1887

Chapter 16 : The Microbiology of Marine Oil Spill Bioremediation

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

The Microbiology of Marine Oil Spill Bioremediation, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap16-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap16-2.gif

Abstract:

Bioremediation, stimulating the biodegradation of spilled oil, has proven to be a safe and effective paradigm for dealing with marine oil spills. This chapter focuses on the microbiology that underpins bioremediation and addresses whether these new tools will allow insights that can substantially increase the efficacy of bioremediation treatments in the future. The most important requirement seems to be that nitrogen be available at the oil-water interface for long enough that the oil-degrading microbes become well established; the precise form of the nitrogen in the fertilizer seems to be of secondary importance. Modern molecular diagnostic tools are providing new insights into the microbial responses to an oil spill and bioremediation treatments. In most environments, a significant oil spill provides a substantial input of hydrocarbons into a system that was previously starved of such substrates. It is also important to bear in mind that the oil-degrading microbes consuming the oil are part of an ecosystem with organisms that compete for nutrients. Photosynthetic organisms also have an essentially unlimited supply of carbon in the form of CO and are typically limited by the supply of nitrogen and phosphorus, and the oil-degrading microbes will themselves become the foundation for predatory organisms. Understanding and controlling these interactions in an environmentally responsible way will also likely make bioremediation more effective.

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16

Key Concept Ranking

Microbial Ecology
0.8431013
Polycyclic Aromatic Hydrocarbons
0.6597853
Gram-Negative Bacteria
0.4443724
16s rRNA Sequencing
0.43724346
Horizontal Gene Transfer
0.40065163
0.8431013
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

