1887

Chapter 6 : Biodegradation of Petroleum in Subsurface Geological Reservoirs

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biodegradation of Petroleum in Subsurface Geological Reservoirs, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap06-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap06-2.gif

Abstract:

Petroleum biodegradation in reservoirs can be demonstrated by bulk compositional alteration, isotopic fractionation of petroleum components, and identification of specific metabolic products in petroleum. The effects of biodegradation on the physical properties and bulk composition of petroleum have been summarized by numerous studies. Different classes of compounds in petroleum have different susceptibilities to biodegradation. This chapter presents the biodegradation behavior of multiply methylated naphthalenes, i.e., trimethylnaphthalenes (TMNs), tetramethylnaphthalenes (TeMNs), and pentamethylnaphthalenes (PMNs). The relative biodegradability of fluoranthene, pyrene, and chrysene was compared in a study using the Liaohe basin suite, indicating that fluoranthene is more vulnerable to biodegradation than pyrene and chrysene. The chapter compares the susceptibility during biodegradation of short side chain to long side chain steranes, monoaromatic steroid hydrocarbons (MAS) and triaromatic steroid hydrocarbons (TAS). Knowledge of biodegradation processes is especially critical to the accurate prediction of biodegradation risk in petroleum exploration. Methanogenesis through carbon dioxide reduction may be the dominant terminal process in petroleum biodegradation in the subsurface, since biodegraded petroleum reservoirs are sometimes associated with abundant methane. A biodegradation model based on geochemical analysis and geological observation has been established. Analyzed data suggest that biodegradation occurs within a narrow region near the oil-water contacts (OWCs) and that reservoirs often show a late charge of oil to the top of the oil column.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6

Key Concept Ranking

Aromatic Hydrocarbon Degradation
0.4444996
Hydrocarbon Degradation
0.4199195
Polycyclic Aromatic Hydrocarbons
0.41830626
0.4444996
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Concentration and carbon isotope composition of CO in petroleum gases from the Australian Plate. (Modified from ].)

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Conceptual model for the origin and isotopic composition of carbon dioxide and methane in biodegraded petroleums.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Representative RICs showing aliphatic and aromatic hydrocarbon distributions in reservoir core extracts at various levels of biodegradation. 17, C--alkane; 18, C--alkane; 30H, C-17α,21β-hopanes; 25-norH, C-17α,21β 25-norhopane; MN, methylnaphthalenes; DMN, dimethylnaphthalenes; P, phenanthrene.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Relative concentration variations of aliphatic components relative to an initial least degraded oil (PM level 2) at different biodegradation levels for a suite of oils from the Liaohe basin. Sesqui T, sesquiterpanes; Tri T, tricyclic terpanes; Penta T, pentacyclic terpanes; St, C-steranes; 25-Norhop, C-17α,21β-25-norhopanes.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Variations of commonly used aliphatic biomarker ratios with increasing degrees of biodegradation. TT, tricyclic terpanes; PT, pentacyclic terpanes; CTs, 18-α(H)-30-norneohopane; CH, C-17α,21β-hopane; CM, C-17β,21α-hopane; CH, C-17α,21β-hopane; G, gammacerane; DiaSt, diasteranes; St, regular C-steranes; CS/(S+R), C-ααα-steranes 20S/ (20S+20R); ββ/(αα+ββ), C-steranes ββ/(αα+ββ); CNH, C-17α,21β 25-norhopane.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Relative concentration variations of aromatic components relative to an initial least degraded oil (PM level 2) at different biodegradation levels for a suite of oils from the Liaohe basin. B, C-alkylbenzenes; N, C-alkylnaphthalenes; DBT, C-alkyldibenzothiophenes; P, C-alkylphenanthrenes; TeC, tetracyclic aromatic hydrocarbons.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Variations of aromatic isomer ratios with increasing degree of biodegradation. TMNR, [2,3,6-TMN/(1,2,3-TMNþ1,2,4-TMN)]; TeMNR, [1,3,6,7-TeMN/(1,2,5,6-TeMNþ1,2,3,5-TeMN)]; MPR, 9-MP/3-MP; MDR, 4-MDBT/MDBT; Py/Fl, pyrene/fluoranthene; LTAS%, (C-TAS/C- TAS) × 100; LMAS%, (C-MAS/C-MAS) × 100.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Variations of relative concentrations of the carbazole compound groups with increasing degree of biodegradation. C+MC, carbazole plus methylcarbazoles; DMC, C-alkylcarbazoles; TMC, C-alkylcarbazoles; BC, benzocarbazoles; MBC, methylbenzocarbazoles; DBC, dibenzocarbazoles or naphthocarbazoles.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Integrated plot showing saturated hydrocarbon contents and gas chromatograms of the Lengdong reservoir petroleums through the reservoir (based on ], ], ], and ]). Biodegradation of hydrocarbons at the OWC is controlled by mineral dissolution in the water leg and results in a compositional gradient in the oil column.

