1887

Chapter 3 : Sulfate-Reducing Bacteria and Archaea

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Sulfate-Reducing Bacteria and Archaea, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap03-2.gif

Abstract:

Sulfate-reducing bacteria (SRB) and archaea are widespread in nature and have been found in virtually every anaerobic environment that has been investigated. They play an important role in the global sulfur cycle, and in marine sediments they can account for up to 50% of the total carbon mineralization process. The cellular morphology of SRB is highly diverse, and it is still used as an important taxonomic feature. Genus is one of the deepest-branching bacterial phyla and encompasses only SRB. In the process of anaerobic respiration, SRB reduce sulfate to sulfide in a complicated reaction involving the transfer of eight electrons. A wide range of organic acids (e.g., acetate, propionate, butyrate, pentanoate, and hexanoate) at concentrations up to 20mM have been found in oil reservoirs. Results from cultivation-dependent experiments for estimation of the total number of SRB in produced water show a considerable variation. The use of highly specific fluorescent antibodies and oligonucleotide probes directed against specific microbial groups, as well as the use of PCR technology and other molecular methods, has greatly increased one’s understanding of the diversity and dynamics of in situ natural microbial communities. The existence of a highly diverse community of sulfate-reducing prokaryotes in oil-bearing subsurface environments is supported both by isolation and cultivation of a large diversity of SRB from waters produced from oil reservoirs and by direct detection of SRB by cultivation-independent techniques.

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3

Key Concept Ranking

Bacteria and Archaea
1.2353783
Microbial Ecology
1.2333955
Desulfovibrio vulgaris
0.6940327
1.2353783
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic relationships of major lineages of sulfate-reducing prokaryotes (names in rectangles) to other organisms, as revealed by sequence analysis of 16SrRNAgenes. (Adapted from )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic tree for proteobacterial SRB, with emphasis on the family Desulfovibrionaceae. Numbers before branch points represent percentages of bootstrap resampling based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phylogenetic tree for proteobacterial SRB, with emphasis on the family Desulfobacteriaceae. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree for gram-positive SRB. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ ] with permission of Elsevier.)

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phylogenetic relationships of nonproteobacterial gram-negative thermophilic SRB with other bacterial groups. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ ] with permission of Elsevier.)

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Pathway for dissimilatory sulfate reduction in Desulfovibrio. H2ase, hydrogenase; cytc3, cytochrome c3; ATPS, ATP sulfurylase; PP, pyrophosphatase; APSR, APS reductase; LDH, lactate dehydrogenase; PFO, pyruvate-ferredoxin oxidoreductase; PTA, phosphotransacetylase; AK, acetate kinase. (Adapted from ], and )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Modified citric acid cycle in Desulfobacter postgatei. AcCoA, acetyl-CoA; Citr, citrate; Icitr, isocitrate; 2-OG, 2-oxoglutarate; SuCoA, succinyl- CoA; Su, succinate; Fu, fumarate; Ma, malate; OA, oxaloacetate; MQ, menaquinone; Fd, ferredoxin. (Reprinted from the Annual Review of Microbiology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

CODH pathway operative in Desulfotomaculum acetoxidans (A) and A. fulgidus (B). Acetyl-P, acetyl phosphate; AcCoA, acetyl-CoA; CH3-H4F, methyltetrahydrofolate; CH2=H4F, methylene-tetrahydrofolate; CH≡H4F, methenyl-tetrahydrofolate; CHO-H4F, formyl-tetrahydrofolate; [CO], CO bound to CODH; CH3- H4MPT, methyltetrahydromethanopterin; CH2=H4MPT, methylene-tetrahydromethanopterin; CH:H4MPT, methenyl-tetrahydromethanopterin; CHO-MFR, formyltetrahydromethanopterin. (Reprinted from the Annual Review of Microbiology [Thauer et al., 1989] with permission of the publisher.

