1887

Chapter 4 : Hyperthermophilic and Methanogenic Archaea in Oil Fields

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Hyperthermophilic and Methanogenic Archaea in Oil Fields, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap04-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap04-2.gif

Abstract:

The origin of microorganisms in oil reservoirs has been the subject of much interest in the last decades; scientists have provided evidence of active microbial communities in situ since the 1920s. Members of the genus are hyperthermophiles and obtain energy by reducing oxidized sulfur compounds to HS. species, because of their ability to reduce sulfate, may be important contributors of biogenic HS generation in high-temperature oil fields. A number of pure cultures of methanogenic classified in different taxonomic groups have been isolated from oil deposits. Isolation of methanogens has been successful from slightly saline to saline oil well waters in the mesophilic range of temperatures. The parallel analysis of high-temperature enrichment cultures from the formation waters of four oil fields showed that contrary to the , none of the methanogens recovered from the culture-independent analysis were obtained in cultures. Low-temperature oil reservoirs have been explored to a lesser extent than high-temperature ones. A study reported few 16S rRNA sequences affiliated with a limited number of mesophilic aerobic bacteria belonging to the genera , , and . Laboratory experiments have shown that thermophilic sulfate reducers are able to grow on unidentified components of crude oil.

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4

Key Concept Ranking

Bacteria and Archaea
0.48997337
Restriction Fragment Length Polymorphism
0.4473622
0.48997337
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic tree of the archaeal domain and related archaeal 16S rRNA gene phylotypes from Monterey-sourced production fluids. Phylotypes O1 and O2 were obtained from total community DNA by using a universal and an archaea-specific set of primers, respectively. Phylotypes R and M were identified in enrichments from Rincon and Monterey formations, respectively; vp sequences are from isolates. A neighbor-joining tree was generated from a mask of 331 nucleotide positions (numbering 20 to 958) with (GenBank accession number Z30214) and (GenBank accession number M21774) serving as outgroups. Bootstrap values (n=1,000 replicates) of ≥50 are reported as percentages. The scale bar represents the number of changes per nucleotide position. Reprinted from ( )

Phylogenetic tree of the archaeal domain and related archaeal 16S rRNA gene phylotypes from Monterey-sourced production fluids. Phylotypes O1 and O2 were obtained from total community DNA by using a universal and an archaea-specific set of primers, respectively. Phylotypes R and M were identified in enrichments from Rincon and Monterey formations, respectively; vp sequences are from isolates. A neighbor-joining tree was generated from a mask of 331 nucleotide positions (numbering 20 to 958) with (GenBank accession number Z30214) and (GenBank accession number M21774) serving as outgroups. Bootstrap values (n=1,000 replicates) of ≥50 are reported as percentages. The scale bar represents the number of changes per nucleotide position. Reprinted from ( )

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Hybridization of Texas red-labeled 16S rRNAs to the microchip. The microchip with immobilized probes was hybridized to in vitrotranscribed 16S rRNAs obtained from formation water of well 757. Specific oligonucleotide probes were loaded on the microchip as follows: A1, probe 54 ( and ); A2, probe 21 (); A3 and A4, probes 25 and 27, respectively (); B1, probe 4 (); B2, probe 5 (); B3, probe 58 ( plus ); C1, probe 39 (); C2, probe 50 (); C3, probe 6 ( and ); C4, probe 30 (); D1, probe 44 (); D2 and D3, probes 46 and 48, respectively (); E1, probe 52 (); E2; probe 55 ( and ); and E4, probe 53 (). B4, D4, and E3 were empty gel elements. Reprinted from ( )