Citation: Huang H, Larter S. 2005. Biodegradation of Petroleum in Subsurface Geological Reservoirs, p 91-122. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch6
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap6
1. Aitken, C.,, D. M. Jones,, and S. R. Larter. 2004. Anaerobic hydrocarbon biodegradation in deep subsurface oil reservoirs. Nature 431: 291 294.
2. Alberdi, M.,, J. M. Moldowan,, K. E. Peters,, and J. E. Dahl. 2001. Stereoselective biodegradation of tricyclic terpanes in heavy oils from the Bolivar Coastal Fields, Venezuela. Org. Geochem. 32: 181 191.
3. Atlas, R. M. 1981. Microbial degradation of petroleum hydrocarbons: an environmental perspective. Microbiol. Rev. 45: 180 209.
4. Babaian-Kibala, E.,, H. L. Craig,, G. L. Rusk,, K. V. Blanchard,, T. J. Rose,, B. L. Uehlein,, R. C. Quinter,, and M. A. Summers. 1998. Naphthenic acid corrosion in a refinery setting. Mater. Perform. 32: 50 55.
5. Barnard, P. C.,, M. A. Bastow,. 1991. Hydrocarbon generation, migration alteration, entrapment and mixing in the central and northern North Sea, p. 167 190. In W. A. England, and A. J. Fleet (ed.), Petroleum Migration. Geological Society Special Publication 59. The Geological Society, London, United Kingdom.
6. Bennett, P. C.,, D. E. Siegel,, M. J. Baedecker,, and M. F. Hult. 1993. Crude oil in a shallow sand and gravel aquifer. I. Hydrogeology and inorganic geochemistry. Appl. Geochem. 8: 529 549.
7. Bennett, P. C.,, F. K. Hiebert,, and J. R. Rogers. 2000. Microbial control of mineral-groundwater equilibria: macroscale to microscale. Hydrogeol. J. 8: 47 62.
8. Bernard, F. P., et al. 1992. Indigenous microorganisms in connate waters of many oilfields: a new tool in exploration and production techniques, SPE 24811. SPE Annual Technical Conference and Exhibition. Society of Petroleum Engineers, Washington, D.C.
9. Bigge, M. A.,, and P. Farrimond,. 1998. Biodegradation of seep oils in the Wessex Basin—a complication for correlation, p. 373 386. In J. R. Underhill (ed.), Development, Evolution and Petroleum of the Wessex Basin. Special Publication 133. The Geological Society, London, United Kingdom.
10. Blanc, P.,, and J. Connan. 1992. Origin and occurrence of 25-norhopanes: a statistical study. Org. Geochem. 18: 813 828.
11. Boreham, C. J.,, J. M. Hope,, and B. H. Kagi. 2001. Understanding source, distribution and preservation of Australian natural gas: a geochemical perspective. Aust. Petrol. Prod. Explor. Assoc. J. 41: 523 547.
