Chapter 2 : Indigenous Microbial Communities in Oil Fields

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in

Indigenous Microbial Communities in Oil Fields, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap02-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap02-2.gif


Oil reservoirs constitute deep geological environments with diverse physicochemical in situ conditions where indigenous microbial communities are supposed to grow or survive, if these conditions are not too drastic for life (e.g., extreme temperatures or salinity). Nevertheless, although the existence of indigenous populations in oil fields has been widely admitted, direct proofs of their existence are scarce in the literature. This chapter discusses about the main reasons of this lack of information, together with the data in favor of the existence of indigenous bacterial communities in oil fields. The term indigenous is used in its narrowest sense, i.e., to designate those bacteria that are not supposed to have been introduced into the environment during reservoir development. In oil reservoirs where the metabolic activity may be controlled by the supply of limiting nutrients and electron acceptors, the high metabolic rates required to repair the rapidly degrading cell components are unlikely to be sustainable. Altogether, these considerations indicate that heterotrophic life ceases at approximately 80°C in petroleum reservoirs.

Citation: Magot M. 2005. Indigenous Microbial Communities in Oil Fields, p 21-34. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch2

Key Concept Ranking

Dissimilatory Metal Reduction
Microbial Ecology
Bacteria and Archaea
16s rRNA Sequencing
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


