1887

Chapter 3 : Sulfate-Reducing Bacteria and Archaea

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Sulfate-Reducing Bacteria and Archaea, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap03-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap03-2.gif

Abstract:

Sulfate-reducing bacteria (SRB) and archaea are widespread in nature and have been found in virtually every anaerobic environment that has been investigated. They play an important role in the global sulfur cycle, and in marine sediments they can account for up to 50% of the total carbon mineralization process. The cellular morphology of SRB is highly diverse, and it is still used as an important taxonomic feature. Genus is one of the deepest-branching bacterial phyla and encompasses only SRB. In the process of anaerobic respiration, SRB reduce sulfate to sulfide in a complicated reaction involving the transfer of eight electrons. A wide range of organic acids (e.g., acetate, propionate, butyrate, pentanoate, and hexanoate) at concentrations up to 20mM have been found in oil reservoirs. Results from cultivation-dependent experiments for estimation of the total number of SRB in produced water show a considerable variation. The use of highly specific fluorescent antibodies and oligonucleotide probes directed against specific microbial groups, as well as the use of PCR technology and other molecular methods, has greatly increased one’s understanding of the diversity and dynamics of in situ natural microbial communities. The existence of a highly diverse community of sulfate-reducing prokaryotes in oil-bearing subsurface environments is supported both by isolation and cultivation of a large diversity of SRB from waters produced from oil reservoirs and by direct detection of SRB by cultivation-independent techniques.

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3

Key Concept Ranking

Bacteria and Archaea
1.2353783
Microbial Ecology
1.2333955
Desulfovibrio vulgaris
0.6940327
1.2353783
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic relationships of major lineages of sulfate-reducing prokaryotes (names in rectangles) to other organisms, as revealed by sequence analysis of 16SrRNAgenes. (Adapted from )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic tree for proteobacterial SRB, with emphasis on the family Desulfovibrionaceae. Numbers before branch points represent percentages of bootstrap resampling based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Phylogenetic tree for proteobacterial SRB, with emphasis on the family Desulfobacteriaceae. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Phylogenetic tree for gram-positive SRB. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ ] with permission of Elsevier.)

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Phylogenetic relationships of nonproteobacterial gram-negative thermophilic SRB with other bacterial groups. Numbers before branch points represent percentages of bootstrap resampling, based on 1,000 trees. Bootstrap values below 50% are not shown. (Reprinted from FEMS Microbiology Ecology [ ] with permission of Elsevier.)

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Pathway for dissimilatory sulfate reduction in Desulfovibrio. H2ase, hydrogenase; cytc3, cytochrome c3; ATPS, ATP sulfurylase; PP, pyrophosphatase; APSR, APS reductase; LDH, lactate dehydrogenase; PFO, pyruvate-ferredoxin oxidoreductase; PTA, phosphotransacetylase; AK, acetate kinase. (Adapted from ], and )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Modified citric acid cycle in Desulfobacter postgatei. AcCoA, acetyl-CoA; Citr, citrate; Icitr, isocitrate; 2-OG, 2-oxoglutarate; SuCoA, succinyl- CoA; Su, succinate; Fu, fumarate; Ma, malate; OA, oxaloacetate; MQ, menaquinone; Fd, ferredoxin. (Reprinted from the Annual Review of Microbiology [ )

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

CODH pathway operative in Desulfotomaculum acetoxidans (A) and A. fulgidus (B). Acetyl-P, acetyl phosphate; AcCoA, acetyl-CoA; CH3-H4F, methyltetrahydrofolate; CH2=H4F, methylene-tetrahydrofolate; CH≡H4F, methenyl-tetrahydrofolate; CHO-H4F, formyl-tetrahydrofolate; [CO], CO bound to CODH; CH3- H4MPT, methyltetrahydromethanopterin; CH2=H4MPT, methylene-tetrahydromethanopterin; CH:H4MPT, methenyl-tetrahydromethanopterin; CHO-MFR, formyltetrahydromethanopterin. (Reprinted from the Annual Review of Microbiology [Thauer et al., 1989] with permission of the publisher.