12. Bost, F. D.,, R. Frontera-Suau,, T. J. McDonald,, K. E. Peters,, and P. J. Morris. 2001. Aerobic biodegradation of hopanes and norhopanes in Venezuelan crude oils. Org. Geochem. 32: 105 114.
13. Broholm, M. M.,, and E. Arvin. 2000. Biodegradation of phenols in a sandstone aquifer under aerobic conditions and mixed nitrate and iron reducing conditions. J. Contam. Hydrol. 44: 239 273.
14. Brooks, P. W.,, M. G. Fowler,, and R. W. MacQueen. 1988. Biological marker and conventional organic geochemistry of oil sands/heavy oils, Western Canada Basin. Org. Geochem. 12: 519 538.
15. Budzinski, H.,, P. Garrigues,, J. Connan,, J. Devillers,, D. Domine,, M. Radke,, and J. L. Oudin. 1995. Alkylated phenanthrene distributions as maturity and origin indicators in crude oils and rock extracts. Geochim. Cosmochim. Acta 59: 2043 2056.
16. Budzinski, H.,, N. Raymond,, T. Nadalig,, M. Gilewicz,, P. Garrigues,, J. C. Bertrand,, and P. Caumette. 1998. Aerobic biodegradation of alkylated aromatic hydrocarbons by a bacterial community. Org. Geochem. 28: 337 348.
17. Caldwell, M. E.,, R. M. Garrett,, R. C. Prince,, and J. M. Suflita. 1998. Anaerobic biodegradation of long-chain n-alkanes under sulfatereducing conditions. Environ. Sci. Technol. 32: 2191 2195.
18. Cassani, F.,, and G. Eglinton. 1986. Organic geochemistry of Venezuelan extra heavy oils. 1. Pyrolysis of asphaltenes: a technique for the correlation and maturity evaluation of crude oils. Chem. Geol. 56: 167 183.
19. Cassani, F.,, and G. Eglinton. 1991. Organic geochemistry of Venezulean extra-heavy crude oils. 2. Molecular assessment of biodegradation. Chem. Geol. 91: 315 333.
20. Charlou, J. L.,, J. P. Donval,, Y. Fouquet,, P. Jean- Baptiste,, and N. Holm. 2002. Geochemistry of high H 2 and CH 4 vent fluids issuing from ultramafic rocks at the Rainbow hydrothermal field (36 degrees 14'N, MAR). Chem. Geol. 191: 345 359.
21. Chosson, P.,, C. Lanau,, J. Connan,, and D. Dessort. 1991. Biodegradation of refractory hydrocarbon biomarkers from petroleum under laboratory conditions. Nature 351: 640 642.
22. Connan, J., 1984. Biodegradation of crude oils in reservoirs, p. 299 335. In J. Brooks, and D. Welte (ed.), Advances in Petroleum Geochemistry, vol. 1. Academic Press, London, United Kingdom.
23. Damsté, J. S.,, F. Kenig,, M. P. Koopmans,, J. Kö ster,, S. Schouten,, J. M. Hayes,, and J. de Leeuw. 1995. Evidence of gammacerane as an indicator of water column stratification. Geochim. Cosmochim. Acta 59: 1895 1900.
24. Dean-Ross, D.,, J. Moody,, and C. E. Cerniglia. 2002. Utilization of mixtures of polycyclic aromatic hydrocarbons by bacteria isolated from contaminated sediment. FEMS Microbiol. Ecol. 41: 1 7.
25. Dessort, D.,, Y. Poirier,, G. Sermondadaz,, and D. Levache. 2003. Methane generation during oil biodegradation, abstr. PI/104. In Abstracts of the 21st EAOG Meeting. European Association of Organic Geochemists, Cracow, Poland.
26. Dyreborg, S.,, E. Arvin,, and K. Broholm. 1997. Biodegradation of NSO compounds under different redox conditions. J. Contam. Hydrol. 25: 177 197.
