1887

Chapter 5 : Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap05-2.gif

Abstract:

This chapter focuses on the microbiology of heterotrophic fermentative bacteria, some of which are able to grow by using various electron acceptors such as elemental sulfur, thiosulfate, iron, and nitrate. Clearly, the geochemistry of the reservoirs, together with the mineralogy and the physicochemical conditions of the oil field waters, selects for the presence of specific types of microorganisms. This is true for conditions in oil reservoirs where temperatures commonly between 60 and 80°C affect the survival and/or growth of thermophilic and hyperthermophilic fermentative microorganisms. Mesophilic, thermophilic, and hyperthermophilic fermentative bacteria constitute an important microbial community of the oil field environment. Its physiological and phylogenetic traits were unique among the oil field fermentative isolates, as it used protein extracts such as peptones and amino acids but was unable to ferment sugars. Nitrate-reducing microorganisms from oil reservoirs are of increased interest due to the in situ use of nitrate by oil companies to decrease sulfide concentrations in oil fields. In addition to sulfate-reducing bacteria (SRB) and , fermentative bacteria with various metabolic abilities were recovered from oil reservoirs. The presence of both hydrogen and acetate in deep reservoirs may explain survival and/or growth of some thermophilic heterotrophs. Through fermentative and oxidative processes, thermophiles appear metabolically adapted to participate in the energy and carbon cycles of deep reservoirs as proposed by the researchers.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5

Key Concept Ranking

Bacteria and Archaea
0.6965127
Microbial Ecology
0.6957991
Gram-Positive Bacteria
0.41551116
16s rRNA Sequencing
0.4046339
0.6965127
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic dendrogram showing the position of strains isolated from petroleum reservoirs (boldface) within the order . ., . Bar, 10% sequence divergence.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic dendrogram showing the position of members of the family of isolated from petroleum reservoirs (in boldface type). Numbers on branch nodes are bootstrap values. Bar, 5% sequence divergence.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(A) Electron micrograph of strain 6459 showing the typical outer sheath-like structure of . Bar, 1 µm. (B) Transmission electron micrograph of showing terminal toga. Bar, 2 µm. (C) Phase-contrast photomicrograph of strain 5268 showing terminal spores. Bar, 10 µm. (D) Scanning electron micrograph of after thermal stress, showing spherical, terminal spores swelling the cells and a subpolar flagellum. Bar, 1 µm. (Panel A reprinted from with publisher permission. Panel B reprinted from with publisher permission. Panel C reprinted from with publisher permission. Panel D reprinted from with publisher permission.)