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap4
1. Adkins, J. P.,, L. A. Cornell,, and R. S. Tanner. 1992. Microbial composition of carbonate petroleum reservoir fluids. Geomicrobiol. J. 10:8797.
2. Aitken, C. M.,, D. M. Jones,, and S. R. Larter. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431:291294.
3. Amann, R. I.,, W. Ludwig,, and K. H. Schleifer. 1995. Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol. Rev. 59:143169.
4. Barns, S. M.,, C. F. Delwiche,, J. D. Palmer,, and N. R. Pace. 1996. Perspectives on archaeal diversity, thermophily and monophily from environmental rRNA sequences. Proc. Natl. Acad. Sci. USA 93:91889193.
5. Bastin, E. 1926. Microorganisms in oilfields. Science 63:2124.
6. Beeder, J.,, R. K. Nilsen,, T. Torsvik,, and T. Lien. 1994. Archaeoglobus fulgidus isolated from hot North Sea oil field waters. Appl. Environ. Microbiol. 60:12271231.
7. Belyaev, S. S.,, and M. V. Ivanov. 1983. Bacterial methanogenesis in underground waters. Ecol. Bull. 35:273280.
8. Belyaev, S. S.,, R. Wolkin,, W. R. Kenealy,, M. J. DeNiro,, S. Epstein,, and J. G. Zeikus. 1983. Methanogenic bacteria from the Bondyuzhskoe oil field: general characterization and analysis of stable-carbon isotopic fractionation. Appl. Environ. Microbiol. 45:691697.
9. Belyaev, S. S.,, A. Y. Obraztsova,, K. S. Laurinavichus,, and L. V. Bezrukova. 1986. Characteristics of rod-shaped methane-producing bacteria from oil pool and description of Methanobacterium ivanovii sp. nov. Microbiology 55: 821826.
10. Bernard, F. P.,, J. Connan,, and M. Magot. 1992. Indigenous microorganisms in connate waters of many oil fields: a new tool in exploration and production techniques. (SPE 24811.) In Proceedings of the 67th SPE Annual Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
11. Blotevogel, K. H.,, and U. Fisher. 1985. Isolation and characterization of a new thermophilic and autotrophic methane producing bacterium: Methanobacterium thermoaggregans, sp. nov. Arch. Microbiol. 142:218222.
12. Bolliger, C.,, F. Schö nholzer,, M. H. Schroth,, D. Hahn,, S. M. Bernasconi,, and J. Zeyer. 2000. Characterizing intrinsic bioremediation in a petroleum hydrocarbon-contaminated aquifer by combined chemical, isotopic, and biological analyses. Biorem. J. 4:359371.
13. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69:61436151.
14. Boone, D. R., 2001. Genus IV: Methanothermobacter, p. 230233. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
15. Borzenkov, I. A.,, S. S. Belyaev,, Y. M. Miller,, I. A. Davidova,, and M. V. Ivanov. 1997. Methanogenesis in the highly mineralized stratal waters of the Bondyuzhskoe oil field. Microbiology (New York) 66:104110.
16. Burggraf, S.,, H. W. Jannasch,, B. Nicolaus,, and K. O. Stetter. 1990. Archaeoglobus profundus, sp. nov., represents a new species within the sulfatereducing archaebacteria. Syst. Appl. Microbiol. 13: 2428.
17. Corre, E. 2000. Approches moléculaires de la diversité microbienne de deux environnements extrêmes: les sources hydrothermalesetles réservoirs pétroliers. Ph.D. thesis. Université de Bretagne Occidentale, Brest, France.
18. Davidova, I. A.,, H. J. M. Harmsen,, A. J. M. Stams,, S. S. Belyaev,, and A. J. B. Zehnder. 1997. Taxonomic description of Methanococcoides euhalobius and its transfer to the Methanohalophilus genus. Antonie Leeuwenhoek 71:313318.
19. Davydova-Charakhch’yan, I. A.,, V. G. Kuznetsova,, L. L. Mityushina,, and S. S. Belyaev. 1993. Methane-forming bacilli from oil fields of Tataria and western Siberia. Microbiology (New York) 61:202207.