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap3
1. Akagi, J. M. 1983. Reduction of bisulfite by the trithionate pathway by cell extracts from Desulfotomaculum nigrificans. Biochem. Biophys. Res. Comm. 117:530535.
2. Barth, T. 1991. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl. Geochem. 6:115.
3. Barth, T.,, and M. Riis. 1992. Interactions between organic acid anions in formation waters and reservoir mineral phases. Org. Geochem. 19:455482.
4. Bastin, E. S.,, F. E. Greer,, C. A. Merritt,, and G. Moulton. 1926. The presence of sulphate reducing bacteria in oil field waters. Science 63:2124.
5. Beeder, J.,, T. Torsvik,, and T. Lien. 1995. Thermodesulforhabdus norvegicus gen. nov., sp. nov., a novel thermophilic sulfate-reducing bacterium from oil field water. Arch. Microbiol. 164:331336.
6. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A.N. Perov,, A.D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69:61436151.
7. Brugna, M.,, M. T. Giudici-Orticoni,, S. Spinelli,, K. Brown,, M. Tegoni,, and M. Bruschi. 1998. Kinetics and interaction studies between cytochrome c3 and Fe-only hydrogenase from Desulfovibrio vulgaris Hildenborough. Proteins 33:590600.
8. Bruschi, M.,, P. Bertrand,, C. More,, G. Leroy,, J. Bonicel,, J. Haladjian,, G. Chottard,, W. B. R. Pollock,, and G. Voordouw. 1992. Biochemical and spectroscopic characterization of the highmolecular- weight cytochrome-c from Desulfovibrio vulgaris Hildenborough expressed in Desulfovibrio desulfuricans G200. Biochemistry 31: 32813288.
9. Burggraf, S.,, H. W. Jannasch,, B. Nicolaus,, and K. O. Stetter. 1990. Archaeoglobus profundus sp. nov. represents a new species within the sulfatereducing Archaebacteria. Syst. Appl. Microbiol. 13: 2428.
10. Castro, H.F.,, N.H. Williams, andA.Ogram. 2000. Phylogeny of sulfate-reducing bacteria. FEMS Microbiol. Ecol. 31:19.
11. Chen, L.,, J. Le Gall,, and A. V. Xavier. 1994. Purification, characterization and properties of an NADH oxidase from Desulfovibrio vulgaris (Hildenborough) and its coupling to adenylyl phosphosulfate reductase. Biochem. Biophys. Res. Comm. 203:839844.
12. Christensen, B.,, T. Torsvik,, and T. Lien. 1992. Immunomagnetically captured thermophilic sulfate-reducing bacteria from North Sea oil field waters. Appl. Environ. Microbiol. 58:12441248.
13. Cord-Ruwisch, R.,, W. Kleinitz,, and F. Widdel. 1986. Sulfate-reducing bacteria in an oil field. Erdöl Erdgas Kohle 102:281289.
14. Devereux, R.,, S. H. He,, C. L. Doyle,, S. Orkland,, D. A. Stahl,, J. LeGall,, and W. B. Whitman. 1990. Diversity and origin of Desulfovibrio species: phylogenetic definition of a family. J. Bacteriol. 172:36093619.
15. Galushko, A. S.,, and E. P. Rozanova. 1991. Desulfobacterium cetonicum sp. nov., a sulfatereducing bacterium which oxidizes fatty acids and ketones. Microbiology (New York) 60:742746.
16. Haladjian, J.,, P. Bianco,, F. Guerlesquin,, and M. Bruschi. 1991. Kinetic studies of the electron exchange reaction between the octaheme cytochrome c3 (Mr-26000) and the hydrogenase from Desulfovibrio desulfuricans Norway. Biochem. Biophys. Res. Commun. 179:605610.
17. Hansen, T. A., 1993. Carbon metabolism of sulfatereducing bacteria, p. 2140. In J. J. M. Odom, and R. Singleton (ed.), The Sulfate-Reducing Bacteria: Contemporary Perspectives. Springer-Verlag, New York, N.Y.
18. Harms, G.,, K. Zengler,, R. Rabus,, F. Aeckersberg,, D. Minz,, R. Rossello-Mora,, and F. Widdel. 1999. Anaerobic oxidation of o-xylene, m-xylene, and homologous alkylbenzenes by new types of sulfate-reducing bacteria. Appl. Environ. Microbiol. 65:9991004.