References

/content/book/10.1128/9781555817589.chap16
1. Al-Hasan, R. H.,, D. A. Al-Bader,, N. A. Sorkhoh,, and S. S. Radwan. 1998. Evidence for n-alkane consumption and oxidation by filamentous cyanobacteria from oil-contaminated coasts of the Arabian Gulf. Mar. Biol. 130:521527.
2. April, T. M.,, S. P. Abbott,, J. M. Foght,, and R. S. Currah. 1998. Degradation of hydrocarbons in crude oil by the ascomycete Pseudallescheria boydii (Microascaceae). Can. J. Microbiol. 44:270278.
3. Atlas, R. M.,, and R. Bartha. 1973. Stimulated biodegradation of oil slicks using oleophilic fertilizers. Environ. Sci. Technol. 7:538541.
4. Austin, B.,, J. J. Calomiris,, J. D. Walker,, and R. R. Colwell. 1977. Numerical taxonomy and ecology of petroleum-degrading bacteria. Appl. Environ. Microbiol. 34:6068.
5. Baldi, F.,, N. Ivosevic,, A. Minacci,, M. Pepi,, R. Fani,, V. Svetlicic,, and V. Zutic. 1999. Adhesion of Acinetobacter venetianus to diesel fuel droplets studied with in situ electrochemical and molecular probes. Appl. Environ. Microbiol. 65:20412048.
6. Baldi, F.,, M. Pepi,, and F. Fava. 2003. Growth of Rhodosporidium toruloides strain DBVPG 6662 on dibenzothiophene crystals and Orimulsion. Appl. Environ. Microbiol. 69:46894696.
7. Barabas, G.,, G. Vargha,, I. M. Szabo,, A. Penyige,, S. Damjanovich,, J. Szollosi,, J. Matko,, T. Hirano,, A. Matyus,, and I. Szabo. 2001. NAlkane uptake and utilisation by Streptomyces strains. Antonie Leeuwenhoek 79:269276.
8. Benjamin, R.C.,, J. A. Voss,, and D. A. Kunz. 1991. Nucleotide sequence of xylE from the TOL pDK1 plasmid and structural comparison with isofunctional catechol-2,3-dioxygenase genes from TOL pWW0 and NAH7. J. Bacteriol. 173:27242728.
9. Berardesco, G.,, S. Dyhrman,, E. Gallagher,, and M. P. Shiaris. 1998. Spatial and temporal variation of phenanthrene-degrading bacteria in intertidal sediments. Appl. Environ. Microbiol. 64:25602565.
10. Bogan, B. W.,, W. R. Sullivan,, K. J. Kayser,, K. D. Derr,, H. C. Aldrich,, and J. R. Paterek. 2003. Alkanindiges illinoisensis gen. nov., sp. nov., an obligately hydrocarbonoclastic, aerobic squalane- degrading bacterium isolated from oilfield soils. Int. J. Syst. Evol. Microbiol. 53:13891395.
11. Bohannon, J.,, X. Bosch,, and J. Withgott. 2002. Scientists brace for bad tidings after spill. Science 298:16951696.
12. Bossert, I.,, and R. Bartha,. 1984. The fate of petroleum in soil ecosystems, p. 435473. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan, New York, N.Y.
13. Boufadel, M. C.,, P. Reeser,, M. T. Suidan,, B. A. Wrenn,, J. Cheng,, X. Du,, T. H. L. Huang,, and A. D. Venosa. 1999. Optimal nitrate concentration for the biodegradation of n-heptadecane in a variably-saturated sand column. Environ. Technol. 20:191199.
14. Bowman, J. P.,, S. A. McCammon,, M. V. Brown,, D. S. Nichols,, and T. A. McMeekin. 1997. Diversity and association of psychrophilic bacteria in Antarctic sea ice. Appl. Environ. Microbiol. 63: 30683078.
15. Boyd, P. W.,, C. S. Law,, C. S. Wong,, Y. Nojiri,, A. Tsuda,, M. Levasseur,, S. Takeda,, R. Rivkin,, P. J. Harrison,, R. Strzepek,, J. Gower,, M. McKay,, E. Abraham,, M. Arychuk,, J. Barwell-Clarke,, W. Crawford,, D. Crawford,, M. Hale,, K. Harada,, K. Johnson,, H. Kiyosawa,, I. Kudo,, A. Marchetti,, W. Miller,, J. Needoba,, J. Nishioka,, H. Ogawa,, J. Page,, M. Robert,, H. Saito,, A. Sastri,, N. Sherry,, T. Soutar,, N. Sutherland,, Y. Taira,, F. Whitney,, S. K. Wong,, and T. Yoshimura. 2004. The decline and fate of an iron-induced subarctic phytoplankton bloom. Nature 428:549553.
16. Braddock, J. F.,, J. E. Lindstrom,, and E. J. Brown. 1995. Distribution of hydrocarbondegrading microorganisms in sediments from Prince William Sound, Alaska, following the Exxon Valdez spill. Mar. Pollut. Bull. 30:125132.
17. Bragg, J. R.,, R. C. Prince,, E. J. Harner,, and R. M. Atlas. 1994. Effectiveness of bioremediation for the Exxon Valdez oil spill. Nature 368:413418.
18. Breezee, J.,, N. Cady,, and J. T. Staley. 2004. Subfreezing growth of the sea ice bacterium "Psychromonas ingrahamii." Microb. Ecol. 47:303304.
19. Brinkmeyer, R.,, K. Knittel,, J. Jü rgens,, H. Weyland,, R. Amann,, and E. Helmkel. 2003. Diversity and structure of bacterial communities in Arctic versus Antarctic pack ice. Appl. Environ. Microbiol. 69:66106619.
20. Bronchart, R. D. E.,, J. Cadron,, A. Charlier,, A. A. R. Gillot,, and W. Verstraete. 1985. A new approach in enhanced biodegradation of spilled oil; development of an oil dispersant containing oleophilic nutrients, p. 453462. In Proceedings of the 1985 Conference on the Prevention and Control of Oil Pollution. American Petroleum Institute, Washington, D.C.
21. Brown, E. J.,, and J. E. Braddock. 1990. Sheen Screen, a miniaturized most-probable-number method for enumeration of oil-degrading microorganisms. Appl. Environ. Microbiol. 56:38953896.
22. Cerniglia, C. E. 1992. Biodegradation of polycyclic aromatic hydrocarbons. Biodegradation 3:351368.
23. Chaineau, C. H.,, J. Morel,, J. Dupont,, E. Bury,, and J. Oudot. 1999. Comparison of the fuel oil biodegradation potential of hydrocarbonassimilating microorganisms isolated from a temperate agricultural soil. Sci. Total Environ. 227: 237247.
24. Chung, W. K.,, and G. M. King. 2001. Isolation, characterization, and polyaromatic hydrocarbon degradation potential of aerobic bacteria from marine macrofaunal burrow sediments and description of Lutibacterium anuloederans gen. nov., sp. nov., and Cycloclasticus spirillensus sp. nov. Appl. Environ. Microbiol. 67:55855592.
