1887

Chapter 5 : Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap05-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap05-2.gif

Abstract:

This chapter focuses on the microbiology of heterotrophic fermentative bacteria, some of which are able to grow by using various electron acceptors such as elemental sulfur, thiosulfate, iron, and nitrate. Clearly, the geochemistry of the reservoirs, together with the mineralogy and the physicochemical conditions of the oil field waters, selects for the presence of specific types of microorganisms. This is true for conditions in oil reservoirs where temperatures commonly between 60 and 80°C affect the survival and/or growth of thermophilic and hyperthermophilic fermentative microorganisms. Mesophilic, thermophilic, and hyperthermophilic fermentative bacteria constitute an important microbial community of the oil field environment. Its physiological and phylogenetic traits were unique among the oil field fermentative isolates, as it used protein extracts such as peptones and amino acids but was unable to ferment sugars. Nitrate-reducing microorganisms from oil reservoirs are of increased interest due to the in situ use of nitrate by oil companies to decrease sulfide concentrations in oil fields. In addition to sulfate-reducing bacteria (SRB) and , fermentative bacteria with various metabolic abilities were recovered from oil reservoirs. The presence of both hydrogen and acetate in deep reservoirs may explain survival and/or growth of some thermophilic heterotrophs. Through fermentative and oxidative processes, thermophiles appear metabolically adapted to participate in the energy and carbon cycles of deep reservoirs as proposed by the researchers.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5

Key Concept Ranking

Bacteria and Archaea
0.6965127
Microbial Ecology
0.6957991
Gram-Positive Bacteria
0.41551116
16s rRNA Sequencing
0.4046339
0.6965127
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Phylogenetic dendrogram showing the position of strains isolated from petroleum reservoirs (boldface) within the order . ., . Bar, 10% sequence divergence.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Phylogenetic dendrogram showing the position of members of the family of isolated from petroleum reservoirs (in boldface type). Numbers on branch nodes are bootstrap values. Bar, 5% sequence divergence.

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(A) Electron micrograph of strain 6459 showing the typical outer sheath-like structure of . Bar, 1 µm. (B) Transmission electron micrograph of showing terminal toga. Bar, 2 µm. (C) Phase-contrast photomicrograph of strain 5268 showing terminal spores. Bar, 10 µm. (D) Scanning electron micrograph of after thermal stress, showing spherical, terminal spores swelling the cells and a subpolar flagellum. Bar, 1 µm. (Panel A reprinted from with publisher permission. Panel B reprinted from with publisher permission. Panel C reprinted from with publisher permission. Panel D reprinted from with publisher permission.)