19. Heidelberg, J. F.,, R. Seshadri,, S. A. Haveman,, C. L. Hemme,, I. T. Paulsen,, J. F. Kolonay,, J. A. Eisen,, N. Ward,, B. Methe,, L. M. Brinkac,, S. C. Daugherty,, R. T. Deboy,, R. J. Dodson,, A. S. Durkin,, R. Madupu,, W. C. Nelson,, S. A. Sullivan,, D. Fouts,, D. H. Haft,, J. Selengut,, J. D. Peterson,, T. M. Davidsen,, N. Zafar,, L. Zhou,, D. Radune,, G. Dimitrov,, M. Hance,, K. Tran,, H. Khouri,, J. Gill,, T. R. Utterback,, T. V. Feldblyum,, J. D. Wall,, G. Voordouw,, and C. M. Fraser. 2004. The genome sequence of the anaerobic, sulfate-reducing bacterium Desulfovibrio vulgaris Hildenborough. Nat. Biotechnol. 22:554559.
20. Henry, E. A.,, R. Devereux,, J. S. Maki,, C. C. Gilmour,, C. R. Woese,, L. Mandelco,, R. Schauder,, C. C. Remsen,, and R. Mitchell. 1994.Characterization of a newthermophilic sulfatereducing bacterium Thermodesulfovibrio yellowstonii, gen. nov. and sp. nov.: its phylogenetic relationship to Thermodesulfobacterium commune and their origins deep within the bacterial domain. Arch. Microbiol. 161:6269.
21. Huber, H.,, H. Jannasch,, R. Rachel,, T. Fuchs,, and K. O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated fromabyssal black smokers. Syst. Appl. Microbiol. 20:374380.
22. Itoh, T.,, K. Suzuki,, P. C. Sanchez,, and T. Nakase. 1999. Caldivirga maquilingensis gen. nov., sp. nov., a new genus of rod-shaped crenarchaeote isolated from a hot spring in the Philippines. Int. J. Syst. Bacteriol. 49:11571163.
23. Jeanthon, C.,, S. L’Haridon,, V. Cueff,, A. Banta,, A. L. Reysenbach,, and D. Prieur. 2002. Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int. J. Syst. Evol. Microbiol. 52:765772.
24. Klein, M.,, M. Friedrich,, A. J. Roger,, P. Hugenholtz,, S. Fishbain,, H. Abicht,, L. L. Blackall,, D. A. Stahl,, and M. Wagner. 2001. Multiple lateral transfers of dissimilatory sulfite reductase genes between major lineages of sulfatereducing prokaryotes. J. Bacteriol. 183:60286035.
25. Klenk, H. P.,, R. A. Clayton,, J. F. Tomb,, O. White,, K. E. Nelson,, K. A. Ketchum,, R. J. Dodson,, M. Gwinn,, E. K. Hickey,, J. D. Peterson,, D. L. Richardson,, A. R. Kerlavage,, D. E. Graham,, N. C. Kyrpides,, R. D. Fleischmann,, J. Quackenbush,, N. H. Lee,, G. G. Sutton,, S. Gill,, E. F. Kirkness,, B. A. Dougherty,, K. McKenney,, M. D. Adams,, B. Loftus,, S. Peterson,, C. I. Reich,, L. K. McNeil,, J. H. Badger,, A. Glodek,, L. X. Zhou,, R. Overbeek,, J. D. Gocayne,, J. F. Weidman,, L. McDonald,, T. Utterback,, M. D. Cotton,, T. Spriggs,, P. Artiach,, B. P. Kaine,, S. M. Sykes,, P. W. Sadow,, K. P. D’Andrea,, C. Bowman,, C. Fujii,, S. A. Garland,, T. M. Mason,, G. J. Olsen,, C. M. Fraser,, H. O. Smith,, C. R. Woese,, and J. C. Venter. 1997. The complete genome sequence of the hyperthermophilic, sulphate-reducing archaeon Archaeoglobus fulgidus. Nature 390:364370.
26. Kobayashi, K.,, E. Takahashi,, and M. Ishimoto. 1972. Biochemical studies on sulfate-reducing bacteria 0.11. Purification and some properties of sulfite reductase, desulfoviridin. J. Biochem. 72:879887.
27. Labes, A.,, and P. Schö nheit. 2001. Sugar utilization in the hyperthermophilic, sulfate-reducing archaeon Archaeoglobus fulgidus strain 7324: starch degradation to acetate and CO2 via a modified Embden-Meyerhof pathway and acetyl- CoA synthetase (ADP-forming). Arch. Microbiol. 176:329338.