25. Coates, J. D.,, V. K. Bhupathiraju,, L. A. Achenbach,, M. J. McInerney,, and D. R. Lovley. 2001a. Geobacter hydrogenophilus, Geobacter chapellei and Geobacter grbiciae, three new, strictly anaerobic, dissimilatory Fe(III)-reducers. Int. J. Syst. Evol Microbiol. 51:581588.
26. Coates, J. D.,, R. Chakraborty,, J. G. Lack,, S. M. O’Connor,, K. A. Cole,, K. S. Bender,, and L. A. Achenbach. 2001b. Anaerobic benzene oxidation coupled to nitrate reduction in pure culture by two strains of Dechloromonas. Nature 411:10391043.
27. Cooney, J. J.,, S. Wuertz,, M. M. Doolittle,, M. E. Miller,, C. M. Baisden,, K. D. Henry,, and D. M. Ricca. 1995. Marine fungi are potential agents for bioremediation of oil spills. Biodeterior. Biodegradation 9:610614.
28. Cravo-Laureau, C.,, R. Matheron,, J. L. Cayol,, C. Joulian,, and A. Hirschler-Rea. 2004. Desulfatibacillum aliphaticivorans gen. nov., sp. nov., an n-alkane- and n-alkene-degrading, sulfate-reducing bacterium. Int. J. Syst. Evol. Microbiol. 54:7783.
29. da Silva, M.,, C. E. Cerniglia,, J.V. Pothuluri,, V. P. Canhos,, and E. Esposito. 2003. Screening filamentous fungi isolated from estuarine sediments for the ability to oxidize polycyclic aromatic hydrocarbons. World J. Microbiol. Biotechnol. 19:399405.
30. Delille, D.,, B. Delille,, and E. Pelletier. 2002. Effectiveness of bioremediation of crude oil contaminated subantarctic intertidal sediment: the microbial response. Microb. Ecol. 44:118126.
31. Dojka, M. A.,, P. Hugenholtz,, S. K. Haack,, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol.64:38693877.
32. Dore, S. Y.,, Q. E. Clancy,, S. M. Rylee,, and C. F. Kulpa, Jr. 2003. Naphthalene-utilizing and mercury-resistant bacteria isolated froman acidic environment. Appl. Microbiol. Biotechnol. 63:194199.
33. Dutta, T. K.,, and S. Harayama. 2001. Biodegradation of n-alkylcycloalkanes and n-alkylbenzenes via new pathways in Alcanivorax sp. strain MBIC 4326. Appl. Environ. Microbiol. 67:19701974.
34. Dyksterhouse, S. E.,, J. P. Gray,, R. P. Herwig,, J. C. Lara,, and J. T. Staley. 1995. Cycloclasticus pugetii gen. nov., sp. nov., an aromatic hydrocarbondegrading bacterium from marine sediments. Int. J. Syst. Bacteriol. 45:116123.
35. Eckford, R.,, F. D. Cook,, D. Saul,, J. Aislabie,, and J. Foght. 2002. Free-living heterotrophic nitrogen-fixing bacteria isolated from fuel-contaminated Antarctic soils. Appl. Environ. Microbiol. 68:51815185.
36. Engelhardt, M. A.,, K. Daly,, R. P. J. Swannell,, and I. M. Head. 2001. Isolation and characterization of a novel hydrocarbon-degrading, grampositive bacterium, isolated from intertidal beach sediment, and description of Planococcus alkanoclasticus sp. nov. J. Appl. Microbiol. 90:237247.
37. Etkin, D. S. 1999. Historical overview of oil spills from all sources, p. 10971102. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
38. Feitkenhauer, H.,, R. Muller,, and H. Markl. 2003. Degradation of polycyclic aromatic hydrocarbons and long chain alkanes at 60-70°C by Thermus and Bacillus spp. Biodegradation 14:367372.
39. Flagan, S.,, W.-K. Ching,, and J. R. Leadbetter. 2003. Arthrobacter strain VAI-A utilizes acylhomoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl. Environ. Microbiol. 69:909916.
40. Floodgate, G. D., 1984. The fate of petroleum in marine ecosystems, p. 355397. In R. M. Atlas (ed.), Petroleum Microbiology. Macmillan, New York, N.Y.
41. Franklin, B. 1773. Letter to W. Brownrigg. [Online.] http://jcbmac.chem.brown.edu/baird/ Chem22I/Avogadro/BenFranklin.html.
42. Gamila, H. A.,, M. B. M. Ibrahim,, and H. H. Abd El-Ghafar. 2003. The role of cyanobacterial isolated strains in the biodegradation of crude oil. Int. J. Environ. Stud. 60:435444.
43. Garon, D.,, L. Sage,, D. Wouessidjewe,, and F. Seigle-Murandi. 2004. Enhanced degradation of fluorene in soil slurry by Absidia cylindrospora and maltosyl-cyclodextrin. Chemosphere 56:159166.
44. Gauthier, M.,, B. Lafay,, R. Christen,, L. Fernandez,, M. Acquaviva,, P. Bonin,, and J. C. Bertrand. 1992. Marinobacter hydrocarbonoclasticus gen. nov. sp. nov., a new extreme halotolerant hydrocarbon-degrading marine bacterium. Int. J. Syst. Bacteriol. 42:568576.
45. Gaylarde, C. C.,, F. M. Bento,, and J. Kelley. 1999. Microbial contamination of stored hydrocarbon fuels and its control. Rev. Microbiol. 30:110.
46. Gesell, M.,, E. Hammer,, M. Specht,, W. Francke,, and F. Schauer. 2001. Biotransformation of biphenyl by Paecilomyces lilacinus and characterization of ring cleavage products. Appl. Environ. Microbiol. 67:15511557.
47. Giles, W. R.,, K. D. Kriel,, and J. R. Stewart. 2001. Characterization and bioremediation of a weathered oil sludge. Environ. Geosci. 8:110122.
48. Golyshin, P. N.,, T. N. Chernikova,, W. R. Abraham,, H. Lunsdorf,, K. N. Timmis,, and M. M. Yakimov. 2002. Oleiphilaceae fam. nov., to include Oleiphilus messinensis gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 52:901911.
49. Golyshin, P. N.,, V. A. Martins Dos Santos,, O. Kaiser,, M. Ferrer,, Y. S. Sabirova,, H. Lunsdorf,, T. N. Chernikova,, O. V. Golyshina,, M. M. Yakimov,, A. Puhler,, and K. N. Timmis. 2003. Genome sequence completed of Alcanivorax borkumensis, a hydrocarbon-degrading bacterium that plays a global role in oil removal from marine systems. J. Biotechnol. 106:215220.
50. Gradova, N. B.,, I. B. Gornova,, R. Eddaudi,, and R. N. Salina. 2003. Use of bacteria of the genus Azotobacter for bioremediation of oil-contaminated soils. Appl. Biochem. Microbiol. 39:279281.
51. Gramss, G.,, K. D. Voigt,, and B. Kirsche. 1999. Degradation of polycyclic aromatic hydrocarbons with three to seven aromatic rings by higher fungi in sterile and unsterile soils. Biodegradation 10:5162.