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap5
1. Balk, M.,, J. Weijma,, and A. J. M. Stams. 2002. Thermotoga lettingae sp. nov., a novel thermophilic, methanol-degrading bacterium isolated from a thermophilic anaerobic reactor. Int. J. Syst. Evol. Microbiol. 52:13611368.
2. Barth, T. 1991. Organic acids and inorganic ions in waters from petroleum reservoirs, Norwegian continental shelf: a multivariate statistical analysis and comparison with American reservoir formation waters. Appl. Geochem. 6:115.
3. Bastin, E. S. 1926. The problem of the natural reduction of sulphates. Bull. Am. Assoc. Petrol. Geol. 10:12701299.
4. Bhupathiraju, V. K.,, M. J. McInerney,, and R. M. Knapp. 1993. Pretest studies for a microbially enhanced oil recovery field pilot in a hypersaline oil reservoir. Geomicrobiol. J. 11:1934.
5. Bhupathiraju, V. K.,, M. J. McInerney,, C. R. Woese,, and R. S. Tanner. 1999. Haloanaerobium kushneri sp. nov., an obligately halophilic, anaerobic bacterium from an oil brine. Int. J. Syst. Bacteriol. 49:953960.
6. Bhupathiraju, V. K.,, A. Oren,, P. K. Sharma,, R. S. Tanner,, C. R. Woese,, and M. J. McInerney. 1994. Haloanaerobium salsugo sp. nov., a moderately halophilic, anaerobic bacterium from a subterranean brine. Int. J. Syst. Bacteriol. 44: 565572.
7. Bhupathiraju, V. K.,, P. K. Sharma,, M. J. McInerney,, R. M. Knapp,, K. Fowler,, and W. Jenkins. 1991. Isolation and characterization of novel halophilic anaerobic bacteria from oilfield brines. Dev. Petrol. Sci. 31:131143.
8. Bonch-Osmolovskaya, E. A.,, M. L. Miroshnichenko,, A. V. Lebedinsky,, N. A. Chernyh,, T. N. Nazina,, V. S. Ivoilov,, S. S. Belyaev,, E. S. Boulygina,, Y. P. Lysov,, A. N. Perov,, A. D. Mirzabekov,, H. Hippe,, E. Stackebrandt,, S. L’Haridon,, and C. Jeanthon. 2003. Radioisotopic, culture-based, and oligonucleotide microchip analyses of thermophilic microbial communities in a continental high-temperature petroleum reservoir. Appl. Environ. Microbiol. 69: 61436151.
9. Bonilla Salinas, M.,, M.-L. Fardeau,, J.-L. Cayol,, L. Casalot,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 2004a. Petrobacter succinatimandens gen. nov., sp. nov., a moderately thermophilic, nitrate-reducing bacterium isolated from an Australian oil well. Int. J. Syst. Evol. Microbiol. 54:645649.
10. Bonilla Salinas, M.,, M.-L. Fardeau,, P. Thomas,, J.-L. Cayol,, B. K. C. Patel, and B. Ollivier. 2004b. Mahella australiensis gen. nov., sp. nov., a moderately thermophilic anaerobic bacterium isolated from an Australian oil well. Int. J. Syst. Evol. Microbiol. 54:21692173.
11. Cayol, J.-L.,, M.-L. Fardeau,, J.-L. Garcia,, and B. Ollivier. 2002. Evidence of interspecies hydrogen transfer from glycerol in saline environments. Extremophiles 51:13731382.
12. Cayol, J.-L.,, B. Ollivier,, B. K. C. Patel,, G. Ravot,, M. Magot,, E. Ageron,, P. A. D. Grimont,, and J.-L. Garcia. 1995. Description of Thermoanaerobacter brockii subsp. lactiethylicus subsp. nov., isolated from a deep subsurface French oil well, a proposal to reclassify Thermoanaerobacter finnii as Thermoanaerobacter brockii subsp. finnii comb. nov., and emended description of Thermoanaerobacter brockii. Int. J. Syst. Bacteriol. 45:783789.
13. Cord-Ruwich, R.,, W. Kleinitz,, and F. Widdel. 1987. Sulphate-reducing bacteria and their activities in oil production. J. Petrol. Technol. 1:97106.
14. Crolet, J.-L.,, and M. Magot. 1996. Non-SRB sulfidogenic bacteria in oilfield production facilities. Mater. Perf. March:6064.
15. Davey, M.E.,, W.A. Wood,, R. Key,, K. Nakamura,, and D. A. Stahl. 1993. Isolation of three species of Geotoga and Petrotoga: two newgenera, representing a new lineage in the bacterial line. Syst. Appl. Microbiol. 16:191200.
16. Davidova, I.,, M. S. Hicks,, P. M. Fedorak,, and J. M. Suflita. 2001. The influence of nitrate on microbiol processes in oil industry production waters. J. Ind. Microbiol. Biotechnol. 22:582589.