20. DeLong, E. F. 1992. Archaea in coastal marine environments. Proc. Natl. Acad. Sci. USA 89:56855689.
21. Dojka, M. A.,, P. Hugenholtz,, S. K. Haack,, and N. R. Pace. 1998. Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl. Environ. Microbiol. 64:38693877.
22. Ekzertsev, V. A.,, and S. I. Kuznetsov. 1954. Examination of microflora of oil fields of the Second Baku. Mikrobiologiya 23:314. (In Russian.)
23. Garrity, G. M.,, and J. G. Holt,. 2001. The road map to the manual, p. 119166. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
24. Ghiorse, W. C.,, and J. T. Wilson. 1988. Microbial ecology of the terrestrial subsurface. Adv. Appl. Microbiol. 33:107172.
25. Grabowski-Lux, A. 2004. Analyse de la diversité microbienne d'un gisement pétrolier biodégradé. Ph.D.thesis. Université de Bretagne Occidentale, Brest, France.
26. Grassia, G. C.,, K. M. McLean,, P. Glénat,, J. Bauld,, and A. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:4758.
27. Head, I. M.,, J. R. Saunders,, and R. W. Pickup. 1998. Microbial evolution, diversity and ecology: a decade of ribosomal RNA analysis of uncultivated microorganisms. Microb. Ecol. 35:121.
28. Head, I. M.,, D. M. Jones,, and S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426:344352.
29. Hermann, M.,, J. P. Vandecasteele,, and D. Ballerini,. 1992. Anaerobic microflora of oil reservoirs: microbiological characterization of samples from some production wells, p. 223234. In R. Vially (ed.), Bacterial Gas. Editions Technip, Paris, France.
30. Huber, H.,, M. J. Hohn,, R. Rachel,, T. Fuchs,, V. C. Wimmer,, and K. O. Stetter. 2002. A new phylum of Archaea, represented by a nanosized hyperthermophilic symbiont. Nature 417:6367.
31. Huber, H.,, M. J. Hohn,, K. O. Stetter,, and R. Rachel. 2003. The phylum Nanoarchaeota: present knowledge and future perspectives of a unique form of life. Res. Microbiol. 154:165171.
32. Huber, H., and K. O. Stetter,. 2001. Genus I: Archaeoglobus, p. 349252. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
33. Huber, H.,, M. Thomm,, H. Kö nig,, G. Thies,, and K. O. Stetter. 1982. Methanococcus thermolithotrophicus, a novel thermophilic lithotrophic methanogen. Arch. Microbiol. 132:4750.
34. Huber, R.,, H. W. Jannasch,, R. Rachel,, T. Fuchs,, and K. O. Stetter. 1997. Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst. Appl. Microbiol. 20:374380.
35. Hugenholtz, P. 2002. Exploring prokaryotic diversity in the genomic area. Genome Biol. 3:18.
36. Ivanov, M. V.,, S. S. Belyaev,, A. M. Zyakun,, V. A. Bondar,, and K. S. Laurinavichus. 1983. Microbiological methane formation in oil field development. Geokhimiya 11:16471654.
37. Ivanov, M. V.,, S. S. Belyaev,, K. S. Laurinavichus,, A. Y. Obraztsova,, A. Y. Gorlatov,, and V. A. Bondar. 1985. Development dynamic of microbiological processes after oxidation of oil field aquifers. Microbiology (New York) 54:293300.
38. Jeanthon, C.,, S. L’Haridon,, A.-L. Reysenbach,, M. Vernet,, P. Messner,, U. W. Sleytr,, and D. Prieur. 1998. Methanococcus infernus sp. nov., a novel hyperthermophilic lithotrophic methanogen isolated from a deep-sea hydrothermal vent. Int. J. Syst. Bacteriol. 48:913919.
39. Jeanthon, C.,, S. L’Haridon,, N. Pradel,, and D. Prieur. 1999. Rapid identification of hyperthermophilic methanococci isolated from deep-sea hydrothermal vents. Int. J. Syst. Bacteriol. 49:591594.
40. Jurgens, G.,, K. Lindstrom,, and A. Saano. 1997. Novel group within the kingdom Crenarchaeota from boreal forest soil. Appl. Environ. Microbiol. 63:803805.