52. Grossman, M. J.,, R. C. Prince,, R. M. Garrett,, K. K. Garrett,, R. E. Bare,, K. R. O’Neil,, M. R. Sowlay,, S. M. Hinton,, K. Lee,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 2000. Microbial diversity in oiled and unoiled shoreline sediments in the Norwegian Arctic, p. 775789. In C. R. Bell,, M. Brylinski,, and P. Johnson-Green (ed.), Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Nova Scotia, Canada.
53. Gurtler, V.,, and B. C. Mayall. 2001. Genomic approaches to typing, taxonomy and evolution of bacterial isolates. Int. J. Syst. Evol. Microbiol. 51: 316.
54. Hamann, C.,, J. Hegemann,, and A. Hildebrandt. 1999. Detection of polycyclic aromatic hydrocarbon degradation genes in different soil bacteria by polymerase chain reaction and DNA hybridization. FEMS Microbiol. Lett. 173:255263.
55. Hao, R.,, A. Lu,, and G. Wang. 2004. Crude-oildegrading thermophilic bacterium isolated from an oil field. Can. J. Microbiol. 50:175182.
56. Harayama, S.,, H. Kishira,, Y. Kasai,, and K. Shutsubo.1999.Petroleumbiodegradation inmarine environments. J. Mol. Microbiol. Biotechnol. 1:6370.
57. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rosselló -Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65:9991004.
58. Head, I.,, and R. P. J. Swannell. 1999. Bioremediation of petroleum hydrocarbon contaminants in marine habitats. Curr. Opin. Biotechnol. 10:234239.
59. Hedlund, B. P.,, and J. T. Staley. 2001. Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. Int. J. Syst. Evol. Microbiol. 51:6166.
60. Hedlund, B. P.,, A. D. Geiselbrecht,, T. J. Bair,, and J.T. Staley. 1999. Polycyclic aromatic hydrocarbon degradation by a new marine bacterium, Neptunomonas naphthovorans gen. nov., sp. nov. Appl. Environ. Microbiol. 65:251259.
61. Hess, A.,, B. Zarda,, D. Hahn,, A. Haner,, D. Stax,, P. Hohener,, and J. Zeyer. 1997. In situ analysis of denitrifying toluene- and m-xylene-degrading bacteria in a diesel fuel-contaminated laboratory aquifer column. Appl. Environ. Microbiol. 63:21362141.
62. Hofrichter, M.,, K. Scheibner,, I. Schneegaβ,, and W. Fritsche. 1998. Enzymatic combustion of aromatic and aliphatic compounds by manganese peroxidase from Nematoloma frowardii. Appl. Environ. Microbiol. 64:399404.
63. Huber, B.,, K. Riedel,, M. Kothe,, M. Givskov,, S. Molin,, and L. Eberl. 2002. Genetic analysis of functions involved in the late stages of biofilm development in Burkholderia cepacia H111. Mol. Microbiol. 46:411426.
64. Ilori, M. O.,, D. Amund,, and C. K. Robinson. 2000. Ultrastructure of two oil-degrading bacteria isolated from the tropical soil environment. Folia Microbiol. 45:259262.
65. Iwabuchi, T.,, and S. Harayama. 1998. Biochemical and genetic characterization of trans-2'- carboxybenzalpyruvate hydratase-aldolase from a phenanthrene-degrading Nocardioides strain. J. Bacteriol. 180:945949.
66. Iwabuchi, N.,, M. Sunairi,, M. Urai,, C. Itoh,, H. Anzai,, M. Nakajima,, and S. Harayama. 2002. Extracellular polysaccharides of Rhodococcus rhodochrous S-2 stimulate the degradation of aromatic components in crude oil by indigenous marine bacteria. Appl. Environ. Microbiol. 68:23372343.
67. Jeon, C. O.,, W. Park,, W. C. Ghiorse,, and E. L. Madsen. 2004. Polaromonas naphthalenivorans sp. nov., a naphthalene-degrading bacterium from naphthalene-contaminated sediment. Int. J. Syst. Evol. Microbiol. 54:9397.
68. Juhasz, A. L.,, G. A. Stanley,, and M. L. Britz. 2000. Microbial degradation and detoxification of high molecular weight polycyclic aromatic hydrocarbons by Stenotrophomonas maltophilia strain VUN 10,003. Lett. Appl. Microbiol. 30:396401.
69. Kasai, Y.,, H. Kishira,, and S. Harayama. 2002. Bacteria belonging to the genus Cycloclasticus play a primary role in the degradation of aromatic hydrocarbons released in a marine environment. Appl. Environ. Microbiol. 68:56255633.
70. Kasai, Y.,, K. Shindo,, S. Harayama,, and N. Misawa. 2003. Molecular characterization and substrate preference of a polycyclic aromatic hydrocarbon dioxygenase from Cycloclasticus sp. strain A5. Appl. Environ. Microbiol. 69:66886697.
71. Kato, T.,, M. Haruki,, T. Imanaka,, M. Morikawa,, and S. Kanaya. 2001. Isolation and characterization of long-chain-alkane degrading Bacillus thermoleovorans from deep subterranean petroleum reservoirs. J. Biosci. Bioeng. 91:6470.
72. Kemp, P. F.,, and J. Y. Aller. 2004. Bacterial diversity in aquatic and other environments: what 16S rDNA libraries can tell us. FEMS Microbiol. Ecol. 47:161177.
73. Koren, O.,, V. Knezevic,, E. Z. Ron,, and E. Rosenberg. 2003. Petroleum pollution bioremediation using water-insoluble uric acid as the nitrogen source. Appl. Environ. Microbiol. 69:63376339.
74. Kotterman, M. J. J.,, E. H. Vis,, and J. A. Field. 1998. Successive mineralization and detoxification of benzo[a]pyrene by the white rot fungus Bjerkandera sp. strain BOS55 and indigenous microflora. Appl. Environ. Microbiol. 64:28532858.
75. Kummer, C.,, P. Schumann,, and E. Stackebrandt. 1999. Gordonia alkanivorans sp. nov., isolated from tarcontaminated soil. Int. J. Syst.Bacteriol. 49:15131522.
76. Ladousse, A.,, and B. Tramier. 1991. Results of 12 years of research in spilled oil bioremediation: Inipol EAP22, p. 577582. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
77. Lambert, M.,, S. Kremer,, O. Sterner, andH.Anke. 1994. Metabolism of pyrene by the basidiomycete Crinipellis stipitaria and identification of pyrenequinones and their hydroxylated precursors in strain JK375. Appl. Environ. Microbiol. 60:35973601.