27. England, W. A.,, A. S. Mackenzie,, D. M. Mann,and T. M. Quigley. 1987. The movement and entrapment of petroleum fluids in the subsurface. J. Geol. Soc. London 144: 327 347.
28. Fedorak, P. M.,, and D. W. S. Westlake. 1984. Microbial degradation of alkyl carbazoles in Norman Wells crude oil. Appl. Environ. Microbiol. 47: 858 862.
29. Fisher, S. J.,, R. Alexander,, and R. I. Kagi. 1996. Biodegradation of alkylnaphthalenes in sediment adjacent to an offshore petroleum production platform. Polycycl. Aromat. Compounds 11: 35 42.
30. George, S. C.,, C. J. Boreham,, S. A. Minifie,, and S. C. Teerman. 2002. The effect of minor to moderate biodegradation on C 5 to C 9 hydrocarbons in crude oils. Org. Geochem. 33: 1293 1317.
31. Goodwin, N. S.,, P. J. D. Park,, and A. P. Rawlinson,. 1983. Crude oil biodegradation under simulated and natural conditions, p. 650 658. In M. Bjorøy (ed.), Advances in Organic Geochemistry 1981. Wiley, Chichester, United Kingdom.
32. Head, I. M.,, D. M. Jones,, and S. R. Larter. 2003. Biological activity in the deep subsurface and the origin of heavy oil. Nature 426: 344 352.
33. Holba, A. G.,, L. Wright,, R. Levinson,, B. Huizinga,, and M. Scheihing,. 2004. Effects and impact of early-stage anaerobic biodegradation on Kuparuk River Field, Alaska. In J. M. Cubitt,, W. A. England,, and S. R. Larter (ed.), Understanding Petroleum Reservoirs: Towards an Integrated Reservoir Engineering and Geochemical Approach. The Geological Society, London, United Kingdom
34. Horstad, I.,, S. R. Larter,, and N. Mills. 1992. A quantitative model of biological petroleum degradation within the Brent Group reservoir in the Gullfaks field, Norwegian North Sea. Org. Geochem. 19: 107 117.
35. Horstad, I.,, and S. R. Larter. 1997. Petroleum migration, alteration, and remigration within Troll Field, Norwegian North Sea. AAPG Bull. 81: 222 248.
36. Huang, H. P.,, and M. J. Pearson. 1999. Source rock palaeoenvironments and controls on the distribution of dibenzothiophenes in lacustrine crude oils, Bohai Bay Basin, eastern China. Org. Geochem. 30: 1455 1470.
37. Huang, H. P.,, B. F. J. Bowler,, Z. W. Zhang,, T. B. P. Oldenburg,, and S. R. Larter. 2003. Influence of biodegradation on carbazole and benzocarbazole distributions in single oil columns from the Liaohe basin, NE China. Org. Geochem. 34: 951 969.
38. Huang, H. P.,, S. R. Larter,, B. F. J. Bowler,, and T. B. P. Oldenburg. 2004a. A dynamic biodegradation model suggested by petroleum compositional gradients within reservoir columns from the Liaohe basin, NE China. Org. Geochem. 35: 299 316.
39. Huang, H. P.,, B. F. J. Bowler,, T. B. P. Oldenburg,, and S. R. Larter. 2004b. The effect of biodegradation on polycyclic aromatic hydrocarbons in reservoired oils from the Liaohe basin, NE China. Org. Geochem. 35: 1619 1634.
40. Hunt, J. H. 1996. Petroleum Geology and Geochemistry, 2nd ed. W. H. Freeman and Co., New York, N.Y.
41. Jaffé, R.,, and M. T. Gallardo. 1993. Application of carboxylic acid biomarkers as indicators of biodegradation and migration of crude oils from the Maracaibo Basin, western Venezuela. Org. Geochem. 20: 973 984.
42. James, A. T.,, and B. J. Burns. 1984. Microbial alteration of subsurface natural gas accumulations. AAPG Bull. 68: 957 960.