41. Kotelnikova, S. V.,, A. Y. Obraztsova,, K.-H. Blotevogel,, and I. N. Popov. 1993. Taxonomic analysis of thermophilic strains of the genus Methanobacterium: reclassification of Methanobacterium thermoalcaliphilum as a synonym of Methanobacterium thermoautotrophicum. Int. J. Syst. Bacteriol. 43:591596.
42. Kuznetsov, S. I. 1950. Examination of the possibility of contemporary methanogenesis in gas- and petroleum-bearing facies of the Saratov and Buguruslan province. Mikrobiologiya 19:193202 (In Russian.)
43. L’Haridon, S.,, A.-L. Reysenbach,, P. Glénat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 337:223224.
44. Magot, M. 1996. Similar bacteria in remote oil fields. Nature 379:681.
45. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103116.
46. Marteinsson, V. T.,, S. Hauksdó ttir,, C. F. V. Hobel,, H. Kristmannsdó ttir,, G. O. Hreggvidsson,, and J. K. Kristjánsson. 2001a. Phylogenetic diversity of subterranean hot springs in Iceland. Appl. Environ. Microbiol. 67:42424248.
47. Marteinsson, V. T.,, J. K. Kristjánsson,, H. Kristmannsdó ttir,, M. Dahlkvist,, K. Sæmundsson,, M. Hannington,, S. K. Pétursdó ttir,, A. Geptner,, and P. Stoffers. 2001b. Discovery and description of giant submarine smectite cones on the seafloor in Eyjafjordur, northern Iceland, and a novel thermal microbial habitat. Appl. Environ. Microbiol. 67:827833.
48. Miroshnichenko, M. L.,, H. Hippe,, E. Stackebrandt,, N. A. Kostrikina,, N. A. Chernyh,, C. Jeanthon,, T. N. Nazina,, S. S. Belyaev,, and E. A. Bonch-Osmolovskaya. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov. from a western Siberia high temperature oil reservoir. Extremophiles 5:8591.
49. Nazina, T. N.,, A. E. Ivanova,, I. A. Borzenkov,, S. S. Belyaev,, and M. V. Ivanov. 1995. Occurrence and geochemical activity of microorganisms in high-temperature, water-flooded oil fields of Kazakhstan and Western Siberia. Geomicrobiol. J. 13:181192.
50. Nazina, T. N.,, and E. P. Rozanova. 1980. Ecological conditions of the occurrence of methanogenic bacteria in oil reservoirs of the Apsheron. Mikrobiologiya 49:123129. (In Russian.)
51. Nazina, T. N.,, E. P. Rozanova,, and S. I. Kuznetsov. 1985. Microbial oil transformation processes accompanied by methane and hydrogensulfide formation. Geomicrobiol. J. 4:103130.
52. Nercessian, O.,, N. Bienvenu,, D. Moreira,, D. Prieur,, and C. Jeanthon. 2005. Diversity of functional genes of methanogens, methanotrophs and sulfate-reducers in deep-sea hydrothermal environments. Environ. Microbiol 7:118132.
53. Nercessian, O.,, A. L. Reysenbach,, D. Prieur,, and C. Jeanthon. 2003. Archaeal diversity associated with in situ samplers deployed on hydrothermal vents on the East Pacific Rise (13°N). Environ. Microbiol. 5:492502.
54. Neuner, A.,, H. W. Jannasch,, S. Belkin,, and K. O. Stetter. 1990. Thermococcus litoralis, sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153:205207.
55. Ng, T. K.,, P. J. Weimer,, and L. J. Gawel. 1989. Possible nonanthropogenic origin of two methanogenic isolates from oil-producing wells in the San Miguelito field, Ventura County, California. Geomicrobiol. J. 7:185192.
56. Ni, S.,, and D. R. Boone. 1991. Isolation and characterization of a dimethyl sulfide degrading methanogen, Methanolobus siciliae HI350, from an oil well, characterization of M. siciliae T4/MT, and emendation of M. siciliae. Int. J. Syst. Bacteriol. 41:410416.
57. Ni, S.,, C. R. Woese,, H. C. Aldrich,, and D. R. Boone. 1994. Transfer of Methanolobus siciliae to the genus Methanosarcina, naming it Methanosarcina siciliae, and emendation of the genus Methanosarcina. Int. J. Syst. Bacteriol. 44:357359.
