophilic fertilizers: Inipol, F1 or both? Mar. Pollut. Bull. 38: 44 48.
141. Sarma, P. M.,, D. Bhattacharya,, S. Krishnan,, and B. Lal. 2004. Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl. Environ. Microbiol. 70: 3163 3166.
142. Sepic, E.,, M. Bricelj,, and H. Leskovsek. 1997. Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J. Appl. Microbiol. 83: 561 568.
143. Shinoda, Y.,, Y. Sakai,, H. Uenishi,, Y. Uchihashi,, A. Hiraishi,, H. Yukawa,, H. Yurimoto,, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microbiol. 70: 1385 1392.
144. Smith, V. H.,, D. W. Graham,, and D. D. Cleland. 1998. Application of resource-ratio theory to hydrocarbon biodegradation. Environ. Sci. Technol. 32: 3386 3395.
145. Steffen, K. T.,, A. Hatakka,, and M. Hofrichter. 2002. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 60: 212 217.
146. Stucki, G.,, and M. Alexander. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 53: 292 297.
147. Surovtseva, E. G.,, V. S. Ivoilov,, and S. S. Belaiev. 1999. Physiologo-biochemical properties of a strain of Beijerinckia mobilis 1phi Phn+—a degrader of polycyclic aromatic hydrocarbons. Mikrobiologiya 68: 845 850. [In Russian.]
148. Sveum, P.,, and S. Ramstad,. 1995. Bioremediation of oil on shorelines with organic and inorganic nutrients, p. 201 217. In R. E. Hinchee,, J. A. Kittel,, and H. J. Reisinger (ed.), Applied Bioremediation of Petroleum Hydrocarbons. Battelle Press, Columbus, Ohio.
149. Swannell, R.,, and F. Daniel. 1999. Effect of dispersants on oil biodegradation under simulated marine conditions, p. 169 176. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
150. Swannell, R. P. J.,, K. Lee,, and M. McDonagh. 1996. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60: 342 365.
151. Swannell, R. P. J.,, D. Mitchell,, G. Lethbridge,, D. Jones,, D. Heath,, M. Hagley,, M. Jones,, S. Petch,, R. Milne,, R. Croxford,, and K. Lee. 1999. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ. Technol. 20: 863 873.
152. Teas, H.,, R. R. Lessard,, G. P. Canevari,, C. P. Brown,, and R. Glenn. 1993. Saving oiled mangroves using a new non-dispersing shoreline cleaner, p. 761 763. In Proceedings of the 1993 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
153. Thomas, R.,, and T. Lunel. 1993. The Braer incident; dispersion in action, p. 843 859. In Proceedings of the Sixteenth Arctic Marine Oilspill Program Technical Seminar. Environment Canada, Edmonton, Alberta, Canada.
154. Tillmann, U. 2004. Interactions between planktonic microalgae and protozoan grazers. J. Eukaryot. Microbiol. 51: 156 168.
155. Tissot, B. P.,, and D. H. Welte. 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Germany.
156. van Beilen, J. B.,, M. M. Marin,, T. H. Smits,, M. Rothlisberger,, A. G. Franchini,, B. Witholt,, and F. Rojo. 2004. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol. 6: 264 273.
157. Vandamme, P.,, B. Pot,, M. Gillis,, P. de Vos,, K. Kersters,, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60: 407 438.
158. Varadaraj, R.,, M. L. Robbins,, J. Bock,, S. Pace,, and D. MacDonald. 1995. Dispersion and biodegradation of oil spills on water, p. 101 106. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
159. Venosa, A. D.,, M. T. Suidan,, B. A. Wrenn,, K. L. Strohmeier,, J. R. Haines,, B. L. Eberhart,, D. King,, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware bay. Environ. Sci. Technol. 30: 1764 1775.
160. Venosa, A. D.,, M. T. Suidan,, D. King,, and B. A. Wrenn. 1997. Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach. J. Ind. Microbiol. Biotechnol. 18: 131 139.
161. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304: 66 74.
162. Walker, J. D.,, R. R. Colwell,, and L. Petrakis. 1975. Degradation of petroleum by an alga, Prototheca zopfii. Appl. Microbiol. 30: 79 81.