28. Larsen, O.,, T. Lien,, and N. K. Birkeland. 2000. Characterization of the desulforubidin operons from Desulfobacter vibrioformis and Desulfobulbus rhabdoformis. FEMS Microbiol. Lett. 186:4146.
29. Larsen, O.,, T. Lien,, and N. K. Birkeland. 1999. Dissimilatory sulfite reductase from Archaeoglobus profundus and Desulfotomaculum thermocisternum: phylogenetic and structural implications from gene sequences. Extremophiles 3:6370.
30. Larsen, O.,, T. Lien,, and N. K. Birkeland. 2001. A novel organization of the dissimilatory sulfite reductase operon of Thermodesulforhabdus norvegica verified by RT-PCR. FEMS Microbiol. Lett. 203:8185.
31. LeGall, J.,, and G. Fauque,. 1988. Dissimilatory reduction of sulfur compounds, p. 587639. In A. J. B. Zehnder (ed.), Biology of Anaerobic Organisms. John Wiley, New York, N.Y.
32. Leu, J. Y.,, C. P. McGovern-Traa,, A. J. R. Porter,, and W. A. Hamilton. 1999. The same species of sulphate-reducing Desulfomicrobium occur in different oil field environments in the North Sea. Lett. Appl. Microbiol. 29:246252.
33. Leu, J. Y.,, C. P. McGovern-Traa,, A. J. R. Porter,, W. J. Harris,, and W. A. Hamilton. 1998. Identification and phylogenetic analysis of thermophilic sulfate-reducing bacteria in oil field samples by 16S rDNA gene cloning and sequencing. Anaerobe 4:165174.
34. L’Haridon, S.,, A. L. Reysenbach,, P. Glenat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil-reservoir. Nature 377:223224.
35. Lien, T.,, and J. Beeder. 1997. Desulfobacter vibrioformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 47: 11241128.
36. Lien, T.,, M. Madsen,, I. H. Steen,, and K. Gjerdevik. 1998. Desulfobulbus rhabdoformis sp. nov., a sulfate reducer from a water-oil separation system. Int. J. Syst. Bacteriol. 48:469474.
37. Madigen, M. T.,, J. M. Martinko,, and J. Parker. 2003. Brock Biology of Microorganisms, 10th ed. Pearson Education, Inc., Upper Saddle River, N.J.
38. Magot, M.,, P. Caumette,, J. M. Desperrier,, R. Matheron,, C. Dauga,, F. Grimont,, and L. Carreau. 1992. Desulfovibrio longus sp. nov., a sulfate-reducing bacterium isolated from an oil-producing well. Int. J. Syst. Bacteriol. 42: 398403.
39. Magot, M.,, O. Basso,, C. Tardy-Jacquenod,, and P. Caumette. 2004. Desulfovibrio bastinii sp. nov. and Desulfovibrio gracilis sp. nov., moderately halophilic, sulfate-reducing bacteria isolated from deep subsurface oilfield water. Int. J. Syst. Evol. Microbiol. 54:16931697.
40. Magot, M.,, B. Ollivier,, and B. K. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103116.
41. Miranda-Tello, E.,, M. L. Fardeau,, L. Fernandez,, F. Ramirez,, J. L. Cayol,, P. Thomas,, J. L. Garcia,, and B. Ollivier. 2003. Desulfovibrio capillatus sp. nov., a novel sulfate-reducing bacterium isolated from an oil field separator located in the Gulf of Mexico. Anaerobe 9:97103.
42. Moreno, C.,, R. Franco,, I. Moura,, J. Le Gall,, and J. J. Moura. 1993. Voltammetric studies of the catalytic electron-transfer process between the Desulfovibrio gigas hydrogenase and small proteins isolated from the same genus. Eur. J. Biochem. 217:981989.
43. Mori, K.,, H. Kim,, T. Kakegawa,, and S. Hanada. 2003. A novel lineage of sulfate-reducing microorganisms: Thermodesulfobiaceae fam. nov., Thermodesulfobium narugense, gen. nov., sp. nov., a new thermophilic isolate from a hot spring. Extremophiles 7:283290.
44. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 1999. Anaerobic degradation of m-cresol by Desulfobacterium cetonicum is initiated by formation of 3-hydroxybenzylsuccinate. Arch. Microbiol. 172:287294.