1. Azadpour, A.,, L. R. Brown,, and A. A. Vadie. 1996. Examination of thirteen petroliferous formations for hydrocarbon-utilizing sulfate-reducing microorganisms. J. Ind. Microbiol. 16:263266.
2. Barth, T. 1991. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation water. Appl. Geochem. 6:115.
3. Basso, O.,, J. F. Lascourreges,, M. Jarry,, and M. Magot. 2005. The effect of cleaning and disinfecting the sampling well on the microbial communities of deep subsurface water samples. Environ. Microbiol. 7:1321.
4. Bastin, E. S. 1926. The presence of sulphate reducing bacteria in oil field waters. Science 63:2124.
5. Bastin, E. S.,, B. Anderson,, F. E. Greer,, C. A. Merritt,, and G. Moulton. 1926. The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10:12701299.
6. Beeder, J.,, R. K. Nilsen,, J. T. Rosnes,, T. Torsvik,, and T. Lien. 1994. Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl. Environ. Microbiol. 60:12271231.
7. Beeder, J.,, T. Torsvik,, and T. L. Lien. 1995. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164:331336.
8. Belyaev, S. S.,, R. Wolkin,, W. R. Kenealy,, M. J. De Niro,, S. Epstein,, and J. G. Zeikus. 1983. Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45:691697.
9. Bernard, F. P.,, J. Connan,, and M. Magot. 1992. Indigenous microorganisms in connate water of many oil fields: a new tool in exploration and production techniques. (SPE 24811.) In Proceedings of the 67th SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
10. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69:61436151.
11. Boone, D. R.,, Y. T. Liu,, Z. J. Zhao,, D. L. Balkwill,, G. R. Drake,, T. O. Stevens,, and H. C. Aldrich. 1995. Bacillus infernus sp. nov., an Fe(III)- and Mn(IV)-reducing anaerobe from the deep terrestrial subsurface. Int. J. Syst. Bacteriol. 45:441448.
12. Brakstad, O. G.,, K. Bonaunet,, and H. K. Kotlar. 2002. Characterization of microbial communities in two North Sea reservoirs by culture-independent methods. In Proceedings of the Oil & Gas Science and Technology Conference on Microbiology of Hydrocarbons: State of the Art and Perspectives, Paris, France.
13. Carothers, W. W.,, and Y. K. Kharaka. 1978. Aliphatic acid anions in oil field waters. Am. Assoc. Petrol. Geol. Bull. 62:24412453.
14. Cayol, J.-L.,, B. Ollivier,, B. K. C. Patel,, G. Prensier,, J. Guezennec,, and J.-L. Garcia. 1994. Isolation and characterization of Halothermothrix orenii gen. nov., sp. nov., a halophilic, thermophilic, fermentative, strictly anaerobic bacterium. Int. J. Syst. Bacteriol. 44:534540.
15. Chandler, D. P.,, F. J. Brockman,, T. J. Bailey,, and J. K. Fredrickson. 1998. Phylogenetic diversity of archaea and bacteria in a deep subsurface paleosol. Microb. Ecol. 36:3750.
16. Connan, J., 1984. Biodegradation of crude oils in reservoirs, p. 299335. In J. Brooks, and D. H. Welte (ed.), Advances in Petroleum Geochemistry, vol. 1. Academic Press, London, United Kingdom.
17. Connan, J.,, G. Lacrampe-Couloume,, and M. Magot,. 1995. Origin of gases in reservoirs, p. 2161. In D. A. Dolenc (ed.). Proceedings of the 1995 International Gas Research Conference. Government Institutes, Inc., Rockville, Md.
18. Daniel, R. M.,, and D. A. Cowan. 2000. Biomolecular stability and life at high temperature. Cell. Mol. Life Sci. 57:250264.
19. Fisher, J. B. 1987. Distribution and occurence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51:24592468.
20. Fredrickson, J. K.,, J. P. Mckinley,, S. A. Nierzwicki-Bauer,, D. C. White,, D. B. Ringelberg,, S. A. Rawson,, S. M. Li,, F. J. Brockman,, and B. N. Bjornstad. 1995. Microbial community structure and biogeochemistry of Miocene subsurface sediments: implications for long-term microbial survival. Mol. Ecol. 4:619626.
21. Galushko, A. S.,, and E. P. Rozanova. 1991. Desulfobacterium cetonicum sp. nov.: a sulfate-reducing bacterium which oxidizes fatty acids and ketones. Microbiology (New York) 60:742746.
22. Grassia, G. S.,, K. M. McLean,, P. Glenat,, J. Bauld,, and A. J. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:4758.
23. Greene, A. C.,, B. K. C. Patel,, and A. J. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47:505509.
24. Griffin, W. T.,, T. J. Phelps,, F. S. Colwell,, and J. K. Fredrickson,. 1997. Methods for obtaining deep subsurface microbiological samples by drilling, p. 2344. In P. S. Amy, and D. L. Haldeman (ed.), The Microbiology of the Terrestrial Deep Subsurface. CRC Lewis Publishers, Boca Raton, Fla.
25. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rosselló-Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65:9991004.
26. Head, I. M.,, D. M. Jones,, and S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344352.
27. Jeanthon, C.,, A. L. Reysenbach,, S. L’Haridon,, A. Gambacorta,, N. R. Pace,, P. Glenat,, and D. Prieur. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164:9197.
28. Kashefi, K., and D. R. Lovley. 2003. Extending the upper temperature limit for life. Science 301:934.
29. Larter, S.,, A. Wilhelms,, I. Head,, M. Koopmans,, A. Aplin,, R. Diprimio,, C. Zwach,, M. Erdmann,, and N. Telnaes. 2003. The controls on the composition of biodegraded oils in the deep subsurface. I. Biodegradation rates in petroleum reservoirs. Org. Geochem. 34:601613.
30. L’Haridon, S.,, A. L. Reysenbach,, P. Glenat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 377:223224.
31. Lien, T.,, and J. Beeder. 1997. Desulfobacter vibrioformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47:11241128.
32. Lien, T.,, M. Madsen,, I. H. Steen,, and K. Gjerdevij. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate-reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48:469474.
33. Lovley, D. R. 1993. Dissimilatory metal reduction. Annu. Rev. Microbiol. 47:263290.
34. Machel, H. G.,, and J. Foght,. 2000. Products and depth limits of microbial activity in petroliferous subsurface settings, p. 105120. In R. E. Riding, and S. M. Awramik (ed.), Microbial Sediments. Springer-Verlag, Berlin, Germany.
