1887

Chapter 8 : Microbial Corrosion in the Oil Industry: A Corrosionist's View

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Ebook: Choose a downloadable PDF or ePub file. Chapter is a downloadable PDF file. File must be downloaded within 48 hours of purchase

Buy this Chapter
Digital (?) $15.00

Preview this chapter:
Zoom in
Zoomout

Microbial Corrosion in the Oil Industry: A Corrosionist's View, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap08-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap08-2.gif

Abstract:

In view of the scientific and technical challenges as well as the considerable economic stakes (amounting to millions of U.S. dollars), this chapter focuses on the recent developments on the corrosion of steel by sulfidogenic anaerobes. The corrosion layer is an active membrane where a looped interaction between the corrosion electrochemistry and the chemistry and transport of reactants and reaction products may significantly alter the composition of the local electrolyte at the corroding metal surface. A conductive layer is thus a corrosion layer containing a continuous network of an inert electronic conductor galvanically coupled to the metallic substratum. In the case of FeS and microbial corrosion, this merely electric effect is not thought to be decisive, since (i) all iron sulfides are more or less conductive and (ii) the most conductive one, pyrite, is also commonly associated with the best level of protectiveness, whereas corrosive layers usually contain mackinawite (formerly kansite), which is one of the less conductive sulfides. The mechanism of pitting corrosion has been widely documented for stainless steels in chloride media or other passive metals like Al or Ti alloys. However, since the protectiveness of corrosion layers is sensitive to an applied polarization, an equivalent process also exists for carbon and low-alloyed steels. A widespread ecological niche also includes all the low-temperature oil reservoirs where indigenous bacteria have survived, possibly since the original deposition of the biomass. Sulfate-reducing bacteria (SRB) thrive in many deaerated and sulfate-bearing environments, and in a latent state under aerated conditions.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8

Key Concept Ranking

Hydrogen Sulfide
0.6041667
Chemicals
0.53203017
Bacterial Growth
0.45144644
Scanning Electron Microscopy
0.44714716
0.6041667
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Physical structure of metals and aqueous solutions and illustration of anodic and cathodic reactions. (a) Transfer of metallic cations; (b) transfer of electrons.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Distribution of electric charge ρ (a) and electric potential U (b) across the metal-solution interface.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

(a) Individual polarization curves; (b) notion of oxidizing power.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Experimental polarization curves for activation polarization (black curves) or diffusion polarization (grey curves) at OCP.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 5
FIGURE 5

Sketch of the three families of corrosion layers: soluble (a), IC (b), and IA (c). In panel a, arrows indicate that corrosion products are transported mainly in the solid state. The dotted arrow in panel c indicates the precipitatable anion HS.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 6
FIGURE 6

Pitting mechanism on carbon and low-alloy steels by a self-amplified protectiveness contrast between anodic and cathodic areas (a), with, respectively, an increase of the Fe and HS release on anodic (b) and cathodic (c) areas (as an example of a cathodic reaction fed by HS only).

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 7
FIGURE 7

Field morphologies of pits (a) and pit nucleation (b).

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 8
FIGURE 8

Illustration of the full sequence of pit initiation (A), pit nucleation (B), and final pit growth (C). The shadowing geometry is very similar on convex and concave surfaces, which may give an initial false impression of protruding hemispheres instead of hemispherical pits.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 9
FIGURE 9

Electrochemical models of pit nuclei using coplanar (a) and face-to-face (b) electrodes.