58. Nilsen, R. K. J. Beeder, T. Thorstenson, and T. Torsvik. 1996. Distribution of thermophilic marine sulfate reducers in North Sea oil field waters and oil reservoirs. Appl. Environ. Microbiol. 62:17931798.
59. Nilsen, R. K.,, and T. Torsvik. 1996. Methanococcus thermolithotrophicus isolated from North Sea oil field reservoir water. Appl. Environ. Microbiol. 62: 728731.
60. Obraztsova, A. Y.,, O. V. Shipin,, S. S. Belyaev,, and M. V. Ivanov. 1984. Biological characteristics of halophilic methanogen isolated from oil bed. Dokl. Akad. Nauk. SSSR 278:227230 (In Russian.)
61. Obraztsova, A. Y.,, O. V. Shipin,, L. V. Bezrukova,, and S. S. Belyaev. 1987a. Properties of the coccoid methylotrophic methanogen, Methanococcoides euhalobius sp. nov. Microbiology (New York) 56:523527.
62. Obraztsova, A. Y.,, V. E. Tsyban,, K. S. Laurinavichus,, L. V. Bezrukova,, and S. S. Belyaev. 1987b. Biological properties of Methanosarcina not utilizing carbonic acid and hydrogen. Microbiology (New York) 56:807812.
63. Ollivier, B.,, P. Caumette,, J. L. Garcia,, and R. A. Mah. 1994. Anaerobic bacteria from hypersaline environments. Microbiol. Rev. 58:2738.
64. Ollivier, B.,, J. L. Cayol,, B. K. C. Patel,, M. Magot,, M. L. Fardeau,, and J. L. Garcia. 1997. Methanoplanus petrolearius sp. nov., a novel methanogenic bacterium isolated from an oil-producing well. FEMS Microbiol. Lett. 147:5156.
65. Ollivier, B.,, M. L. Fardeau,, J. L. Cayol,, M. Magot,, B. K. C. Patel,, G. Prensier,, and J. L. Garcia. 1998. Methanocalculus halotolerans gen. nov., sp. nov., isolated from an oil-producing well. Int. J. Syst. Bacteriol. 48:821828.
66. Orphan, V. J.,, S. K. Goffredi,, E. F. DeLong,, and J. R. Boles. 2003. Geochemical influence on diversity and microbial processes in high temperature oil reservoirs. Geomicrobiol. J. 20:295311.
67. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. DeLong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66:700711.
68. Pace, N. R.,, D. A. Stahl,, D. L. Lane,, and G. J. Olsen. 1985. Analyzing natural microbial populations by rRNA sequences. ASM News 51:412.
69. Parkes, R. J.,, B. A. Cragg,, S. J. Bale,, J. M. Getliff,, K. Goodman,, P. A. Rochelle,, J. C. Fry,, A. J. Weightman,, and S. J. Harvey. 1994. Deep bacterial biosphere in Pacific Ocean sediments. Nature 371:410413.
70. Revesz, K.,, T. B. Coplen,, M. J. Baedecker,, and P. D. Glynn. 1995. Methane production and consumption monitored by stable H and C isotope ratios at crude oil spill site, Bemidji, Minnesota. Appl. Geochem. 10:505516.
71. Reysenbach, A. L.,, K. Longnecker,, and J. Kirshtein. 2000. Novel bacterial and archaeal lineages from an in situ growth chamber depoyed at a Mid-Atlantic Ridge hydrothermal vent. Appl. Environ. Microbiol. 66:37983806.
72. Röling, W. F. M.,, I. M. Head,, and S. R. Larter. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 15:321328.
73. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. N. Nazina,, M. L. Miroshnichenko,, and E. A. Bonch-Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
74. Stetter, K. O. 1988. Archaeoglobus fulgidus gen. nov., sp. nov.: a new taxon of extremely thermophilic archaebacteria. Syst. Appl. Microbiol. 10: 172173.
75. Stetter, K. O.,, and R. Huber,. 1999. The role of hyperthermophilic prokaryotes in oil fields, p. 369375. In C. R. Bell,, M. Brylinsky,, and P. Johnson-Green (ed.), Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
76. Stetter, K. O.,, R. Huber,, E. Blö chl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743745.