43. Kiehlmann, E.,, L. Pinto,, and M. Moore. 1996. The biotransformation of chrysene to trans-1,2- dihydroxy-1,2-dihydrochrysene by filamentous fungi. Can. J. Microbiol. 42: 604 608.
44. Koopmans, M. P.,, S. R. Larter,, C. Zhang,, B. Mei,, T. Wu,, and Y. Chen. 2002. Biodegradation and mixing of crude oils in Eocene Es3 reservoirs of the Liaohe basin, northeastern China. AAPG Bull. 86: 1833 1843.
45. Kotelnikova, S. 2002. Microbial production and oxidation of methane in deep subsurface. Earth-Sci. Rev. 58: 367 395.
46. Kropp, K. G.,, I. A. Davidova,, and J. M. Suflita. 2000. Anaerobic oxidation of n-dodecane by an addition reaction in a sulfate-reducing bacterial enrichment culture. Appl. Environ. Microbiol. 66: 5393 5398.
47. Kruge, M. A. 2000. Determination of thermal maturity and organic matter type by principal components analysis of the distributions of polycyclic aromatic compounds. Int. J. Coal Geol. 43: 27 51.
48. Larter, S. R.,, and A. C. Aplin,. 1995. Reservoir geochemistry: methods, applications and opportunities, p. 5 32. In J. M. Cubitt, and W. A. England (ed.), The Geochemistry of Reservoirs. Special Publication 86. The Geological Society, London, United Kingdom.
49. Larter, S. R.,, B. F. J. Bowler,, M. Li,, M. Chen,, D. Brincat,, B. Bennett,, K. Noke,, P. Donohoe,, D. Simmons,, M. Kohnen,, J. Allan,, N. Telnaes,, and I. Horstad. 1996a. Molecular indicators of secondary oil migration distances. Nature 383: 593 597.
50. Larter, S. R.,, P. N. Taylor,, M. Chen,, B. Bowler,, P. Ringrose,, and I. Horstad,. 1996b. Secondary migration—visualizing the invisible: what can geochemistry potentially do?, p. 137 143. In K. Glennie, and A. Hurst (ed.), NW Europe’s Hydrocarbon Industry. The Geological Society, London, United Kingdom.
51. Larter, S.,, and R. di Primio. 2005. Effects of biodegradation on oil and gas field PVT properties and the origin of oil rimmed gas accumulations. Org. Geochem. 36: 299 310.
52. Larter, S. R.,, A. Wilhelms,, I. Head,, M. Koopmans,, A. Aplin,, R. Di Primio,, C. Zwach,, M. Erdmann,, and N. Telnaes. 2003. The controls on the composition of biodegraded oils in the deep subsurface. Part 1. Biodegradation rates in petroleum reservoirs. Org. Geochem. 34: 601 613.
53. Larter, S. R.,, I. M. Head,, H. P. Huang,, B. Bennett,, M. Jones,, A. Murray,, and R. DiPrimio. Oil to gas slowly—biodegradation, gas destruction and methane generation in deep subsurface petroleum reservoirs. In Proceedings of the Petroleum Geology in NW Europe, in press. The Geological Society, London, United Kingdom.
54. Lin, L. H.,, G. E. Michael,, G. Kovachev,, H. Zhu,, R. P. Philp,, and C. A. Lewis. 1989. Biodegradation of tar-sands bitumens from the Ardmore and Anadarko Basins, Carter County, Oklahoma. Org. Geochem. 14: 511 523.
55. Lucach, S. O.,, B. F. J. Bowler,, N. Frewin,, and S. R. Larter. 2002. Variation in alkylphenol distributions in a homogenous oil suite from the Dhahaban petroleum system of Oman. Org. Geochem. 33: 581 594.