17. Davydova-Charakhch’yan, I. A.,, A. N. Mileeva,, L. L. Mityushina,, and S. S. Belyaev. 1992. Acetogenic bacteria from oil fields of Tataria and western Siberia. Microbiology (New York) 61: 306315.
18. Fardeau, M.-L.,, M. Bonilla Salinas,, S. L’Haridon,, C. Jeanthon,, F. Verhé,, J.-L. Cayol,, B. K. C. Patel,, J.-L. Garcia,, and B. Ollivier. 2004. Isolation from oil reservoirs of new thermophilic anaerobes phylogenetically related to Thermoanaerobacter subterraneus: reassignment of T. subterraneus, Thermoanaerobacter yonseiensis, Thermoanaerobacter tengcongensis, and Carboxydibrachium pacificum to Caldanaerobacter subterraneus gen. nov., sp. nov., comb. nov. as four novel subspecies. Int. J. Syst. Evol. Microbiol. 54:467474.
19. Fardeau, M.-L.,, J.-L. Cayol,, M. Magot,, and B. Ollivier. 1993. H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol. Lett. 113:327332.
20. Fardeau, M.-L.,, M. Magot,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 2000. Thermoanaerobacter subterraneus sp. nov., a novel thermophile isolated from an oil field water. Int. J. Syst. Evol. Microbiol. 50:21412149.
21. Fardeau, M.-L.,, B. Ollivier,, B. K. C. Patel,, M. Magot,, P. Thomas,, A. Rimbault,, F. Rocchiccioli,, and J.-L. Garcia. 1997. Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 47:10131019.
22. Faudon, C.,, M.-L. Fardeau,, J. Heim,, B. K. C. Patel,, M. Magot,, and B. Ollivier. 1995. Peptide and amino acid oxidation in the presence of thiosulfate by members of the genus Thermoanaerobacter. Curr. Microbiol. 31:152157.
23. Fischer, J. B. F. 1987. Distribution and occurrence of aliphatic acid anions in deep subsurface waters. Geochim. Cosmochim. Acta 51:24592468.
24. Gevertz, D.,, J. R. Paterek,, M. E. Davey,, and W. A. Wood. 1991. Isolation and characterization of anaerobic halophilic bacteria from oil reservoir brines. Dev. Petrol. Sci. Ser. 31:115129.
25. Gevertz, D.,, A. J. Telang,, G. Voordouw,, and G. E. Jenneman. 2000. Isolation and characterization of strains CVO and FWKO B, two novel nitrate-reducing, sulfide-oxidizing bacteria isolated from oil field brine. Appl. Environ. Microbiol. 66:24912501.
26. Grassia, G. S.,, K. M. McLean,, P. Glénat,, J. Bauld,, and A. J. Sheehy. 1996. A systematic survey for thermophilic fermentative bacteria and archaea in high temperature petroleum reservoirs. FEMS Microbiol. Ecol. 21:4758.
27. Greene, A. C.,, B. K. C. Patel,, and A. Sheehy. 1997. Deferribacter thermophilus gen. nov., sp. nov., a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int. J. Syst. Bacteriol. 47:505509.
28. Greene, E. A.,, C. Hubert,, M. Nemati,, G. E. Jenneman,, and G. Voordouw. 2003. Nitrite reductase activity of sulphate-reducing bacteria prevents their inhibition by nitrate-reducing, sulphide-oxidizing bacteria. Environ. Microbiol. 5:607617.
29. Hubert, C.,, M. Nemati,, G. Jenneman,, and G. Voordouw. 2003. Containment of biogenic sulfide production in continuous Up-Flow packed-bed bioreactors with nitrate or nitrite. Biotechnol. Prog. 19:338345.
30. Huu, N. B.,, E. B. M. Denner,, D. T. C. Ha,, G. Wanner,, and H. Stan-Lotter. 1999. Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int. J. Syst. Bacteriol. 49:367375.
31. Jeanthon, C.,, A. L. Reysenbach,, S. L’Haridon,, A. Gambacorta,, N. R. Pace,, P. Glénat,, and D. Prieur. 1995. Thermotoga subterranea sp. nov., a new thermophilic bacterium isolated from a continental oil reservoir. Arch. Microbiol. 164:9197.
32. Jenneman, G. E.,, P. D. Moffitt,, G. A. Bala,, and R. H. Webb. 1999. Sulfide removal in reservoir brine by indigenous bacteria. Soc. Petrol. Eng. Prod. Facil. 14:219225.
33. Kengen, S. W. M.,, and A. J. M. Stams. 1994. Formation of L-alanine as a reduced end product in carbohydrate fermentation by the hyperthermophilic archaeon Pyrococcus furiosus. Arch. Microbiol. 161:168175.