78. Lange, J.,, E. Hammer,, M. Specht,, W. Francke,, and F. Schauer. 1998. Biodegradation of biphenyl by the ascomycetous yeast Debaryomyces vanrijiae. Appl. Microbiol. Biotechnol. 50:364368.
79. Lee, K.,, and S. deMora. 1999. In situ bioremediation strategies for oiled shoreline environments. Environ. Technol. 20:783794.
80. LeFloch, S.,, F. X. Merlin,, M. Guillerme,, C. Dalmazzone,, and P. LeCorre. 1999. A field experimentation on bioremediation: BIOREN. Environ. Technol. 20:897907.
81. Le Petit, J.,, J. C. Bertrand,, M. H. N’Guyen,, and S. Tagger. 1975. On the taxonomy and physiology of bacteria utilizing hydrocarbons in the sea. Ann. Microbiol. (Paris) 126:367380.
82. Lessard, R. R.,, and G. DeMarco. 2000. The significance of oil spill dispersants. Spill Sci. Technol. Bull. 6:5968.
83. Lewis, A.,, and D. Aurand. 1997. Putting Dispersants to Work: Overcoming Obstacles. API technical report IOSC-004. 1997 International Oil Spill Conference issue paper. American Petroleum Institute, Washington, D.C.
84. Limpert, E.,, W. A. Stahel,, and M. Abbt. 2001. Log-normal distributions across the sciences: keys and clues. BioScience 51:341352.
85. Lindstrom, J. E.,, and J. F. Braddock. 2002. Biodegradation of petroleum hydrocarbons at low temperature in the presence of the dispersant Corexit 9500. Mar. Pollut. Bull. 44:739747.
86. Liu, A.,, E. Garcia-Dominguez,, E. D. Rhine,, and L. Y. Young. 2004. A novel arsenate respiring isolate that can utilize aromatic substrates. FEMS Microbiol. Ecol. 48:328332.
87. Lunel, T.,, J. Rusin,, C. Halliwell,, and L. Davies. 1997. The net environmental benefit of a successful dispersant operation at the Sea Empress incident, p. 185194. In Proceedings of the 1997 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
88. Lunel, T.,, K. Lee,, R. Swannell,, P. Wood,, J. Rusin,, N. Bailey,, C. Halliwell,, L. Davies,, M. Sommerville,, A. Dobie,, D. Mitchell,, and M. McDonagh. 1996. Shoreline clean up during the Sea Empress incident: the role of surf washing (clay oil flocculation), dispersants and bioremediation, p. 15211540. In Proceedings of the Nineteenth Arctic and Marine Oil Spill Program Seminar. Environment Canada, Calgary, Alberta, Canada.
89. Macnaughton, S. J.,, J. R. Stephen,, A. D. Venosa,, G. A. Davis,, Y.-J. Chang,, and D. C. White. 1999. Microbial population changes during bioremediation of an experimental oil spill. Appl. Environ. Microbiol. 65:35663574.
90. Macnaughton, S. J.,, R. Swannell,, F. Daniel,, and L. Bristow. 2003. Biodegradation of dispersed Forties crude and Alaskan North Slope oils in microcosms under simulated marine conditions. Spill Sci. Technol. Bull. 8:179186.
91. Maki, H.,, N. Hirayama,, T. Hiwatari,, K. Kohata,, H. Uchiyama,, M. Watanabe,, F. Yamasaki,, and M. Furuki. 2003. Crude oil bioremediation field experiment in the Sea of Japan. Mar. Pollut. Bull. 47:7477.
92. Maruyama, A.,, H. Ishiwata,, K. Kitamura,, M. Sunamura,, T. Fujita,, M. Matsuo,, and T. Higashihara. 2003. Dynamics of microbial populations and strong selection for Cycloclasticus pugetii following the Nakhodka oil spill. Microb. Ecol. 46: 442453.
93. Mauersberger, S.,, H. J. Wang,, C. Gaillardin,, G. Barth,, and J. M. Nicaud. 2001. Insertional mutagenesis in the n-alkane-assimilating yeast Yarrowia lipolytica: generation of tagged mutations in genes involved in hydrophobic substrate utilization. J. Bacteriol. 183:51025109.
94. Meyer, S.,, R. Moser,, A. Neef,, U. Stahl,, and P. Kampfer. 1999. Differential detection of key enzymes of polyaromatic-hydrocarbon-degrading bacteria using PCR and gene probes. Microbiology 145:17311741.
95. Michel, J.,, and B. L. Benggio. 1995. Testing and use of shoreline cleaning agents during the Morris J. Berman spill, p. 197202. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
96. Middelhoven, W. J.,, G. Scorzetti,, and J. W. Fell. 2000. Trichosporon veenhuisii sp. nov., an alkaneassimilating anamorphic basidiomycetous yeast. Int. J. Syst. Evol. Microbiol. 50:381387.
97. Mikolasch, A.,, E. Hammer,, and F. Schauer. 2003. Synthesis of imidazol-2-yl amino acids by using cells from alkane-oxidizing bacteria. Appl. Environ. Microbiol. 69:16701679.
98. Mueller, J. G.,, C. E. Cerniglia,, and P. H. Pritchard,. 1996. Bioremediation of environments contaminated by polycyclic aromatic hydrocarbons, p. 125194. In R. L. Crawford, and D. L. Crawford (ed.), Bioremediation. Cambridge University Press, Cambridge, United Kingdom.
99. Narro, M. L.,, C. E. Cerniglia,, C. Van Baalen,, and D. T. Gibson. 1992. Metabolism of phenanthrene by the marine cyanobacterium Agmenellum quadruplicatum PR-6. Appl. Environ. Microbiol. 58:13511359.
100. National Research Council.1989. Using Oil Dispersants on the Sea. National Academies Press, Washington ,D.C.
101. National Research Council.2002. Oil in the Sea III: Inputs, Fates and Effects.National Academies Press , Washington,D.C.
102. Nauman, S. A. 1991. Shoreline clean-up: equipment and operations, p. 141148. In Proceedings of the 1991 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
103. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev,, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51:433446.
104. Novotny, C.,, P. Erbanova,, T. Cajthaml,, N. Rothschild,, C. Dosoretz,, and V. Sasek. 2000. Irpex lacteus, a white rot fungus applicable to water and soil bioremediation. Appl. Microbiol. Biotechnol. 54:850853.
105. Odokumal, L. O.,, and A. A. Dickson. 2003. Bioremediation of a crude oil polluted tropical rain forest soil. Global J. Environ. Sci. 2:2940.
106. Olivieri, R.,, P. Bacchin,, A. Robertiello,, N. Oddo,, L. Degen,, and A. Tonolo. 1976. Microbial degradation of oil spills enhanced by a slow-release fertilizer. Appl. Environ. Microbiol. 31:629634.