163. Wang, Z.,, M. F. Fingas,, L. Sigouin,, and E. H. Owens. 2001. Fate and persistence of long-term spilled ‘Metula’ oil in the marine salt marsh: degradation of biomarkers, p. 115 125. In Proceedings of the 2001 International Oil Spill Conference, American Petroleum Institute, Washington, D.C.
164. Warshawsky, D.,, T. Cody,, M. Radike,, R. Reilman,, B. Schumann,, K. LaDow,, and J. Schneider. 1995. Biotransformation of benzo[ a]- pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem. Biol. Interact. 97: 131 148.
165. White, D. C.,, C. A. Flemming,, K. T. Leung,, and S. J. Macnaughton. 1998. In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J. Microbiol. Methods 32: 93 105.
166. Willumsen, P.,, U. Karlson,, E. Stackebrandt,, and R. M. Kroppenstedt. 2001. Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int. J. Syst. Evol. Microbiol. 51: 1715 1722.
167. Wilson, M. S.,, J. B. Herrick,, C. O. Jeon,, D. E. Hinman,, and E. L. Madsen. 2003. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene- degrading guilds from adjacent soil environments. Appl. Environ. Microbiol. 69: 2172 2181.
168. Wunch, K. G.,, T. Feibelman,, and J. W. Bennett. 1997. Screening for fungi capable of removing benzo[a]pyrene in culture. Appl. Microbiol. Biotechnol. 47: 620 624.
169. Xu, R.,, and J. P. Obbard. 2003. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. J. Environ. Qual. 32: 1234 1243.
170. Yabuuchi, E.,, H. Yamamoto,, S. Terakubo,, N. Okamura,, T. Naka,, N. Fujiwara,, K. Kobayashi,, Y. Kosako,, and A. Hiraishi. 2001. Proposal of Sphingomonas wittichii sp. nov. for strain RW1(T), known as a dibenzo-p-dioxin metabolizer. Int. J. Syst. Evol. Microbiol. 51: 281 292.
171. Yakimov, M. M.,, P. N. Golyshin,, S. Lang,, E. R. B. Moore,, W.-R. Abraham,, H. Lü nsdorf,, and K. N. Timmis. 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48: 339 348.
172. Yakimov, M. M.,, L. Giuliano,, G. Gentile,, E. Crisafi,, T. N. Chernikova,, W.-R. Abraham,, H. Lu¨ nsdorf,, K. N. Timmis,, and P. N. Golyshin. 2003. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol. 53: 779 785.
173. Yakimov, M. M.,, L. Giuliano,, R. Denaro,, E. Crisafi,, T. N. Chernikova,, W.-R. Abraham,, H. Luensdorf,, K. N. Timmis,, and P. N. Golyshin. 2004. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 54: 141 148.
174. Young, J. M. 2001. Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int. J. Syst. Evol. Microbiol. 51: 945 953.
175. Yumoto, I.,, A. Nakamura,, H. Iwata,, K. Kojima,, K. Kusumoto,, Y. Nodasaka,, and H. Matsuyama. 2002. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int. J. Syst. Evol. Microbiol. 52: 85 90.
176. Zarilla, K. A.,, and J. J. Perry. 1986. Thermoleophilum album, gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch. Microbiol. 137: 286 290.
177. Zengler, K.,, J. Heider,, R. Rossello´ -Mora,, and F. Widdel. 1999. Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172: 204 212.
178. Zhuang, W.-Q.,, J.-H. Tay,, A.M. Maszenan,, L. R. Krumholz,, and S. T.-L. Tay. 2003. Importance of gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett. Appl. Microbiol. 36: 251 257.
179. Zinjarde, S. S.,, and A. A. Pant. 2002. Hydrocarbon degraders from tropical marine environments. Mar. Pollut. Bull. 44: 118 121.
180. ZoBell, C. E. 1946. Action of microörganisms on hydrocarbons. Bacteriol. Rev. 10: 1 49.

Tables

Generic image for table
TABLE 1

Genera of Bacteria able to grow using hydrocarbons as a sole source of carbon and energy

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 2

Cyanobacterial genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 3

Fungal genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 4

Algal and diatom genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error