34. Khmelenina, V. N.,, N. G. Starostina,, M. G. Tsvetkova,, A. P. Sokolov,, N. E. Suzina,, and Y. A. Trotsenko. 1996. Methanotrophic bacteria in saline reservoirs of Ukraine and Tuva. Microbiology (New York) 65:609615.
35. Kodama, Y.,, and K. Watanabe. 2003. Isolation and characterization of a sulfur-oxidizing chemolithotroph growing on crude oil under anaerobic conditions. Appl. Environ. Microbiol. 69:107112.
36. L’Haridon, S.,, A. L. Reysenbach,, P. Glénat,, D. Prieur,, and C. Jeanthon. 1995. Hot subterranean biosphere in a continental oil reservoir. Nature 377:223224.
37. L’Haridon, S.,, M.-L. Miroshnichenko,, H. Hippe,, M.-L. Fardeau,, E. Bonch-Osmolovskaya,, E. Stackebrandt,, and C. Jeanthon. 2001. Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in western Siberia. Int. J. Syst. Evol. Microbiol. 51:13271334.
38. L’Haridon, S.,, M. L. Miroshnichenko,, H. Hippe,, M.-L. Fardeau,, E. Bonch-Osmolovskaya,, E. Stackebrandt,, and C. Jeanthon. 2002. Petrotoga olearia and P. sibirica sp. nov., two thermophilic bacteria isolated from a continental petroleum reservoir in western Siberia. Int. J. Syst. Evol. Microbiol. 52:17151722.
39. Lien, T.,, M. Madsen,, F. A. Rainey,, and N. K. Birkeland. 1998. Petrotoga mobilis sp. nov., from a North Sea oil-production well. Int. J. Syst. Bacteriol. 48:10071013.
40. Magot, M.,, M.-L. Fardeau,, O. Arnauld,, C. Lanau,, B. Ollivier,, P. Thomas,, and B. K. C. Patel. 1997a. Spirochaeta smaragdinae sp. nov., a new mesophilic strictly anaerobic spirochete from an oil field. FEMS Microbiol. Lett. 155:185191.
41. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103116.
42. Magot, M.,, G. Ravot,, X. Campaignolle,, B. Ollivier,, B. K. C. Patel,, M.-L. Fardeau,, P. Thomas,, J.-L. Crolet,, and J.-L. Garcia. 1997b. Dethiosulfovibrio peptidovorans gen. nov., sp. nov., a new anaerobic, slightly halophilic, thiosulfatereducing bacterium from corroding offshore oil wells. Int. J. Syst. Bacteriol. 47:818824.
43. Miranda-Tello, E.,, M.-L. Fardeau,, J. Sepú lveda,, J. L. Fernández,, J.-L. Cayol,, T. Thomas,, and B. Ollivier. 2003. Garciella nitratireducens gen. nov., sp. nov., an anaerobic, thermophilic, nitrateand thiosulfate-reducing bacterium isolated from an oilfield separator in the Gulf of Mexico. Int. J. Syst. Evol. Microbiol. 53:15091514.
44. Miranda-Tello, E.,, M.-L. Fardeau,, P. Thomas,, F. Ramirez,, L. Casalot,, J.-L. Cayol,, J. L. Garcia,, and B. Ollivier. 2004. Petrotoga mexicana sp. nov., a novel thermophilic, anaerobic and xylanolytic bacteriumisolated froman oil-producing well in theGulf ofMexico. Int. J. Syst. Evol. Microbiol. 54:169174.
45. Miroshnichenko, M. L.,, H. Hippe,, E. Stackebrandt,, N. A. Kostrikina,, N. A. Chernyh,, C. Jeanthon,, T. N. Nazina,, S. S. Belyaev,, and E. A. Bonch-Osmolovskaya. 2001. Isolation and characterization of Thermococcus sibiricus sp. nov. from a western Siberia high temperature oil reservoir. Extremophiles 5:8591.
46. Moser, D. P.,, and K. H. Nealson. 1996. Growth of the facultative anaerobe Shewanella putrefaciens by elemental sulfur reduction. Appl. Environ. Microbiol. 62:21002105.
47. Myhr, S.,, and T. Torsvik. 2000. Denitrovibrio acetiphilus, a novel genus and species of dissimilatory nitrate-reducing bacterium isolated from an oil reservoir model column. Int. J. Syst. Bacteriol. 50:16111619.
48. Nazina, T. N.,, A. E. Ivanova,, O. V. Golubeva,, R. R. Ibatullin,, S. S. Belyaev, andM.V. Ivanov. 1995. Occurrence of sulfate- and iron-reducing bacteria in stratal waters of the Romashkinskoe oilfield. Microbiology (New York)V 64:203208.
49. Nazina, T. N.,, A. E. Ivanova,, G. F. Kandaurova,, R. R. Ibatullin,, S. S. Belyaev,, and M. V. Ivanov. 1998. Microbiological investigation of the carbonate collector of the Romashkinskoe oil field: background study before testing a biotechnology for the enhancement of oil recovery. Microbiology (New York) 67:701709.