107. Oudot, J. 2000. Biodegradability of the Erika fuel oil. C. R. Acad. Sci. III 323:945950.
108. Oudot, J.,, J. Dupont,, S. Haloui,, and M. F. Roquebert. 1993. Biodegradation potential of hydrocarbon-assimilating tropical fungi. Soil Biol. Biochem. 25:11671173.
109. Owens, E. H.,, J. R. Harper,, W. Robson,, and P. D. Boehm. 1987. Fate and persistence of crude oil stranded on a sheltered beach. Arctic 40: 109123.
110. Padden, A. N.,, F. A. Rainey,, D. P. Kelly,, and A. P. Wood. 1997. Xanthobacter tagetidis sp. nov., an organism associated with Tagetes species and able to grow on substituted thiophenes. Int. J. Syst. Bacteriol. 47:394401.
111. Pan, F.,, Q. Yang,, Y. Zhang,, S. Zhang,, and M. Yang. 2004. Biodegradation of polycyclic aromatic hydrocarbons by Pichia anomala. Biotechnol. Lett. 26:803806.
112. Parales, R. E.,, J. L. Ditty,, and C. S. Harwood. 2000. Toluene-degrading bacteria are chemotactic towards the environmental pollutants benzene, toluene, and trichloroethylene. Appl. Environ. Microbiol. 66:40984104.
113. Parales, R. E.,, and C. S. Harwood. 2002. Bacterial chemotaxis to pollutants and plant-derived aromatic molecules. Curr. Opin. Microbiol. 5:266273.
114. Pelletier, E.,, D. Delille,, and B. Delille. 2004. Crude oil bioremediation in sub-Antarctic intertidal sediments: chemistry and toxicity of oiled residues. Mar. Environ. Res. 57:311327.
115. Pickard, M. A.,, R. Roman,, R. Tinoco,, and R. Vazquez-Duhalt. 1999. Polycyclic aromatic hydrocarbon metabolism by white rot fungi and oxidation by Coriolopsis gallica UAMH 8260 laccase. Appl. Environ. Microbiol. 65:38053809.
116. Pirnik, M. P.,, R. M. Atlas,, and R. Bartha. 1974. Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J. Bacteriol. 119:868878.
117. Prantera, M. T.,, A. Drozdowicz,, S. G. Leite,, and A. S. Rosado. 2002. Degradation of gasoline aromatic hydrocarbons by two N2-fixing soil bacteria. Biotechnol. Lett. 24:8589.
118. Prenafeta-Boldú , F. X.,, J. Vervoort,, J. T. C. Grotenhuis,, and J. W. van Groenestijn. 2002. Substrate interactions during the biodegradation of benzene, toluene, ethylbenzene, and xylene (BTEX) hydrocarbons by the fungus Cladophialophora sp. strain T1. Appl. Environ. Microbiol. 68: 26602665.
119. Prince, R. C. 1993. Petroleum spill bioremediation in marine environments. Crit. Rev. Microbiol. 19: 217242.
120. Prince, R.,, and R. Atlas,. Bioremediation of marine oil spills. In R. M. Atlas, and J. Philp (ed.), Bioremediation: Applied Microbial Solutions for Real- World Environmental Cleanup, in press. ASM Press, Washington, D.C.
121. Prince, R. C.,, and J. R. Bragg. 1997. Shoreline bioremediation following the Exxon Valdez oil spill in Alaska. Bioremediation J. 1:97104.
122. Prince, R. C.,, and J. R. Clark,. 2004. Bioremediation of marine oil spills, p. 495512. In R. Vazquez-Duhalt, and R. Quintero-Ramirez (ed.), Studies in Surface Science and Catalysis, vol. 151. Petroleum Biotechnology. Elsevier, Amsterdam, The Netherlands.
123. Prince, R. C.,, R. E. Bare,, G. N. George,, C. E. Haith,, M. J. Grossman,, J. R. Lute,, D. L. Elmendorf,, V. Minak-Bernero,, J. D. Senius,, L. G. Keim,, R. R. Chianelli,, S. M. Hinton,, and A. R. Teal. 1993. The effect of bioremediation on the microbial populations of oiled beaches in Prince William Sound, Alaska, p. 469475. In Proceedings of the 1993 International Oil Spill Conference, American Petroleum Institute, Washington, D.C.
124. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim,, K. Lee,, G. J. Holtom,, P. Lambert,, G. A. Sergy,, E. H. Owens,, and C. C. Guénette,. 1999. Bioremediation of a marine oil spill in the Arctic, p. 227232. In B. C. Alleman, and A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbon and Other Organic Compounds. Battelle Press, Columbus, Ohio.
125. Prince, R. C.,, R. E. Bare,, R. M. Garrett,, M. J. Grossman,, C. E. Haith,, L. G. Keim, K, Lee, G. J. Holtom, P. Lambert, G. A. Sergy, E. H. Owens, and C. C. Guénette. 2003a. Bioremediation of stranded oil on an Arctic shoreline. Spill Sci. Technol. Bull. 8:303312.
126. Prince, R. C.,, R. M. Garrett,, R. E. Bare,, M. J. Grossman,, G. T. Townsend,, J. M. Suflita,, K. Lee,, E. H. Owens,, G. A. Sergy,, J. F. Braddock,, J. E. Lindstrom,, and R. R. Lessard. 2003b. The roles of photooxidation and biodegradation in longterm weathering of crude and heavy fuel oils. Spill Sci. Technol. Bull. 8:145156.
127. Rabus, R.,, R. Nordhaus,, W. Ludwig,, and F. Widdel. 1993. Complete oxidation of toluene under strictly anoxic conditions by a new sulfatereducing bacterium. Appl. Environ. Microbiol. 59:14441451.
128. Raghukumar, C.,, V. Vipparty,, J. J. David,, and D. Chandramohan. 2001. Degradation of crude oil by marine cyanobacteria. Appl. Microbiol. Biotechnol. 57:433436.
129. Ravelet, C.,, S. Krivobok,, L. Sage,, and R. Steiman. 1999. Biodegradation of pyrene by sediment fungi. Chemosphere 40:557563.
130. Redfield, A. C. 1958. The biological control of the chemical factors in the environment. Am. Sci. 46:118.
131. Rike, A. G.,, K. B. Haugen,, M. Børresen,, B. Engene,, and P. Kolstad. 2003. In situ biodegradation of petroleum hydrocarbons in frozen arctic soils. Cold Regions Sci. Technol. 37:97120.
132. Robertson, W.J.,, J.P. Bowman,, P.D. Franzmann,, and B. J. Mee. 2001. Desulfosporosinus meridiei sp. nov., a spore-forming sulfate-reducing bacterium isolated from gasoline-contaminated groundwater. Int. J. Syst. Evol. Microbiol. 51:133140.
133. Rö ling, W. F. M.,, M. G. Milner,, D. M. Jones,, K. Lee,, F. Daniel,, R. P. J. Swannell,, and I. M. Head. 2002. Robust hydrocarbon degradation and dynamics of bacterial communities during nutrient-enhanced oil spill bioremediation. Appl. Environ. Microbiol. 68:55375548.