45. Mü ller, J. A.,, A. S. Galushko,, A. Kappler,, and B. Schink. 2001. Initiation of anaerobic degradation of p-cresol by formation of 4-hydroxybenzylsuccinate in Desulfobacterium cetonicum. J. Bacteriol. 183:752757.
46. Nazina, T.N.,, A.E. Ivanova,, L. P. Kanchaveli,, and E. P. Rozanova. 1988. A new spore-forming thermophilic methylotrophic sulfate-reducing bacterium, Desulfotomaculum kuznetsovii sp. nov. Microbiology (New York) 57:659663.
47. Nazina, T. N.,, and E. P. Rozanova. 1978. Thermophilic sulfate-reducing bacteria from oil strata. Microbiology (New York) 47:113118.
48. Nazina, T. N.,, E. P. Rozanova,, and S. I. Kuznetsov. 1985. Microbial oil transformation processes accompanied by methane and hydrogensulfide formation. Geomicrobiol. J. 4:103130.
49. Nga, D. P.,, D. T. C. Ha,, L. T. Hien,, and H. Stan-Lotter. 1996. Desulfovibrio vietnamensis sp. nov., a halophilic sulfate-reducing bacterium from Vietnamese oil fields. Anaerobe 2:385392.
50. Nilsen, R. K.,, J. Beeder,, T. Thorstenson,, and T. Torsvik. 1996a. Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62:17931798.
51. Nilsen, R. K.,, T. Torsvik,, and T. Lien. 1996b. Desulfotomaculum thermocisternum sp. nov., a sulfate reducer isolated from a hot North Sea oil reservoir. Int. J. Syst. Bacteriol. 46:397402.
52. Odom, J. M.,, and H. D. Peck. 1981. Hydrogen cycling as a general mechanism for energy coupling in the sulfate-reducing bacteria, Desulfovibrio spp. FEMS Microbiol. Lett. 12:4750.
53. Ogata, M.,, and T. Yagi. 1986. Pyruvate dehydrogenase and the path of lactate degradation in Desulfovibrio vulgaris Miyazaki F. J. Biochem. 100:311318.
54. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66:700711.
55. Pereira, I. A. C.,, C. V. Romão,, A. V. Xavier,, J. LeGall,, and M. Teixeira. 1998. Electron transfer between hydrogenases and mono- and multiheme cytochromes in Desulfovibrio ssp. J. Biol. Inorg. Chem. 3:494498.
56. Pollock, W. B.,, M. Loutfi,, M. Bruschi,, B. J. Rapp- Giles,, J. D. Wall,, and G. Voordouw. 1991. Cloning, sequencing, and expression of the gene encoding the high-molecular-weight cytochrome c from Desulfovibrio vulgaris Hildenborough. J. Bacteriol. 173:220228.
57. Rabus, R.,, T. Hansen,, and F. Widdel. 2000. Dissimilatory sulfate- and sulfur-reducing prokaryotes. In M. Dworkin (ed.), The Prokaryotes: An Evolving Electronic Resource for the Microbiological Community, 3rd ed., release 3.3. Springer-Verlag, New York, N.Y. http://141.150.157.117:8080/ prokPUB/chaprender/jsp/showchap.jsp?chapnum =274&initsec=04_00. [Online.]
58. Rees, G. N.,, G. S. Grassia,, A. J. Sheehy,, P. P. Dwivedi,, and B. K. C. Patel. 1995. Desulfacinum infernum gen. nov., sp. nov., a thermophilic sulfate-reducing bacterium from a petroleum reservoir. Int. J. Syst. Bacteriol. 45:8589.
59. Rosnes, J. T.,, A. Graue,, and T. Lien. 1991a. Activity of sulfate-reducing bacteria under simulated reservoir conditions. (SPE 19429.) In Proceedings of the SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
60. Rosnes, J. T.,, T. Torsvik,, and T. Lien. 1991. Spore-forming thermophilic sulfate-reducing bacteria isolated from North Sea oil field waters. Appl. Environ. Microbiol. 57:23022307.
61. Rossi, M.,, W. B. R. Pollock,, M. W. Reij,, R. G. Keon,, R. Fu,, and G. Voordouw. 1993. The hmc operon of Desulfovibrio vulgaris subsp. vulgaris Hildenborough encodes a potential transmembrane redox protein complex. J. Bacteriol. 175: 46994711.