50. Nazina, T. N.,, A. E. Ivanova,, L. L. Mityushina,, and S. S. Belyaev. 1993. Thermophilic hydrocarbon- oxidizing bacteria from oil strata. Microbiology (New York) 62:359365.
51. Nazina, T. N.,, T. P. Tourova,, A. B. Poltaraus,, E. V. Novikova,, A. A. Grigoryan,, A. E. Ivanova,, A. M. Lysenko,, V. V. Petrunyaka,, G. A. Osipov,, S. S. Belyaev,, and M. V. Ivanov. 2001. Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int. J. Syst. Evol. Microbiol. 51:433446.
52. Nealson, K. H.,, and D. Saffarini. 1994. Iron and manganese in anaerobic respiration: environmental significance, physiology, and regulation. Annu. Rev. Microbiol. 48:311343.
53. Neuner, A.,, H. W. Jannasch,, S. Belkin,, and K. O. Stetter. 1990. Thermococcus litoralis sp. nov.: a new species of extremely thermophilic marine archaebacteria. Arch. Microbiol. 153:205207.
54. Orphan, V. J.,, L. T. Taylor,, D. Hafenbradl,, and E. F. Delong. 2000. Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl. Environ. Microbiol. 66:700711.
55. Patel, B. K. C.,, K. T. Andrews,, B. Ollivier,, R. A. Mah,, and J.-L. Garcia. 1995. Reevaluating the classification of Halobacteroides and Haloanaerobacter species based on sequence comparisons of the 16S ribosomal RNA genes. FEMS Microbiol. Lett. 134:115119.
56. Philippi, G. T. 1977. On the depth, time and mechanism of origin of the heavy to mediumgravity naphthenic crude oils. Geochim. Cosmochim. Acta 41:3352.
57. Rainey, F. A.,, T. N. Zhilina,, E. S. Boulygina,, E. Stackebrandt,, T. P. Tourova,, and G. A. Zavarzin. 1995. The taxonomic status of the fermentative halophilic anaerobic bacteria: description of Haloanaerobiales ord. nov., Halobacteroidaceae fam. nov., Orenia gen. nov., and further taxonomic rearrangements at the genus and species level. Anaerobe 1:185199.
58. Ravot, G. 1996. Nouvelles approches microbiologiques de la thiosulfato-réduction en milieu pétrolier. Ph.D. thesis. Université de Provence,Marseille, France.
59. Ravot, G.,, M. Magot,, M.-L. Fardeau,, B. K. C. Patel,, G. Prensier,, A. Egan,, J.-L. Garcia,, and B. Ollivier. 1995a. Thermotoga elfii sp. nov., a novel thermophilic bacterium from an African oil-producing well. Int. J. Syst. Bacteriol. 45: 308314.
60. Ravot, G.,, M. Magot,, M.-L. Fardeau,, B. K. C. Patel,, P. Thomas,, J.-L. Garcia,, and B. Ollivier. 1999. Fusibacter paucivorans gen. nov., sp. nov., an anaerobic, thiosulfate-reducing bacterium from an oil-producing well. Int. J. Syst. Bacteriol. 49: 11411147.
61. Ravot, G.,, M. Magot,, B. Ollivier,, B. K. C. Patel,, E. Ageron,, P. A. D. Grimont,, P. Thomas,, and J.-L. Garcia. 1997. Haloanaerobium congolense sp. nov., an anaerobic, moderately halophilic, thiosulfate- and sulfur-reducing bacterium from an African oil field. FEMS Microbiol. Lett. 147:8188.
62. Ravot, G.,, B. Ollivier,, M.-L. Fardeau,, B. K. C. Patel,, K. T. Andrews,, M. Magot,, and J.-L. Garcia. 1996. L-Alanine production from glucose fermentation by hyperthermophilic members of the domains Bacteria and Archaea: a remnant of an ancestral metabolism? Appl. Environ. Microbiol. 62:26572659.
63. Ravot, G.,, B. Ollivier,, M. Magot,, B. K. C. Patel,, J. - L,. Crolet,. M.-L Fardeau,, and J.-L. Garcia. 1995b. Thiosulfate reduction, an important physiological feature shared by members of the order Thermotogales.Appl.Environ.Microbiol. 61:20532055.
64. Rees, G. N.,, B. K. C. Patel,, G. S. Grassia,, and A. J. Sheehy. 1997. Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int. J. Syst. Bacteriol. 47:150154.
65. Rengpipat, S.,, T. A. Langworthy,, and J. G. Zeikus. 1988. Halobacteroides acetoethylicus sp. nov., a new obligately anaerobic halophile isolated from deep surface hypersaline environment. Syst. Appl. Microbiol. 11:2835.
66. Reysenbach, A.-L., 2001. Phylum BII: Thermotogae phy. nov., p. 369370. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, N.Y.