134. Rö ling, W. F. M.,, I. R. Couto de Brito,, R. P. J. Swannell,, and I. M. Head. 2004a. Response of archaeal communities in beach sediments to spilled oil and bioremediation. Appl. Environ. Microbiol. 70:26142620.
135. Rö ling, W. F. M.,, M. G. Milner,, D. M. Jones,, F. Fratepietro,, R. P. J. Swannell,, F. Daniel,, and I. M. Head. 2004b. Bacterial community dynamics and hydrocarbon degradation during a fieldscale evaluation of bioremediation on a mudflat beach contaminated with buried oil. Appl. Environ. Microbiol. 70:26032613.
136. Romine, M. F.,, L. C. Stillwell,, K. K. Wong,, S. J. Thurston,, E. C. Sisk,, C. Sensen,, T. Gaasterland,, J. K. Fredrickson,, and J. D. Saffer. 1999. Complete sequence of a 184-kilobase catabolic plasmid from Sphingomonas aromaticivorans F199. J. Bacteriol. 181:15851602.
137. Rosenberg, E.,, R. Legman,, A. Kushmaro,, R. Taube,, E. Adler, andE.Z.Ron. 1992. Petroleum bioremediation—a multiphase problem. Biodegradation 3:337350.
138. Saadoun, I.,, M. A. al-Akhras,, and J. Abu-Ashour. 1999. Bacterial degradation of hydrocarbons as evidenced by respirometric analysis. Microbios 100: 1925.
139. Sack, U.,, T. M. Heinze,, J. Deck,, C. E. Cerniglia,, R. Martens,, F. Zadrazil,, and W. Fritsche. 1997. Comparison of phenanthrene and pyrene degradation by different wood-decaying fungi. Appl. Environ. Microbiol. 63:39193925.
140. Santas, R.,, A. Korda,, A. Tenente,, K. Buchholz,, and P. Santas. 1999. Mesocosm assays of oil spill bioremediation with oleophilic fertilizers: Inipol, F1 or both? Mar. Pollut. Bull. 38:4448.
141. Sarma, P. M.,, D. Bhattacharya,, S. Krishnan,, and B. Lal. 2004. Degradation of polycyclic aromatic hydrocarbons by a newly discovered enteric bacterium, Leclercia adecarboxylata. Appl. Environ. Microbiol. 70:31633166.
142. Sepic, E.,, M. Bricelj,, and H. Leskovsek. 1997. Biodegradation studies of polyaromatic hydrocarbons in aqueous media. J. Appl. Microbiol. 83:561568.
143. Shinoda, Y.,, Y. Sakai,, H. Uenishi,, Y. Uchihashi,, A. Hiraishi,, H. Yukawa,, H. Yurimoto,, and N. Kato. 2004. Aerobic and anaerobic toluene degradation by a newly isolated denitrifying bacterium, Thauera sp. strain DNT-1. Appl. Environ. Microbiol. 70:13851392.
144. Smith, V. H.,, D. W. Graham,, and D. D. Cleland. 1998. Application of resource-ratio theory to hydrocarbon biodegradation. Environ. Sci. Technol. 32:33863395.
145. Steffen, K. T.,, A. Hatakka,, and M. Hofrichter. 2002. Removal and mineralization of polycyclic aromatic hydrocarbons by litter-decomposing basidiomycetous fungi. Appl. Microbiol. Biotechnol. 60:212217.
146. Stucki, G.,, and M. Alexander. 1987. Role of dissolution rate and solubility in biodegradation of aromatic compounds. Appl. Environ. Microbiol. 53: 292297.
147. Surovtseva, E. G.,, V. S. Ivoilov,, and S. S. Belaiev. 1999. Physiologo-biochemical properties of a strain of Beijerinckia mobilis 1phi Phn+—a degrader of polycyclic aromatic hydrocarbons. Mikrobiologiya 68:845850. [In Russian.]
148. Sveum, P.,, and S. Ramstad,. 1995. Bioremediation of oil on shorelines with organic and inorganic nutrients, p. 201217. In R. E. Hinchee,, J. A. Kittel,, and H. J. Reisinger (ed.), Applied Bioremediation of Petroleum Hydrocarbons. Battelle Press, Columbus, Ohio.
149. Swannell, R.,, and F. Daniel. 1999. Effect of dispersants on oil biodegradation under simulated marine conditions, p. 169176. In Proceedings of the 1999 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
150. Swannell, R. P. J.,, K. Lee,, and M. McDonagh. 1996. Field evaluations of marine oil spill bioremediation. Microbiol. Rev. 60:342365.
151. Swannell, R. P. J.,, D. Mitchell,, G. Lethbridge,, D. Jones,, D. Heath,, M. Hagley,, M. Jones,, S. Petch,, R. Milne,, R. Croxford,, and K. Lee. 1999. A field demonstration of the efficacy of bioremediation to treat oiled shorelines following the Sea Empress incident. Environ. Technol. 20:863873.
152. Teas, H.,, R. R. Lessard,, G. P. Canevari,, C. P. Brown,, and R. Glenn. 1993. Saving oiled mangroves using a new non-dispersing shoreline cleaner, p. 761763. In Proceedings of the 1993 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
153. Thomas, R.,, and T. Lunel. 1993. The Braer incident; dispersion in action, p. 843859. In Proceedings of the Sixteenth Arctic Marine Oilspill Program Technical Seminar. Environment Canada, Edmonton, Alberta, Canada.
154. Tillmann, U. 2004. Interactions between planktonic microalgae and protozoan grazers. J. Eukaryot. Microbiol. 51:156168.
155. Tissot, B. P.,, and D. H. Welte. 1984. Petroleum Formation and Occurrence. Springer-Verlag, Berlin, Germany.
156. van Beilen, J. B.,, M. M. Marin,, T. H. Smits,, M. Rothlisberger,, A. G. Franchini,, B. Witholt,, and F. Rojo. 2004. Characterization of two alkane hydroxylase genes from the marine hydrocarbonoclastic bacterium Alcanivorax borkumensis. Environ. Microbiol. 6:264273.
157. Vandamme, P.,, B. Pot,, M. Gillis,, P. de Vos,, K. Kersters,, and J. Swings. 1996. Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol. Rev. 60:407438.
158. Varadaraj, R.,, M. L. Robbins,, J. Bock,, S. Pace,, and D. MacDonald. 1995. Dispersion and biodegradation of oil spills on water, p. 101106. In Proceedings of the 1995 International Oil Spill Conference. American Petroleum Institute, Washington, D.C.
159. Venosa, A. D.,, M. T. Suidan,, B. A. Wrenn,, K. L. Strohmeier,, J. R. Haines,, B. L. Eberhart,, D. King,, and E. Holder. 1996. Bioremediation of an experimental oil spill on the shoreline of Delaware bay. Environ. Sci. Technol. 30:17641775.