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap3
1. Akagi, J. M. 1983. Reduction of bisulfite by the trithionate pathway by cell extracts from Desulfotomaculum nigrificans. Biochem. Biophys. Res. Comm. 117: 530 535.
2. Barth, T. 1991. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl. Geochem. 6: 1 15.
3. Barth, T.,, and M. Riis. 1992. Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem. 19: 455 482.
4. Bastin, E. S.,, F. E. Greer,, C. A. Merritt,, and G. Moulton. 1926. The presence of sulphate reducing bacteria in oil field waters. Science 63: 21 24.
5. Beeder, J.,, T. Torsvik,, and T. Lien. 1995. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164: 331 336.
6. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A.N. Perov,, A.D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69: 6143 6151.
7. Brugna, M.,, M. T. Giudici-Orticoni,, S. Spinelli,, K. Brown,, M. Tegoni,, and M. Bruschi. 1998. Kinetics and interaction studies between cytochrome c 3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough. Proteins 33: 590 600.
8. Bruschi, M.,, P. Bertrand,, C. More,, G. Leroy,, J. Bonicel,, J. Haladjian,, G. Chottard,, W. B. R. Pollock,, and G. Voordouw. 1992. Biochemical and spectroscopic characterization of the highmolecular- weight cytochrome-c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Biochemistry 31: 3281 3288.
9. Burggraf, S.,, H. W. Jannasch,, B. Nicolaus,, and K. O. Stetter. 1990. Archaeoglobus profundus sp. nov. represents a new species within the sulfatereducing Archaebacteria. Syst. Appl. Microbiol. 13: 24 28.
10. Castro, H.F.,, N.H. Williams, andA.Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31: 1 9.
11. Chen, L.,, J. Le Gall,, and A. V. Xavier. 1994. Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate reductase. Biochem. Biophys. Res. Comm. 203: 839 844.
12. Christensen, B.,, T. Torsvik,, and T. Lien. 1992. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58: 1244 1248.
13. Cord-Ruwisch, R.,, W. Kleinitz,, and F. Widdel. 1986. Sulfate-reducing bacteria in an oil field. Erdöl Erdgas Kohle 102: 281 289.
14. Devereux, R.,, S. H. He,, C. L. Doyle,, S. Orkland,, D. A. Stahl,, J. LeGall,, and W. B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172: 3609 3619.
15. Galushko, A. S.,, and E. P. Rozanova. 1991. Desulfobacterium cetonicum sp. nov., a sulfatereducing bacterium which oxidizes fatty acids and ketones. Microbiology (New York) 60: 742 746.
16. Haladjian, J.,, P. Bianco,, F. Guerlesquin,, and M. Bruschi. 1991. Kinetic studies of the electron exchange reaction between the octaheme cytochrome c3 (Mr-26000) and the hydrogenase from Desulfovibrio desulfuricans Norway. Biochem. Biophys. Res. Commun. 179: 605 610.
17. Hansen, T. A., 1993. Carbon metabolism of sulfatereducing bacteria, p. 21 40. In J. J. M. Odom, and R. Singleton (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.
18. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rossello-Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65: 999 1004.
19. Heidelberg, J. F.,, R. Seshadri,, S. A. Haveman,, C. L. Hemme,, I. T. Paulsen,, J. F. Kolonay,, J. A. Eisen,, N. Ward,, B. Methe,, L. M. Brinkac,, S. C. Daugherty,, R. T. Deboy,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, W. C. Nelson,, S. A. Sullivan,, D. Fouts,, D. H. Haft,, J. Selengut,, J. D. Peterson,, T. M. Davidsen,, N. Zafar,, L. Zhou,, D. Radune,, G. Dimitrov,, M. Hance,, K. Tran,, H. Khouri,, J. Gill,, T. R. Utterback,, T. V. Feldblyum,, J. D. Wall,, G. Voordouw,, and C. M. Fraser. 2004. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22: 554 559.
20. Henry, E. A.,, R. Devereux,, J. S. Maki,, C. C. Gilmour,, C. R. Woese,, L. Mandelco,, R. Schauder,, C. C. Remsen,, and R. Mitchell. 1994. Characterization of a newthermophilic sulfatereducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161: 62 69.
21. Huber, H.,, H. Jannasch,, R. Rachel,, T. Fuchs,, and K. O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated fromabyssal black smokers. Syst. Appl. Microbiol. 20: 374 380.