62. Rozanova, E. P.,, and A. I. Khudiakova. 1974. A new non-spore forming thermophilic organism, reducing sulfates, Desulfovibrio thermophilus nov. sp. Microbiology (New York) 43:908912.
63. Rozanova, E. P.,, and T. N. Nazina. 1979. Occurrence of thermophilic sulfate-reducing bacteria in oil-bearing strata of Apsheron and western Siberia. Microbiology (New York) 48:907911.
64. Rozanova, E. P.,, T. N. Nazina,, and A. S. Galushko. 1988. Isolation of a new genus of sulfate-reducing bacteria and description of a new species of this genus, Desulfomicrobium apsheronum gen. nov., sp. nov. Microbiology (New York) 57:514520.
65. Rozanova, E. P.,, T. P. Tourova,, T. V. Kolganova,, A. M. Lysenko,, L. L. Mityushina,, S. K. Yusupov,, and S. S. Belyaev. 2001. Desulfacinum subterraneum sp. nov., a new thermophilic sulfate-reducing bacterium isolated from a high-temperature oil field. Microbiology (New York) 70:466471.
66. Sonne-Hansen, J.,, and B. K. Ahring. 1999. Thermodesulfobacterium hveragerdense sp. nov., and Thermodesulfovibrio islandicus sp. nov., two thermophilic sulfate reducing bacteria isolated from a Icelandic hot spring. Syst. Appl. Microbiol. 22:559564.
67. Stackebrandt, E.,, C. Sproer,, F. A. Rainey,, J. Burghardt,, O. Pauker,, and H. Hippe. 1997. Phylogenetic analysis of the genus Desulfotomaculum: evidence for the misclassification of Desulfotomaculum guttoideum and description of Desulfotomaculum orientis as Desulfosporosinus orientis gen. nov., comb. nov. Int. J. Syst. Bacteriol. 47:11341139.
68. Stahl, D. A.,, S. Fishbain,, M. Klein,, B. J. Baker,, and M. Wagner. 2002. Origins and diversification of sulfate-respiring microorganisms. Antonie Leeuwenhoek 81:189195.
69. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov., a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 172173.
70. Stetter, K. O.,, R. Huber,, E. Blochl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic Archaea are thriving in deep North-Sea and Alaskan oil reservoirs. Nature 365:743745.
71. Stetter, K. O.,, G. Lauerer,, M. Thomm,, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822824.
72. Suh, B.,, and J. M. Akagi. 1966. Pyruvate-carbon dioxide exchange reaction of Desulfovibrio desulfuricans. J. Bacteriol. 91:22812285.
73. Tardy-Jacquenod, C.,, P. Caumette,, R. Matheron,, C. Lanau,, O. Arnauld,, and M. Magot. 1996a. Characterization of sulfate-reducing bacteria isolated from oil-field waters. Can. J. Microbiol. 42:259266.
74. Tardy-Jacquenod, C.,, M. Magot,, F. Laigret,, M. Kaghad,, B. K. Patel,, J. Guezennec,, R. Matheron,, and P. Caumette. 1996. Desulfovibrio gabonensis sp. nov., a new moderately halophilic sulfate-reducing bacterium isolated from an oil pipeline. Int. J. Syst. Bacteriol. 46: 710715.
75. Tardy-Jacquenod, C.,, M. Magot,, B. K. C. Patel,, R. Matheron,, and P. Caumette. 1998. Desulfotomaculum halophilum sp. nov., a halophilic sulfate-reducing bacterium isolated from oil production facilities. Int. J. Syst. Bacteriol. 48:333338.
76. Thauer, R. K.,, and W. Badziong,. 1980. Respiration with sulfate as electron acceptor, p. 65–85. In G. J. Knowles (ed.), Diversity of Bacterial Respiratory Systems, vol. 2. CRC Press, Inc., Boca Raton, Fla.
77. Thauer, R. K.,, D. Mö llerzinkhan,, and A. M. Spormann. 1989. Biochemistry of acetate catabolism in anaerobic chemotropic bacteria. Annu. Rev. Microbiol. 43:4367.