160. Venosa, A. D.,, M. T. Suidan,, D. King,, and B. A. Wrenn. 1997. Use of hopane as a conservative biomarker for monitoring the bioremediation effectiveness of crude oil contaminating a sandy beach. J. Ind. Microbiol. Biotechnol. 18:131139.
161. Venter, J. C.,, K. Remington,, J. F. Heidelberg,, A. L. Halpern,, D. Rusch,, J. A. Eisen,, D. Wu,, I. Paulsen,, K. E. Nelson,, W. Nelson,, D. E. Fouts,, S. Levy,, A. H. Knap,, M. W. Lomas,, K. Nealson,, O. White,, J. Peterson,, J. Hoffman,, R. Parsons,, H. Baden-Tillson,, C. Pfannkoch,, Y. H. Rogers,, and H. O. Smith. 2004. Environmental genome shotgun sequencing of the Sargasso Sea. Science 304:6674.
162. Walker, J. D.,, R. R. Colwell,, and L. Petrakis. 1975. Degradation of petroleum by an alga, Prototheca zopfii. Appl. Microbiol. 30:7981.
163. Wang, Z.,, M. F. Fingas,, L. Sigouin,, and E. H. Owens. 2001. Fate and persistence of long-term spilled ‘Metula’ oil in the marine salt marsh: degradation of biomarkers, p. 115125. In Proceedings of the 2001 International Oil Spill Conference, American Petroleum Institute, Washington, D.C.
164. Warshawsky, D.,, T. Cody,, M. Radike,, R. Reilman,, B. Schumann,, K. LaDow,, and J. Schneider. 1995. Biotransformation of benzo[a]- pyrene and other polycyclic aromatic hydrocarbons and heterocyclic analogs by several green algae and other algal species under gold and white light. Chem. Biol. Interact. 97:131148.
165. White, D. C.,, C. A. Flemming,, K. T. Leung,, and S. J. Macnaughton. 1998. In situ microbial ecology for quantitative appraisal, monitoring, and risk assessment of pollution remediation in soils, the subsurface, the rhizosphere and in biofilms. J. Microbiol. Methods 32:93105.
166. Willumsen, P.,, U. Karlson,, E. Stackebrandt,, and R. M. Kroppenstedt. 2001. Mycobacterium frederiksbergense sp. nov., a novel polycyclic aromatic hydrocarbon-degrading Mycobacterium species. Int. J. Syst. Evol. Microbiol. 51:17151722.
167. Wilson, M. S.,, J. B. Herrick,, C. O. Jeon,, D. E. Hinman,, and E. L. Madsen. 2003. Horizontal transfer of phnAc dioxygenase genes within one of two phenotypically and genotypically distinctive naphthalene- degrading guilds from adjacent soil environments. Appl. Environ. Microbiol. 69:21722181.
168. Wunch, K. G.,, T. Feibelman,, and J. W. Bennett. 1997. Screening for fungi capable of removing benzo[a]pyrene in culture. Appl. Microbiol. Biotechnol. 47:620624.
169. Xu, R.,, and J. P. Obbard. 2003. Effect of nutrient amendments on indigenous hydrocarbon biodegradation in oil-contaminated beach sediments. J. Environ. Qual. 32:12341243.
170. Yabuuchi, E.,, H. Yamamoto,, S. Terakubo,, N. Okamura,, T. Naka,, N. Fujiwara,, K. Kobayashi,, Y. Kosako,, and A. Hiraishi. 2001. Proposal of Sphingomonas wittichii sp. nov. for strain RW1(T), known as a dibenzo-p-dioxin metabolizer. Int. J. Syst. Evol. Microbiol. 51:281292.
171. Yakimov, M. M.,, P. N. Golyshin,, S. Lang,, E. R. B. Moore,, W.-R. Abraham,, H. Lü nsdorf,, and K. N. Timmis. 1998. Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int. J. Syst. Bacteriol. 48:339348.
172. Yakimov, M. M.,, L. Giuliano,, G. Gentile,, E. Crisafi,, T. N. Chernikova,, W.-R. Abraham,, H. Lu¨ nsdorf,, K. N. Timmis,, and P. N. Golyshin. 2003. Oleispira antarctica gen. nov., sp. nov., a novel hydrocarbonoclastic marine bacterium isolated from Antarctic coastal sea water. Int. J. Syst. Evol. Microbiol. 53:779785.
173. Yakimov, M. M.,, L. Giuliano,, R. Denaro,, E. Crisafi,, T. N. Chernikova,, W.-R. Abraham,, H. Luensdorf,, K. N. Timmis,, and P. N. Golyshin. 2004. Thalassolituus oleivorans gen. nov., sp. nov., a novel marine bacterium that obligately utilizes hydrocarbons. Int. J. Syst. Evol. Microbiol. 54:141148.
174. Young, J. M. 2001. Implications of alternative classifications and horizontal gene transfer for bacterial taxonomy. Int. J. Syst. Evol. Microbiol. 51:945953.
175. Yumoto, I.,, A. Nakamura,, H. Iwata,, K. Kojima,, K. Kusumoto,, Y. Nodasaka,, and H. Matsuyama. 2002. Dietzia psychralcaliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int. J. Syst. Evol. Microbiol. 52:8590.
176. Zarilla, K. A.,, and J. J. Perry. 1986. Thermoleophilum album, gen. nov. and sp. nov., a bacterium obligate for thermophily and n-alkane substrates. Arch. Microbiol. 137:286290.
177. Zengler, K.,, J. Heider,, R. Rossello´ -Mora,, and F. Widdel. 1999. Phototrophic utilization of toluene under anoxic conditions by a new strain of Blastochloris sulfoviridis. Arch. Microbiol. 172:204212.
178. Zhuang, W.-Q.,, J.-H. Tay,, A.M. Maszenan,, L. R. Krumholz,, and S. T.-L. Tay. 2003. Importance of gram-positive naphthalene-degrading bacteria in oil-contaminated tropical marine sediments. Lett. Appl. Microbiol. 36:251257.
179. Zinjarde, S. S.,, and A. A. Pant. 2002. Hydrocarbon degraders from tropical marine environments. Mar. Pollut. Bull. 44:118121.
180. ZoBell, C. E. 1946. Action of microörganisms on hydrocarbons. Bacteriol. Rev. 10:149.

Tables

Generic image for table
TABLE 1

Genera of Bacteria able to grow using hydrocarbons as a sole source of carbon and energy

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 2

Cyanobacterial genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 3

Fungal genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16
Generic image for table
TABLE 4

Algal and diatom genera able to degrade hydrocarbons

Citation: Prince R. 2005. The Microbiology of Marine Oil Spill Bioremediation, p 317-335. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch16

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error