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap5
1. Balk, M.,, J. Weijma,, and A. J. M. Stams. 2002. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 52: 1361 1368.
2. Barth, T. 1991. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl. Geochem. 6: 1 15.
3. Bastin, E. S. 1926. The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10: 1270 1299.
4. Bhupathiraju, V. K.,, M. J. McInerney,, and R. M. Knapp. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11: 19 34.
5. Bhupathiraju, V. K.,, M. J. McInerney,, C. R. Woese,, and R. S. Tanner. 1999. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Bacteriol. 49: 953 960.
6. Bhupathiraju, V. K.,, A. Oren,, P. K. Sharma,, R. S. Tanner,, C. R. Woese,, and M. J. McInerney. 1994. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44: 565 572.
7. Bhupathiraju, V. K.,, P. K. Sharma,, M. J. McInerney,, R. M. Knapp,, K. Fowler,, and W. Jenkins. 1991. Isolation and characterization of novel halophilic anaerobic bacteria from oilfield brines. Dev. Petrol. Sci. 31: 131 143.
8. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69: 6143 6151.
9. Bonilla Salinas, M.,, M.-L. Fardeau,, J.-L. Cayol,, L. Casalot,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 2004a. Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int. J. Syst. Evol. Microbiol. 54: 645 649.
10. Bonilla Salinas, M.,, M.-L. Fardeau,, P. Thomas,, J.-L. Cayol,, B. K. C. Patel, and B. Ollivier. 2004b. Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. Int. J. Syst. Evol. Microbiol. 54: 2169 2173.
11. Cayol, J.-L.,, M.-L. Fardeau,, J.-L. Garcia,, and B. Ollivier. 2002. Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 51: 1373 1382.
12. Cayol, J.-L.,, B. Ollivier,, B. K. C. Patel,, G. Ravot,, M. Magot,, E. Ageron,, P. A. D. Grimont,, and J.-L. Garcia. 1995. Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45: 783 789.
13. Cord-Ruwich, R.,, W. Kleinitz,, and F. Widdel. 1987. Sulphate-reducing bacteria and their activities in oil production. J. Petrol. Technol. 1: 97 106.
14. Crolet, J.-L.,, and M. Magot. 1996. Non-SRB sulfidogenic bacteria in oilfield production facilities. Mater. Perf. March: 60 64.
15. Davey, M.E.,, W.A. Wood,, R. Key,, K. Nakamura,, and D. A. Stahl. 1993. Isolation of three species of Geotoga and Petrotoga: two newgenera, representing a new lineage in the bacterial line. Syst. Appl. Microbiol. 16: 191 200.
16. Davidova, I.,, M. S. Hicks,, P. M. Fedorak,, and J. M. Suflita. 2001. The influence of nitrate on microbiol processes in oil industry production waters. J. Ind. Microbiol. Biotechnol. 22: 582 589.
17. Davydova-Charakhch’yan, I. A.,, A. N. Mileeva,, L. L. Mityushina,, and S. S. Belyaev. 1992. Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (New York) 61: 306 315.
18. Fardeau, M.-L.,, M. Bonilla Salinas,, S. L’Haridon,, C. Jeanthon,, F. Verhé,, J.-L. Cayol,, B. K. C. Patel,, J.-L. Garcia,, and B. Ollivier. 2004. Isolation from oil reservoirs of new thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis, and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int. J. Syst. Evol. Microbiol. 54: 467 474.
19. Fardeau, M.-L.,, J.-L. Cayol,, M. Magot,, and B. Ollivier. 1993. H 2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113: 327 332.
20. Fardeau, M.-L.,, M. Magot,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 2000. Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from an oil field water. Int. J. Syst. Evol. Microbiol. 50: 2141 2149.
21. Fardeau, M.-L.,, B. Ollivier,, B. K. C. Patel,, M. Magot,, P. Thomas,, A. Rimbault,, F. Rocchiccioli,, and J.-L. Garcia. 1997. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47: 1013 1019.
22. Faudon, C.,, M.-L. Fardeau,, J. Heim,, B. K. C. Patel,, M. Magot,, and B. Ollivier. 1995. Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr. Microbiol. 31: 152 157.
23. Fischer, J. B. F. 1987. Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51: 2459 2468.
24. Gevertz, D.,, J. R. Paterek,, M. E. Davey,, and W. A. Wood. 1991. Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31: 115 129.
25. Gevertz, D.,, A. J. Telang,, G. Voordouw,, and G. E. Jenneman. 2000. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66: 2491 2501.
26. Grassia, G. S.,, K. M. McLean,, P. Glénat,, J. Bauld,, and A. J. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21: 47 58.
27. Greene, A. C.,, B. K. C. Patel,, and A. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47: 505 509.
28. Greene, E. A.,, C. Hubert,, M. Nemati,, G. E. Jenneman,, and G. Voordouw. 2003. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ. Microbiol. 5: 607 617.
29. Hubert, C.,, M. Nemati,, G. Jenneman,, and G. Voordouw. 2003. Containment of biogenic sulfide production in continuous Up-Flow packed-bed bioreactors with nitrate or nitrite. Biotechnol. Prog. 19: 338 345.