78. Trudinger, P. A.,, and R. E. Loughlin,. 1981. Metabolism of simple sulfur compounds, p. 165256. In A. Neuberger, and L. L. M. van Deenen (ed.), Comprehensive Biochemistry, vol. 19a. Elsevier, Amsterdam, The Netherlands.
79. Trüper, H. G. 2003. Valid publication of the genus name Thermodesulfobacterium and the species names Thermodesulfobacterium commune (Zeikus et al. 1983) and Thermodesulfobacterium thermophilum (ex Desulfovibrio thermophilus Rozanova and Khudiakova 1974). Opinion 71. Int. J. Syst. Evol. Microbiol. 53:927927.
80. Voordouw, G. 1995. The genus Desulfovibrio: the centennial. Appl. Environ. Microbiol. 61:28132819.
81. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:16231629.
82. Voordouw, G.,, Y. Shen,, C. S. Harrington,, A. J. Telang,, T. R. Jack,, and D. W. S. Westlake. 1993. Quantitative reverse sample genome probing of microbial communities and its application to oil-field production waters. Appl. Environ. Microbiol. 59:41014114.
83. Voordouw, G.,, J. K. Voordouw,, T. R. Jack,, J. Foght,, P. M. Fedorak,, and D. W. S. Westlake. 1992. Identification of distinct communities of sulfate-reducing bacteria in oil-fields by reverse sample genome probing. Appl. Environ. Microbiol. 58:35423552.
84. Voordouw, G.,, J. K. Voordouw,, R. R. Karkhoffschweizer,, P. M. Fedorak,, and D. W. S. Westlake. 1991. Reverse sample genome probing, a new technique for identification of bacteria in environmental samples by DNA hybridization, and its application to the identification of sulfatereducing bacteria in oil field samples. Appl. Environ. Microbiol. 57:30703078.
85. White, D. 2000. The Physiology and Biochemistry of Prokaryotes, 2nd ed. Oxford University Press, Inc., New York, N.Y.
86. Widdel, F., 1988. Microbiology and ecology of sulfate- and sulfur-reducing bacteria, p. 469585. In A. J. B. Zehnder (ed.), Biology of Anaerobic Organisms. John Wiley, New York, N.Y.
87. Widdel, F.,, and F. Bak,. 1992. Gram-negative mesophilic sulfate-reducing bacteria, p. 33533378. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes: A Handbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
88. Widdel, F.,, and T. A. Hansen,. 1992. The dissimilatory sulfate- and sulfur-reducing bacteria, p. 583624. In A. Balows,, H. G. Trüper,, M. Dworkin,, W. Harder,, and K.-H. Schleifer (ed.), The Prokaryotes:AHandbook on the Biology of Bacteria; Ecophysiology, Isolation, Identification, Applications, 2nd ed. Springer-Verlag, New York, N.Y.
89. Woese, C. R. 1987. Bacterial evolution. Microbiol. Rev. 51:221271.
90. Woese, C. R.,, L. Achenbach,, P. Rouviere,, and L. Mandelco. 1991. Archaeal phylogeny: reexamination of the phylogenetic position of Archaeoglobus fulgidus in light of certain composition-induced artifacts. Syst. Appl. Microbiol. 14:364371.
91. Zeikus, J. G.,, M. A. Dawson,, T. E. Thompson,, K. Ingvorsen,, and E. C. Hatchikian. 1983. Microbial ecology of volcanic sulfidogenesis: isolation and characterization of Thermodesulfobacterium commune gen. nov. and sp. nov. J. Gen. Microbiol. 129:11591169.

Tables

Generic image for table
TABLE 1

Characteristics of some representative genera of sulfate-reducing prokaryotes

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3
Generic image for table
TABLE 2

Sulfate-reducing prokaryotes recovered from oil field production waters

Citation: Birkeland N. 2005. Sulfate-Reducing Bacteria and Archaea, p 35-54. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch3

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error