77. Stetter, K. O.,, G. Lauerer,, M. Thomm,, and A. Neuner. 1987. Isolation of extremely thermophilic sulfate reducers: evidence for a novel branch of archaebacteria. Science 236:822824.
78. Stevens, T. O., and J. P. McKinley. 1995. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450454.
79. Szewzyk, U.,, R. Szewzyk,, and T. A. Stenstro¨m. 1994. Thermophilic, anaerobic bacteria isolated from a deep borehole in granite in Sweden. Proc. Natl. Acad. Sci. USA 91:18101813.
80. Takahata, Y.,, T. Hoaki,, and T. Maruyama. 2001. Starvation survivability of Thermococcus strains isolated from Japanese oil reservoirs. Arch. Microbiol. 176:264270.
81. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66:7379.
82. Takai, K.,, and K. Horikoshi. 1999. Genetic diversity of Archaea in deep-sea hydrothermal environments. Genetics 152:12851297.
83. Teske, A.,, K.U. Hinrichs,, V. Edgcomb,, A. deVera Gomez,, D. Kysela,, S.P. Sylva,, M.L. Sogin,, and H. W. Jannasch. 2002. Microbial diversity of hydrothermal sediments in the Guaymas Basin: evidence for anaerobic methanotrophic communities. Appl. Environ. Microbiol. 68:19942007.
84. Vargas, M.,, K. Kashefi,, E. L. Blunt-Harris,, and D. R. Lovley. 1998. Microbiological evidence for Fe(III) reduction on early Earth. Nature 395:6567.
85. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:16231629.
86. Vorholt, J. A.,, J. Kunow,, K. O. Stetter,, and R. K. Thauer. 1995. Enzymes and coenzymes of the carbon monoxide dehydrogenase pathway for autotrophic CO2 fixation in Archaeoglobus lithotrophicus and the lack of carbon monoxide dehydrogenase in the heterotrophic A. profundus. Arch. Microbiol. 163:112118.
87. Wasserfallen, A.,, J. No¨lling,, P. Pfister,, J. Reeve,, and E. Conway de Macario. 2000. Phylogenetic analysis of 18 thermophilic Methanobacterium isolates supports the proposals to create a new genus, Methanothermobacter gen. nov., and to reclassify several isolates in three species, Methanothermobacter thermoautotrophicus comb. nov., Methanothermobacter wolfeii comb. nov., and Methanothermobacter marburgensis sp. nov. Int. J. Syst. Evol. Microbiol. 50:4353.
88. Whitman, W. B., 2001. Genus II: Methanothermococcus gen. nov., p. 24142. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol 1. Springer- Verlag, New York, N.Y.
89. Widdel, F.,, and R. Rabus. 2001. Anaerobic degradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12:259276.
90. Woese, C. R.,, O. Kandler,, and M. L. Wheelis. 1990. Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc. Natl. Acad. Sci. USA 87:45764579.
91. Zengler, K.,, H. H. Richnow,, R. Rossello-Mora,, W. Michaelis,, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401:266269.
92. Zillig, W., 2001. Genus I: Desulfurococcus, p. 181182. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.
93. Zillig, W.,, I. Holz,, D. Janekovic,, W. Schäfer,, and W. D. Reiter. 1983. The archaebacterium Thermococcus celer represents a novel genus within the thermophilic branch of the archaebacteria. Syst. Appl. Microbiol. 4:8894.
94. Zillig, W.,, and A. L. Reysenbach,. 2001. Order I: Thermococcales, p. 341. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed., vol. 1. Springer-Verlag, New York, N.Y.

Tables

Generic image for table
Table 1

Characterized archaea isolated from oil reservoirs

Citation: Jeanthon C, Nercessian O, Corre E, Grabowski-Lux A. 2005. Hyperthermophilic and Methanogenic Archaea in Oil Fields, p 55-69. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch4

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error