35. Magot, M. 1996. Similar bacteria in remote oil fields. Nature 379:681.
36. Magot, M.,, O. Basso,, C. Tardy-Jacquenod,, and P. Caumette. 2004. Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oil field water. Int. J. Syst. Evol. Microbiol. 4:16931697.
37. Magot, M.,, P. Caumette,, J. M. Desperrier,, R. Matheron,, C. Dauga,, F. Grimont,, and L. Carreau. 1992. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42:398403.
38. Magot, M.,, C. Hurtevent,, and J. L. Crolet,. 1993. Reservoir souring and well souring, p. 573575. In J. M. Costa, and A. D. Mercer (ed.), Progress in the Understanding and Prevention of Corrosion. Institute of Materials, London, United Kingdom.
39. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103116.
40. Miranda-Tello, E.,, M. L. Fardeau,, L. Fernandez,, F. Ramirez,, J. L. Cayol,, P. Thomas,, J. L. Garcia,, and B. Ollivier. 2003. Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97103.
41. Nazina, T. N.,, A. E. Ivanova,, O. V. Golubeva,, R. R. Ibatullin,, S. S. Belyaev,, and M. V. Ivanov. 1995. Occurrence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oil field. Microbiology (New York) 64:245251.
42. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: Environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311343.
43. Nga, D. P.,, D. T. C. Ha,, L. T. Hien,, and H. Stan-Lotter. 1996. Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385392.
44. Nilsen, R. K.,, J. Beeder,, T. Thorstenson,, and T. Torsvik. 1996a. Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62:17931798.
45. Nilsen, R. K.,, T. Torsvik,, and T. Lien. 1996b. Desulfotomaculum thermocisternum sp. nov., a sulfate-reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397402.
46. Orphan, V. J.,, S. K. Goffredi,, E. F. Delong,, and J. R. Boles. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20:295311.
47. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66:700711.
48. Parkes, R. J.,, B. A. Cragg,, S. J. Bale,, J. M. Getliff,, K. Goodman,, P. A. Rochelle,, J. C. Fry,, A. J. Weightman,, and S. M. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410413.
49. Pedersen, K. 2000. Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol. Lett. 185:916.
50. Pedersen, K.,, J. Arlinger,, S. Ekendahl,, and L. Halbeck. 1996. 16S rRNA gene diversity of attached and unattached bacteria in boreholes along the access tunnel to the Aspo hard rock laboratory, Sweden. FEMS Microbiol. Ecol. 19:249262.
51. Philippi, G. T. 1977. On the depth, time and mechanism of origin of the heavy to medium-gravity naphthenic crude oils. Geochim. Cosmochim. Acta 41:3352.
52. Pickard, C. 1993. Oil field and freshwater isolates of Shewanella putrefaciens have lipopolysaccharide polyacrylamide gel profiles characteristic of marine bacteria. Can. J. Microbiol. 39:715717.
53. Ravot, G.,, M. Magot,, M.L. Fardeau,, B.K. Patel,, G. Prensier,, A. Egan,, J. L. Garcia,, and B. Ollivier. 1995. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45:308314.
54. Rees, G. N.,, G. S. Grassia,, A. J. Sheehy,, P. P. Dwivedi,, and B. K. C. Patel. 1995. Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45:8589.
55. Roadifer, R. E., 1987. Size distributions of the world’s largest known oil and tar accumulations, p. 323. In R. F. Meyer (ed.), AAPG Studies in Geology, vol. 25. Exploration for Heavy Crude Oil and Natural Bitumen. American Association of Petroleum Geologists, Tulsa, Okla.
56. Rozanova, E. P.,, T. N. Nazina,, and A. S. Galushko. 1988. Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (New York) 57:514520.
57. Rozanova, E. P.,, T. P. Tourova,, T. V. Kolganova,, A. M. Lysenko,, L. L. Mityushina,, S. K. Yusupov,, and S. S. Belyaev. 2001. Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology (New York) 70:466471.
58. Rueter, P.,, R. Rabus,, H. Wilkes,, F. Aeckersberg,, F. A. Rainey,, H. W. Jannasch,, and F. Widdel. 1994. Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455458.
59. Shock, E. L. 1988. Organic acid metastability in sedimentary basins. Geology 16:886890.
60. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. Nazina,, M. Miroshnichenko,, and E. A. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
61. Spark, I.,, I. Patey,, B. Duncan,, A. Hamilton,, C. Devine,, and C. McGovern-Traa. 2000. The effect of indigenous and introduced microbes on deeply buried hydrocarbon reservoirs, North Sea. Clay Minerals 35:512.
62. Stetter, K. O. 1999. Extremeophiles and their adaptation to hot environments. FEBS Lett. 452:2225.
63. Stetter, K. O.,, A. Hoffmann,, and R. Huber,. 1993a. Microorganisms adapted to high temperature environments, p. 2528. In R. Guerrero, and C. Pedros-Alio (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona, Spain.
64. Stetter, K. O.,, R. Huber,, E. Blochl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993b. Hyperthermophilic Archaea are thriving in the deep North Sea and Alaskan reservoirs. Nature 365:743745.
65. Takahata, Y.,, T. Hoaki,, and T. Maruyama. 2001. Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch. Microbiol. 176:264270.
66. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66:7379.
67. Tardy-Jacquenod, C.,, M. Magot,, F. Laigret,, M. Kaghad,, B. K. C. Patel,, J. Guezennec,, R. Matheron,, and P. Caumette. 1996. Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46:710715.
68. Tardy-Jacquenod, C.,, M. Magot,, B. K. C. Patel,, R. Matheron,, and P. Caumette. 1998. Desulfotomaculum halophilum sp. nov., a halophilic sulfatereducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48:333338.
69. Wilhelms, A.,, S. R. Larter,, I. Head,, P. Farrimond,, R. Diprimio,, and C. Zwach. 2001. Biodegradation of oil in uplifted basins prevented by deep-burial sterilization. Nature 411:10341037.


Generic image for table

Novel species of sulfate-reducing bacteria isolated from oil fields

Citation: Magot M. 2005. Indigenous Microbial Communities in Oil Fields, p 21-34. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch2

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error