56. Mackenzie, A. S.,, C. F. Hoffmann,, and J. R. Maxwell. 1981. Molecular parameters of maturation in the Toarcian shales, Paris Basin, France. III. Changes in aromatic steroid hydrocarbons. Geochim. Cosmochim. Acta 45: 1345 1355.
57. Mackenzie, A. S.,, G. A. Wolff,, and J. R. Maxwell,. 1983. Fatty acids in some biodegraded petroleums. Possible origins and significance, p. 637 649. In M. Bjorøy (ed.), Advances in Organic Geochemistry 1981. Wiley, Chichester, United Kingdom.
58. Masterson, W. D.,, L. I. P. Dzou,, A. G. Holba,, A. L. Fincannon,, and L. Ellis. 2001. Evidence for biodegradation and evaporative fractionation in West Sak, Kuparuk and Prudhoe Bay field areas, North Slope, Alaska. Org. Geochem. 32: 411 441.
59. Mazeas, L.,, H. Budzinski,, and N. Raymond. 2002. Absence of stable carbon isotope fractionation of saturated and polycyclic aromatic hydrocarbons during aerobic bacterial biodegradation. Org. Geochem. 33: 1259 1272.
60. McCaffrey, M. A.,, H. A. Legarre,, and S. J. Johnson. 1996. Using biomarkers to improve heavy oil reservoir management: an example from the Cymric field, Kern County, California. AAPG Bull. 80: 898 913.
61. Meredith, W.,, S. J. Kelland,, and D. M. Jones. 2000. Influence of biodegradation on crude oil acidity and carboxylic acid composition. Org. Geochem. 31: 1059 1073.
62. Merdrignac, I.,, F. Behar,, P. Albrecht,, P. Briot,, and M. Vandenbroucke. 1998. Quantitative extraction of nitrogen compounds in oils: Atomic balance and molecular composition. Energy Fuels 12: 1342 1355.
63. Moldowan, J. M.,, and M. A. McCaffrey. 1995. A novel microbial hydrocarbon degradation pathway revealed by hopane demethylation in a petroleum reservoir. Geochim. Cosmochim. Acta 59: 1891 1894.
64. Mueller, J. G.,, P. J. Chapman,, and P. H. Pritchard. 1989. Creosote-contaminated sites-- their potential for bioremediation. Environ. Sci. Technol. 23: 1197 1201.
65. Mueller, R. F.,, and P. H. Nielsen. 1996. Characterization of thermophilic consortia from two souring oil reservoirs. Appl. Environ. Microbiol. 62: 3083 3087.
66. Muller, C. 1999. Modelling Soil-Biosphere Interactions. CABI Publishing, Wallingford, United Kingdom.
67. Pallasser, R. J. 2000. Recognising biodegradation in gas/oil accumulations through the delta C-13 compositions of gas components. Org. Geochem. 31: 1363 1373.
68. Palmer, S. E., 1993. Effect of biodegradation and water washing on crude oil composition, p. 511 534. In S. A. Macko, and M. H. Engel (ed.), Organic Geochemistry. Plenum Press, New York, N.Y.
69. Pepper, A. S.,, and P. J. Corvi. 1995. Simple kinetic-models of petroleum formation. 1. Oil and gas generation from kerogen. Mar. Petrol. Geol. 12: 291 319.
70. Pepper, A.,, and C. Santiago. 2001. Impact of biodegradation on petroleum exploration and production: observations and outstanding problems. In Abstracts of Earth Systems Processes.
71. Peters, K. E.,, and J. M. Moldowan. 1991. Effects of source, thermal maturity and biodegradation on the distribution and isomerization of homohopanes in petroleum. Org. Geochem. 17: 47 61.
72. Peters, K. E.,, and J. M. Moldowan. 1993. The Biomarker Guide: Interpreting Molecular Fossils in Petroleum and Ancient Sediments. Prentice Hall, Englewood Cliffs, N.J.