67. Rinker, K. D.,, and R. M. Kelly. 1996. Growth physiology of the hyperthermophilic archaeon Thermococcus litoralis: development of a sulfur-free defined medium, characterization of an exopolysaccharide, and evidence of biofilm formation. Appl. Environ. Microbiol. 62:44784485.
68. Rinker, K. D.,, and R. M. Kelly. 2000. Effect of carbon and nitrogen sources on growth dynamics and exopolysaccharide production for the hyperthermophilic Archaeon Thermococcus litoralis and bacterium Thermotoga maritima. Biotechnol. Bioeng. 69:537547.
69. Schönheit, P.,, and T. Schäfer. 1995. Metabolism of hyperthermophiles. World J. Microbiol. Biotechnol. 11:2657.
70. Semple, K. M.,, and D. W. S. Westlake. 1987. Characterization of iron-reducing Alteromonas putrefaciens strains from oil field fluids. Can. J. Microbiol. 33:366371.
71. Slobodkin, A. I.,, C. Jeanthon,, S. L’Haridon,, T. Nazina,, M. Miroshnichenko,, and E. Bonch- Osmolovskaya. 1999. Dissimilatory reduction of Fe(III) by thermophilic Bacteria and Archaea in deep-subsurface petroleum reservoirs of western Siberia. Curr. Microbiol. 39:99102.
72. Stetter, K. O.,, A. Hoffmann,, and R. Huber,. 1993a. Microorganisms adapted to high temperature environments, p. 2528. In R. Guerrero, and C. Pedros-Alio (ed.), Trends in Microbial Ecology. Spanish Society for Microbiology, Barcelona, Spain.
73. Stetter, K. O.,, R. Huber,, E. Blö chl,, M. Kurr,, R. D. Eden,, M. Fielder,, H. Cash,, and I. Vance. 1993b. Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743745.
74. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2000. Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl. Environ. Microbiol. 66:7379.
75. Takahata, Y.,, M. Nishijima,, T. Hoaki,, and T. Maruyama. 2001. Thermotoga petrophila sp. nov. and Thermotoga naphthophila sp. nov., two hyperthermophilic bacteria from the Kubiki oil reservoir in Niigata, Japan. Int. J. Syst. Evol. Microbiol. 51:19011909.
76. Telang, A. J.,, S. Ebert,, J. M. Foght,, D. W. S. Westlake,, G. E. Jenneman,, D. Gevertz,, and G. Voordouw. 1997. Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63:17851793.
77. Van Ooteghem, S. A.,, S. K. Beer,, and P. C. Yue. 2002. Hydrogen production by the thermophilic bacterium Thermotoga neapolitana. Appl. Biochem. Biotechnol. 98-100:177189.
78. Voordouw, G.,, S. M. Armstrong,, M. F. Reimer,, B. Fouts,, A. J. Telang,, Y. Shen,, and D. Gevertz. 1996. Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl. Environ. Microbiol. 62:16231629.
79. Wiegel, J.,, L. G. Ljungdahl,, and J. R. Rawson. 1979. Isolation from soil and properties of the extreme thermophile Clostridium thermohydrosulfuricum. J. Bacteriol. 139:800810.
80. Xue, Y.,, X. Sun,, P. Zhou,, R. Liu,, F. Liang,, and Y. Ma. 2003. Gordonia paraffinovorans sp. nov., a hydrocarbon-degrading actinomycete isolated from an oil-producing well. Int. J. Syst. Evol. Microbiol. 53:16431646.
81. Zeikus, J. G.,, P. W. Hegge,, and M. A. Anderson. 1979. Thermoanaerobium brockii gen. nov. and sp. nov, a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch. Microbiol. 122:4148.
82. Zillig, W.,, and A.-L. Reysenbach,. 2001. Class IV: Thermococci class. nov., p. 341342. In D. R. Boone,, R. W. Castenholz,, and G. M. Garrity (ed.), Bergey’s Manual of Systematic Bacteriology, 2nd ed. Springer-Verlag, New York, N.Y.
83. Zvyagintseva, I. S.,, N. A. Kostrikina,, and S. S. Belyaev. 1998. Detection of halophilic Archaea in an upper Devonian oil field in Tatarstan. Microbiology (New York) 67:827831.

Tables

Generic image for table
Table 1

Fermentative bacteria isolated from oil field environment

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5
Generic image for table
TABLE 2

Nitrate and/or iron-reducing bacteria isolated from oilfield environments

Citation: Ollivier B, Cayol J. 2005. Fermentative, Iron-Reducing, and Nitrate-Reducing Microorganisms, p 71-88. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch5

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error