22. Itoh, T.,, K. Suzuki,, P. C. Sanchez,, and T. Nakase. 1999. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. Syst. Bacteriol. 49: 1157 1163.
23. Jeanthon, C.,, S. L’Haridon,, V. Cueff,, A. Banta,, A. L. Reysenbach,, and D. Prieur. 2002. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int. J. Syst. Evol. Microbiol. 52: 765 772.
24. Klein, M.,, M. Friedrich,, A. J. Roger,, P. Hugenholtz,, S. Fishbain,, H. Abicht,, L. L. Blackall,, D. A. Stahl,, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfatereducing prokaryotes. J. Bacteriol. 183: 6028 6035.
25. Klenk, H. P.,, R. A. Clayton,, J. F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleischmann,, J. Quackenbush,, N. H. Lee,, G. G. Sutton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, S. Peterson,, C. I. Reich,, L. K. McNeil,, J. H. Badger,, A. Glodek,, L. X. Zhou,, R. Overbeek,, J. D. Gocayne,, J. F. Weidman,, L. McDonald,, T. Utterback,, M. D. Cotton,, T. Spriggs,, P. Artiach,, B. P. Kaine,, S. M. Sykes,, P. W. Sadow,, K. P. D’Andrea,, C. Bowman,, C. Fujii,, S. A. Garland,, T. M. Mason,, G. J. Olsen,, C. M. Fraser,, H. O. Smith,, C. R. Woese,, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390: 364 370.
26. Kobayashi, K.,, E. Takahashi,, and M. Ishimoto. 1972. Biochemical studies on sulfate-reducing bacteria 0.11. Purification and some properties of sulfite reductase, desulfoviridin. J. Biochem. 72: 879 887.
27. Labes, A.,, and P. Schö nheit. 2001. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO 2 via a modified Embden-Meyerhof pathway and acetyl- CoA synthetase (ADP-forming). Arch. Microbiol. 176: 329 338.
28. Larsen, O.,, T. Lien,, and N. K. Birkeland. 2000. Characterization of the desulforubidin operons from Desulfobacter vibrioformis and Desulfobulbus rhabdoformis. FEMS Microbiol. Lett. 186: 41 46.
29. Larsen, O.,, T. Lien,, and N. K. Birkeland. 1999. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles 3: 63 70.
30. Larsen, O.,, T. Lien,, and N. K. Birkeland. 2001. A novel organization of the dissimilatory sulfite reductase operon of Thermodesulforhabdus norvegica verified by RT-PCR. FEMS Microbiol. Lett. 203: 81 85.
31. LeGall, J.,, and G. Fauque,. 1988. Dissimilatory reduction of sulfur compounds, p. 587 639. In A. J. B. Zehnder (ed.), Biology of Anaerobic Organisms. John Wiley, New York, N.Y.
32. Leu, J. Y.,, C. P. McGovern-Traa,, A. J. R. Porter,, and W. A. Hamilton. 1999. The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea. Lett. Appl. Microbiol. 29: 246 252.
33. Leu, J. Y.,, C. P. McGovern-Traa,, A. J. R. Porter,, W. J. Harris,, and W. A. Hamilton. 1998. Identification and phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4: 165 174.
34. L’Haridon, S.,, A. L. Reysenbach,, P. Glenat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil-reservoir. Nature 377: 223 224.
35. Lien, T.,, and J. Beeder. 1997. Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 1124 1128.
36. Lien, T.,, M. Madsen,, I. H. Steen,, and K. Gjerdevik. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48: 469 474.
37. Madigen, M. T.,, J. M. Martinko,, and J. Parker. 2003. Brock Biology of Microorganisms, 10th ed. Pearson Education, Inc., Upper Saddle River, N.J.
38. Magot, M.,, P. Caumette,, J. M. Desperrier,, R. Matheron,, C. Dauga,, F. Grimont,, and L. Carreau. 1992. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42: 398 403.
39. Magot, M.,, O. Basso,, C. Tardy-Jacquenod,, and P. Caumette. 2004. Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int. J. Syst. Evol. Microbiol. 54: 1693 1697.
40. Magot, M.,, B. Ollivier,, and B. K. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77: 103 116.
41. Miranda-Tello, E.,, M. L. Fardeau,, L. Fernandez,, F. Ramirez,, J. L. Cayol,, P. Thomas,, J. L. Garcia,, and B. Ollivier. 2003. Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9: 97 103.
42. Moreno, C.,, R. Franco,, I. Moura,, J. Le Gall,, and J. J. Moura. 1993. Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus. Eur. J. Biochem. 217: 981 989.
43. Mori, K.,, H. Kim,, T. Kakegawa,, and S. Hanada. 2003. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7: 283 290.
44. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 1999. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172: 287 294.
45. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 2001. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J. Bacteriol. 183: 752 757.
46. Nazina, T.N.,, A.E. Ivanova,, L. P. Kanchaveli,, and E. P. Rozanova. 1988. A new spore-forming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (New York) 57: 659 663.
47. Nazina, T. N.,, and E. P. Rozanova. 1978. Thermophilic sulfate-reducing bacteria from oil strata. Microbiology (New York) 47: 113 118.
48. Nazina, T. N.,, E. P. Rozanova,, and S. I. Kuznetsov. 1985. Microbial oil transformation processes accompanied by methane and hydrogensulfide formation. Geomicrobiol. J. 4: 103 130.
49. Nga, D. P.,, D. T. C. Ha,, L. T. Hien,, and H. Stan-Lotter. 1996. Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2: 385 392.
50. Nilsen, R. K.,, J. Beeder,, T. Thorstenson,, and T. Torsvik. 1996a. Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62: 1793 1798.
51. Nilsen, R. K.,, T. Torsvik,, and T. Lien. 1996b. Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46: 397 402.
52. Odom, J. M.,, and H. D. Peck. 1981. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio spp. FEMS Microbiol. Lett. 12: 47 50.
53. Ogata, M.,, and T. Yagi. 1986. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F. J. Biochem. 100: 311 318.
54. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700 711.
55. Pereira, I. A. C.,, C. V. Romão,, A. V. Xavier,, J. LeGall,, and M. Teixeira. 1998. Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp. J. Biol. Inorg. Chem. 3: 494 498.
56. Pollock, W. B.,, M. Loutfi,, M. Bruschi,, B. J. Rapp- Giles,, J. D. Wall,, and G. Voordouw. 1991. Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 173: 220 228.
57. Rabus, R.,, T. Hansen,, and F. Widdel. 2000. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In M. Dworkin (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.3. Springer-Verlag, New York, N.Y. http://141.150.157.117:8080/ prokPUB/chaprender/jsp/showchap.jsp?chapnum =274&initsec=04_00. [Online.]
58. Rees, G. N.,, G. S. Grassia,, A. J. Sheehy,, P. P. Dwivedi,, and B. K. C. Patel. 1995. Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45: 85 89.
59. Rosnes, J. T.,, A. Graue,, and T. Lien. 1991a. Activity of sulfate-reducing bacteria under simulated reservoir conditions. (SPE 19429.) In Proceedings of the SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
60. Rosnes, J. T.,, T. Torsvik,, and T. Lien. 1991. Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57: 2302 2307.
61. Rossi, M.,, W. B. R. Pollock,, M. W. Reij,, R. G. Keon,, R. Fu,, and G. Voordouw. 1993. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175: 4699 4711.
62. Rozanova, E. P.,, and A. I. Khudiakova. 1974. A new non-spore forming thermophilic organism, reducing sulfates, Desulfovibrio thermophilus nov. sp. Microbiology (New York) 43: 908 912.
63. Rozanova, E. P.,, and T. N. Nazina. 1979. Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata of Apsheron and western Siberia. Microbiology (New York) 48: 907 911.
64. Rozanova, E. P.,, T. N. Nazina,, and A. S. Galushko. 1988. Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (New York) 57: 514 520.
65. Rozanova, E. P.,, T. P. Tourova,, T. V. Kolganova,, A. M. Lysenko,, L. L. Mityushina,, S. K. Yusupov,, and S. S. Belyaev. 2001. Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology (New York) 70: 466 471.
66. Sonne-Hansen, J.,, and B. K. Ahring. 1999. Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst. Appl. Microbiol. 22: 559 564.
67. Stackebrandt, E.,, C. Sproer,, F. A. Rainey,, J. Burghardt,, O. Pauker,, and H. Hippe. 1997. Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47: 1134 1139.
68. Stahl, D. A.,, S. Fishbain,, M. Klein,, B. J. Baker,, and M. Wagner. 2002. Origins and diversification of sulfate-respiring microorganisms. Antonie Leeuwenhoek 81: 189 195.
69. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov., a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 172 173.