73. Peters, K. E.,, J. M. Moldowan,, M. A. McCaffrey,, and F. J. Fago. 1996. Selective biodegradation of extended hopanes to 25-norhopanes in petroleum reservoirs. Insights from molecular mechanics. Org. Geochem. 24: 765 783.
74. Peters, K. E. 2000. Petroleum tricyclic terpanes: predicted physicochemical behavior from molecular mechanics calculations. Org. Geochem. 31: 497 507.
75. Radke, M.,, and D. H. Welte,. 1983. The methylphenanthrene index (MPI): a maturity parameter based on aromatic hydrocarbons, p. 504 512. In M. Bjorøy (ed.), Advances in Organic Geochemistry 1981. Wiley, Chichester, United Kingdom.
76. Radke, M. 1988. Application of aromatic compounds as maturity indicators in source rocks and crude oils. Mar. Petrol. Geol. 5: 224 236.
77. Requejo, A. G.,, and H. I. Halpern. 1989. An unusual hopane biodegradation sequence in tar sands from the Pt. Arena (Monterey) Formation. Nature 342: 670 673.
78. Rogers, J. R.,, P. C. Bennett,, and W. J. Choi. 1998. Feldspars as a source of nutrients for microorganisms. Am. Mineral. 83: 1532 1540.
79. Röling, W. F. M.,, I. M. Head,, and S. R. Larter. 2003. The microbiology of hydrocarbon degradation in subsurface petroleum reservoirs: perspectives and prospects. Res. Microbiol. 154: 321 328.
80. Rowland, S. J.,, R. Alexander,, R. I. Kagi,, D. M. Jones,, and A. G. Douglas. 1986. Microbial degradation of aromatic components of crude oils: a comparison of laboratory and field observations. Org. Geochem. 9: 153 161.
81. Schmitt, R.,, H. R. Langguth,, W. Pü ttmann,, H. P. Rohns,, P. Eckert,, and J. Schubert. 1996. Biodegradation of aromatic hydrocarbons under anoxic conditions in a shallow sand and gravel aquifer of the Lower Rhine Valley, Germany. Org. Geochem. 25: 41 50.
82. Seifert, W. K.,, and J. M. Moldowan. 1979. The effect of biodegradation on steranes and terpanes in crude oils. Geochim. Cosmochim. Acta 43: 111 126.
83. Seifert, W. K.,, J. M. Moldowan,, and G. J. Demaison. 1984. Source correlation of biodegraded oils. Org. Geochem. 6: 633 643.
84. Sepic, E.,, M. Bricelj,, and H. Leskovsek. 1998. Degradation of fluoranthene by Pasteurella sp. IFA and Mycobacterium sp. PYR-1: isolation and identification of metabolites. J. Appl. Microbiol. 85: 746 754.
85. Smalley, P. C.,, N. S. Goodwin,, J. F. Dillon,, C. R. Bidinger,, and R. J. Drozd. 1997. New tools target oil-quality sweetspots in viscous-oil accumulations. SPE Reservoir Eng. 12: 157 161.
86. Taylor, P.,, B. Bennett,, M. Jones,, and S. Larter. 2001. The effect of biodegradation and water washing on the occurrence of alkylphenols in crude oils. Org. Geochem. 32: 341 358.
87. Telang, A. J.,, S. Ebert,, J. M. Foght,, D. W. S. Westlake,, G. E. Jenneman,, D. Gevertz,, and G. Voordouw. 1997. Effect of nitrate injection on the microbial community in an oil field as monitored by reverse sample genome probing. Appl. Environ. Microbiol. 63: 1785 1793.
88. Tissot, B., and D. H. Welte. 1984. Petroleum Formation and Occurrence, 2nd ed. Springer-Verlag, Berlin, Germany.
89. van Aarssen, B. G. K.,, T. P. Bastow,, R. Alexander,, and R. I. Kagi. 1999. Distributions of methylated naphthalenes in crude oils: indicators of maturity, biodegradation and mixing. Org. Geochem. 30: 1213 1227.