30. Huu, N. B.,, E. B. M. Denner,, D. T. C. Ha,, G. Wanner,, and H. Stan-Lotter. 1999. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int. J. Syst. Bacteriol. 49: 367 375.
31. Jeanthon, C.,, A. L. Reysenbach,, S. L’Haridon,, A. Gambacorta,, N. R. Pace,, P. Glénat,, and D. Prieur. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164: 91 97.
32. Jenneman, G. E.,, P. D. Moffitt,, G. A. Bala,, and R. H. Webb. 1999. Sulfide removal in reservoir brine by indigenous bacteria. Soc. Petrol. Eng. Prod. Facil. 14: 219 225.
33. Kengen, S. W. M.,, and A. J. M. Stams. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161: 168 175.
34. Khmelenina, V. N.,, N. G. Starostina,, M. G. Tsvetkova,, A. P. Sokolov,, N. E. Suzina,, and Y. A. Trotsenko. 1996. Methanotrophic bacteria in saline reservoirs of Ukraine and Tuva. Microbiology (New York) 65: 609 615.
35. Kodama, Y.,, and K. Watanabe. 2003. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl. Environ. Microbiol. 69: 107 112.
36. L’Haridon, S.,, A. L. Reysenbach,, P. Glénat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 377: 223 224.
37. L’Haridon, S.,, M.-L. Miroshnichenko,, H. Hippe,, M.-L. Fardeau,, E. Bonch-Osmolovskaya,, E. Stackebrandt,, and C. Jeanthon. 2001. Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in western Siberia. Int. J. Syst. Evol. Microbiol. 51: 1327 1334.
38. L’Haridon, S.,, M. L. Miroshnichenko,, H. Hippe,, M.-L. Fardeau,, E. Bonch-Osmolovskaya,, E. Stackebrandt,, and C. Jeanthon. 2002. Petrotoga olearia and P. sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in western Siberia. Int. J. Syst. Evol. Microbiol. 52: 1715 1722.
39. Lien, T.,, M. Madsen,, F. A. Rainey,, and N. K. Birkeland. 1998. Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48: 1007 1013.
40. Magot, M.,, M.-L. Fardeau,, O. Arnauld,, C. Lanau,, B. Ollivier,, P. Thomas,, and B. K. C. Patel. 1997a. Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol. Lett. 155: 185 191.
41. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77: 103 116.
42. Magot, M.,, G. Ravot,, X. Campaignolle,, B. Ollivier,, B. K. C. Patel,, M.-L. Fardeau,, P. Thomas,, J.-L. Crolet,, and J.-L. Garcia. 1997b. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfatereducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47: 818 824.
43. Miranda-Tello, E.,, M.-L. Fardeau,, J. Sepú lveda,, J. L. Fernández,, J.-L. Cayol,, T. Thomas,, and B. Ollivier. 2003. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrateand thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 53: 1509 1514.
44. Miranda-Tello, E.,, M.-L. Fardeau,, P. Thomas,, F. Ramirez,, L. Casalot,, J.-L. Cayol,, J. L. Garcia,, and B. Ollivier. 2004. Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacteriumisolated froman oil-producing well in theGulf ofMexico. Int. J. Syst. Evol. Microbiol. 54: 169 174.
45. Miroshnichenko, M. L.,, H. Hippe,, E. Stackebrandt,, N. A. Kostrikina,, N. A. Chernyh,, C. Jeanthon,, T. N. Nazina,, S. S. Belyaev,, and E. A. Bonch-Osmolovskaya. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov. from a western Siberia high temperature oil reservoir. Extremophiles 5: 85 91.
46. Moser, D. P.,, and K. H. Nealson. 1996. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62: 2100 2105.
47. Myhr, S.,, and T. Torsvik. 2000. Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int. J. Syst. Bacteriol. 50: 1611 1619.
48. Nazina, T. N.,, A. E. Ivanova,, O. V. Golubeva,, R. R. Ibatullin,, S. S. Belyaev, andM.V. Ivanov. 1995. Occurrence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oilfield. Microbiology (New York)V 64: 203 208.
49. Nazina, T. N.,, A. E. Ivanova,, G. F. Kandaurova,, R. R. Ibatullin,, S. S. Belyaev,, and M. V. Ivanov. 1998. Microbiological investigation of the carbonate collector of the Romashkinskoe oil field: background study before testing a biotechnology for the enhancement of oil recovery. Microbiology (New York) 67: 701 709.
50. Nazina, T. N.,, A. E. Ivanova,, L. L. Mityushina,, and S. S. Belyaev. 1993. Thermophilic hydrocarbon- oxidizing bacteria from oil strata. Microbiology (New York) 62: 359 365.
51. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev,, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51: 433 446.
52. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48: 311 343.
53. Neuner, A.,, H. W. Jannasch,, S. Belkin,, and K. O. Stetter. 1990. Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153: 205 207.
54. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66: 700 711.
55. Patel, B. K. C.,, K. T. Andrews,, B. Ollivier,, R. A. Mah,, and J.-L. Garcia. 1995. Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA genes. FEMS Microbiol. Lett. 134: 115 119.
56. Philippi, G. T. 1977. On the depth, time and mechanism of origin of the heavy to mediumgravity naphthenic crude oils. Geochim. Cosmochim. Acta 41: 33 52.