70. Stetter, K. O.,, R. Huber,, E. Blochl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic Archaea are thriving in deep North-Sea and Alaskan oil reservoirs. Nature 365: 743 745.
71. Stetter, K. O.,, G. Lauerer,, M. Thomm,, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236: 822 824.
72. Suh, B.,, and J. M. Akagi. 1966. Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans. J. Bacteriol. 91: 2281 2285.
73. Tardy-Jacquenod, C.,, P. Caumette,, R. Matheron,, C. Lanau,, O. Arnauld,, and M. Magot. 1996a. Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42: 259 266.
74. Tardy-Jacquenod, C.,, M. Magot,, F. Laigret,, M. Kaghad,, B. K. Patel,, J. Guezennec,, R. Matheron,, and P. Caumette. 1996. Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710 715.
75. Tardy-Jacquenod, C.,, M. Magot,, B. K. C. Patel,, R. Matheron,, and P. Caumette. 1998. Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48: 333 338.
76. Thauer, R. K.,, and W. Badziong,. 1980. Respiration with sulfate as electron acceptor, p. 65–85. In G. J. Knowles (ed.), Diversity of Bacterial Respiratory Systems, vol. 2. CRC Press, Inc., Boca Raton, Fla.
77. Thauer, R. K.,, D. Mö llerzinkhan,, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotropic bacteria. Annu. Rev. Microbiol. 43: 43 67.
78. Trudinger, P. A.,, and R. E. Loughlin,. 1981. Metabolism of simple sulfur compounds, p. 165 256. In A. Neuberger, and L. L. M. van Deenen (ed.), Comprehensive Biochemistry, vol. 19a. Elsevier, Amsterdam, The Netherlands.
79. Trüper, H. G. 2003. Valid publication of the genus name Thermodesulfobacterium and the species names Thermodesulfobacterium commune (Zeikus et al. 1983) and Thermodesulfobacterium thermophilum (ex Desulfovibrio thermophilus Rozanova and Khudiakova 1974). Opinion 71. Int. J. Syst. Evol. Microbiol. 53: 927 927.
80. Voordouw, G. 1995. The genus Desulfovibrio: the centennial. Appl. Environ. Microbiol. 61: 2813 2819.
81. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623 1629.
82. Voordouw, G.,, Y. Shen,, C. S. Harrington,, A. J. Telang,, T. R. Jack,, and D. W. S. Westlake. 1993. Quantitative reverse sample genome probing of microbial communities and its application to oil-field production waters. Appl. Environ. Microbiol. 59: 4101 4114.
83. Voordouw, G.,, J. K. Voordouw,, T. R. Jack,, J. Foght,, P. M. Fedorak,, and D. W. S. Westlake. 1992. Identification of distinct communities of sulfate-reducing bacteria in oil-fields by reverse sample genome probing. Appl. Environ. Microbiol. 58: 3542 3552.
84. Voordouw, G.,, J. K. Voordouw,, R. R. Karkhoffschweizer,, P. M. Fedorak,, and D. W. S. Westlake. 1991. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfatereducing bacteria in oil field samples. Appl. Environ. Microbiol. 57: 3070 3078.
85. White, D. 2000. The Physiology and Biochemistry of Prokaryotes, 2nd ed. Oxford University Press, Inc., New York, N.Y.
86. Widdel, F., 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, p. 469 585. In A. J. B. Zehnder (ed.), Biology of Anaerobic Organisms. John Wiley, New York, N.Y.
87. Widdel, F.,, and F. Bak,. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 3353 3378. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes: A Handbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
88. Widdel, F.,, and T. A. Hansen,. 1992. The dissimilatory sulfate- and sulfur-reducing bacteria, p. 583 624. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes:AHandbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
89. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51: 221 271.
90. Woese, C. R.,, L. Achenbach,, P. Rouviere,, and L. Mandelco. 1991. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14: 364 371.
91. Zeikus, J. G.,, M. A. Dawson,, T. E. Thompson,, K. Ingvorsen,, and E. C. Hatchikian. 1983. Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129: 1159 1169.

Tables

Generic image for table
TABLE 1

Characteristics of some representative genera of sulfate-reducing prokaryotes

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Generic image for table
TABLE 2

Sulfate-reducing prokaryotes recovered from oil field production waters

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error