90. Volkman, J. K.,, R. Alexander,, R. I. Kagi,, and G. W. Woodhouse. 1983. Demethylated hopanes in crude oils and their applications in petroleum geochemistry. Geochim. Cosmochim. Acta 47: 785 794.
91. Volkman, J. K.,, R. Alexander,, R. I. Kagi,, S. J. Rowland,, and P. N. Sheppard. 1984. Biodegradation of aromatic hydrocarbons in crude oils from the Barrow sub-basin of Western Australia. Org. Geochem. 6: 619 632.
92. Wardroper, A. M. K.,, C. F. Hoffmann,, J. R. Maxwell,, A. J. G. Barwise,, N. S. Goodwin,, and P. J. D. Park. 1984. Crude oil biodegradation under simulated and natural conditions. II. Aromatic steroid hydrocarbons. Org. Geochem. 6: 605 617.
93. Watson, J. S.,, D. M. Jones,, and R. P. J. Swannell,. 1999. Formation of carboxylic acids during biodegradation of crude oil, p. 251 255. In B. C. Alleman and A. Leeson (ed.), In Situ Bioremediation of Petroleum Hydrocarbons and Other Organic Compounds. Battelle, Columbus, Ohio.
94. Wenger, L. M.,, C. L. Davis,, and G. H. Isaksen. 2002. Multiple controls on petroleum biodegradation and impact on oil quality. SPE Reservoir Eval. Eng. 5: 375 383.
95. Whelan, J. K.,, M. C. Kennicutt,, J. M. Brooks,, D. Schumacher,, and L. B. Eglinton. 1994. Organic geochemical indicators of dynamic fluidflow processes in petroleum basins. Org. Geochem. 22: 587 615.
96. Whiticar, M. J., 1994. Correlation of natural gases with their sources, p. 261 283. In L. B. Magoon,, and W. G. Dow (ed.), The Petroleum System--from Source to Trap. AAPG memoir 60. American Association of Petroleum Geologists, Tulsa, Okla.
97. Widdel, F.,, and R. Rabus. 2001. Anaerobic biodegradation of saturated and aromatic hydrocarbons. Curr. Opin. Biotechnol. 12: 259 276.
98. Wilhelms, A.,, S. R. Larter,, I. Head,, P. Farrimond,, R. di Primio,, and C. Zwach. 2001. Biodegradation of oil in uplifted basins prevented by deepburial sterilisation. Nature 411: 1034 1037.
99. Wilkes, H.,, C. Boreham,, G. Harms,, K. Zengler,, and R. Rabus. 2000. Anaerobic degradation and carbon isotopic fractionation of alkylbenzenes in crude oil by sulfate-reducing bacteria. Org. Geochem. 31: 101 115.
100. Wilkes, H.,, S. Kuhner,, C. Bolm,, T. Fischer,, A. Classen,, F. Widdel,, and R. Rabus. 2003. Formation of n-alkane-and cycloalkane-derived organic acids during anaerobic growth of a denitrifying bacterium with crude oil. Org. Geochem. 34: 1313 1323.
101. Williams, J. A.,, M. Bjorøy,, D. L. Dolcater,, and J. C. Winters. 1986. Biodegradation of South Texas Eocene oils: effects on aromatics and biomarkers. Org. Geochem. 10: 451 461.
102. Yu, Z.,, G. Cole,, G. Grubitz,, and F. Peel. 2002. How to predict biodegradation risk and reservoir fluid quality. World Oil 223: 63 74.
103. Zengler, K.,, H. H. Richnow,, R. Rossello-Mora,, W. Michaelis,, and F. Widdel. 1999. Methane formation from long-chain alkanes by anaerobic microorganisms. Nature 401: 266 269.
104. Zhang, D. J.,, D. F. Huang,, and J. C. Li. 1988. Biodegraded sequence of Karamay oils and semiquantitative estimation of their biodegraded degrees in Junggar Basin, China. Org. Geochem. 13: 295 302.

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error