57. Rainey, F. A.,, T. N. Zhilina,, E. S. Boulygina,, E. Stackebrandt,, T. P. Tourova,, and G. A. Zavarzin. 1995. The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov., and further taxonomic rearrangements at the genus and species level. Anaerobe 1: 185 199.
58. Ravot, G. 1996. Nouvelles approches microbiologiques de la thiosulfato-réduction en milieu pétrolier. Ph.D. thesis. Université de Provence, Marseille, France.
59. Ravot, G.,, M. Magot,, M.-L. Fardeau,, B. K. C. Patel,, G. Prensier,, A. Egan,, J.-L. Garcia,, and B. Ollivier. 1995a. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45: 308 314.
60. Ravot, G.,, M. Magot,, M.-L. Fardeau,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 1999. Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 49: 1141 1147.
61. Ravot, G.,, M. Magot,, B. Ollivier,, B. K. C. Patel,, E. Ageron,, P. A. D. Grimont,, P. Thomas,, and J.-L. Garcia. 1997. Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol. Lett. 147: 81 88.
62. Ravot, G.,, B. Ollivier,, M.-L. Fardeau,, B. K. C. Patel,, K. T. Andrews,, M. Magot,, and J.-L. Garcia. 1996. L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62: 2657 2659.
63. Ravot, G.,, B. Ollivier,, M. Magot,, B. K. C. Patel,, J. - L,. Crolet,. M.-L Fardeau,, and J.-L. Garcia. 1995b. Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales. Appl.Environ.Microbiol. 61: 2053 2055.
64. Rees, G. N.,, B. K. C. Patel,, G. S. Grassia,, and A. J. Sheehy. 1997. Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int. J. Syst. Bacteriol. 47: 150 154.
65. Rengpipat, S.,, T. A. Langworthy,, and J. G. Zeikus. 1988. Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environment. Syst. Appl. Microbiol. 11: 28 35.
66. Reysenbach, A.-L., 2001. Phylum BII: Thermotogae phy. nov., p. 369 370. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, N.Y.
67. Rinker, K. D.,, and R. M. Kelly. 1996. Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 62: 4478 4485.
68. Rinker, K. D.,, and R. M. Kelly. 2000. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic Archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol. Bioeng. 69: 537 547.
69. Schönheit, P.,, and T. Schäfer. 1995. Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol. 11: 26 57.
70. Semple, K. M.,, and D. W. S. Westlake. 1987. Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol. 33: 366 371.
71. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. Nazina,, M. Miroshnichenko,, and E. Bonch- Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic Bacteria and Archaea in deep-subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39: 99 102.
72. Stetter, K. O.,, A. Hoffmann,, and R. Huber,. 1993a. Microorganisms adapted to high temperature environments, p. 25 28. In R. Guerrero, and C. Pedros-Alio (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona, Spain.
73. Stetter, K. O.,, R. Huber,, E. Blö chl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993b. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365: 743 745.
74. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66: 73 79.
75. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2001. Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int. J. Syst. Evol. Microbiol. 51: 1901 1909.
76. Telang, A. J.,, S. Ebert,, J. M. Foght,, D. W. S. Westlake,, G. E. Jenneman,, D. Gevertz,, and G. Voordouw. 1997. Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63: 1785 1793.
77. Van Ooteghem, S. A.,, S. K. Beer,, and P. C. Yue. 2002. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 98- 100: 177 189.
78. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62: 1623 1629.
79. Wiegel, J.,, L. G. Ljungdahl,, and J. R. Rawson. 1979. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139: 800 810.
80. Xue, Y.,, X. Sun,, P. Zhou,, R. Liu,, F. Liang,, and Y. Ma. 2003. Gordonia paraffinovorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 53: 1643 1646.
81. Zeikus, J. G.,, P. W. Hegge,, and M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov. and sp. nov, a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122: 41 48.
82. Zillig, W.,, and A.-L. Reysenbach,. 2001. Class IV: Thermococci class. nov., p. 341 342. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2 nd ed. Springer-Verlag, New York, N.Y.
83. Zvyagintseva, I. S.,, N. A. Kostrikina,, and S. S. Belyaev. 1998. Detection of halophilic Archaea in an upper Devonian oil field in Tatarstan. Microbiology (New York) 67: 827 831.

Tables

Generic image for table
Table 1

Fermentative bacteria isolated from oil field environment

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Generic image for table
TABLE 2

Nitrate and/or iron-reducing bacteria isolated from oilfield environments

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error