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap8
1. Amalhay, M.,, and I. Ignatiadis. 1998. Comparative study of the effectiveness of various organic surfactants in inhibiting carbon steel corrosion in a natural geothermal environment by using rapid electrochemical tests, p. 169180. In Electrochemical Methods in Corrosion Research VI, Materials Science Forum, vol. 289-292. Trans Tech Publications, Zurich, Switzerland.
2. American Petroleum Institute. 1965. API Recommended Practice for the Biological Analysis of Subsurface Injection Waters, 2nd ed. RP-38. American Petroleum Institute, New York, N.Y.
3. Audisio, S. 2004. The Multimedia Corrosion Guide. INSAVALOR, Villeurbanne, France.
4. Bak, F.,, A. Schuhmann,, and K.-H. Jansen. 1993. Determination of tetrathionate and thiosulfate in natural samples and microbial cultures by a new, fast and sensitive ion chromatographic technique. Microb. Ecol. 12:257264.
5. Beyerinck, W.M. 1895. Über Spirillum desulfuricans als Ursache von Sulfatreduktion. Zentbl. Bakteriol. Parasitenkd. Infektionskr. Hyg. 1:1-9, 49-59, 104114.
6. Bockris, J. O. M.,, and A. K. N. Reddy. 1970. Modern Electrochemistry. Plenum Press, New York, N.Y.
7. Boivin, J. 1995. Oil industry biocides. Mater. Perform. 34:6568.
8. Boivin, J.,, E. J. Laishley,, R. Bryant,, and J. W. Costerton,. 1990. The hydrogenase test—a rapid enzyme based test for corrosion-causing bacteria, p. 8/278/32. In N. J. Dowling,, M. W. Mittelman,, and J. C. Danko (ed.), Microbially Influenced Corrosion and Biodeterioration. The University of Tennessee, Knoxville.
9. Bonis, M. R.,, and J.-L. Crolet. 2005. Why so low free acetic acid thresholds in sweet corrosion at low PCO2? In Corrosion 2005. Paper 272. NACE International, Houston, Tex.
10. Bryant, R. D.,, W. Jansen,, J. Boivin,, E. J. Laishley,, and J. W. Costerton. 1991. Effect of hydrogenase and mixed sulfate-reducing bacterial populations on the corrosion of steel. Appl. Environ. Microbiol. 57:28042809.
11. Campaignolle, X.,, D. Festy,, and J.-L. Crolet,. 1997. A search of the risk factors involved in the carbon steel corrosion induced by sulfidogenic bacteria, p 2537. In D. Thierry (ed.), Microbially Induced Corrosion. European Federation of Corrosion publication 22. The Institute of Metals, London, United Kingdom.
12. Campaignolle, X.,, and J.-L. Crolet. 1997. Method for studying the stabilization of localized corrosion on carbon steel by sulfate-reducing bacteria. Corrosion 53:440447.
13. Chantereau, J. 1977. Corrosion bactérienne—Bactéries de la Corrosion. PIC, Geneva, Switzerland.
14. Cheng, X. L.,, H. Y. Ma,, J. P. Zhang,, S. H. Chen,, and H. Q. Yang. 1998. Corrosion of iron in acid solutions with hydrogen sulfide. Corrosion 54:369376.
15. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
16. Crolet, J.-L., 1975. Place de la physique dans la connaissance des phenomenes de corrosion, p. 455466. In G. Martin,, J. Levy,, J. Oudar, G. Saada, and G. Saintfort (ed.), Interfaces et Surfaces en Metallurgie. Trans Tech Publications, Aedermannsdorf, Switzerland.
17. Crolet, J.-L. 1976. Mecanisme d’action du soufre sur la resistance à la corrosion generale des aciers inoxydables. Metaux Corr. Ind. 51:415425.
18. Crolet, J.-L. 1992. From biology and corrosion to biocorrosion. Oceanol. Acta 15:8794.
19. Crolet, J.-L. 1993a. Mechanism of uniform corrosion under corrosion deposits. J. Mater. Sci. 28: 25892606.
20. Crolet, J.-L. 1993b. Electrochemistry of corrosion beneath corrosion deposits. J. Mater. Sci. 28:25772588.
21. Crolet, J.-L., 1994. Protectiveness of corrosion layers, p. 128. In K. R. Trethewey, and P. R. Roberge (ed.), NATO ASI Series, Series E, vol. 266. Modelling Aqueous Corrosion: from Individual Pits to System Management. Kluwer Academic Publishers, Dordrecht, The Netherlands.
22. Crolet, J.-L. 2003. La corrosion face a son histoire: role omnipresent et insaisissable du temps sur les concepts et les besoins d’hier et d’aujourd’hui. Mater. Tech. 91:38.
23. Crolet, J.-L., 2004. Corrosion in industry—oil and gas production. In S. Audisio (ed.), The Multimedia Corrosion Guide. INSAVALOR, Villeurbanne, France.
24. Crolet, J.-L.,, and M. F. Magot. 1996. Non-SRB sulfidogenic bacteria in oilfield production facilities. Mater. Perform. 35:6064.
25. Crolet, J.-L.,, and G. G. Maisonneuve. 2000. Construction of a universal scale of severity for hydrogen cracking. In Corrosion 2000. Paper 127. NACE International, Houston, Tex.
26. Crolet, J.-L.,, and J. Leyer. 2004. Use and abuse of artificial acetate buffering in standardized and application specific testing. In Corrosion 2004. Paper 140. NACE International, Houston, Tex.
27. Crolet, J.-L.,, L. Seraphin,, and R. Tricot. 1977. Mécanisme d’action du soufre sur la re´sistance à la corrosion caverneuse des aciers inoxydables. Mem. Sci. Rev. Metall. 74:281289.
28. Crolet, J.-L.,, M. Pourbaix,, and A. Pourbaix. 1991. The role of trace amounts of oxygen on the corrosivity of H2S media. In Corrosion 91. Paper 022. NACE International, Houston, Tex.
29. Crolet, J.-L.,, S. Daumas,, and M. Magot. 1993. pH regulation by sulfate-reducing bacteria. In Corrosion 93. Paper 303. NACE International, Houston, Tex.
30. Crolet, J.-L.,, S. Olsen,, and W. Wilhelmsen. 1995. Observations of multiple steady states in the CO2 corrosion of carbon steel. In Corrosion 95. Paper 127. NACE International, Houston, Tex.
31. Crolet, J.-L.,, M. Magot,, and J.-L. Brazy. 1997. Test kits for thiosulfate-reducing bacteria. In Corrosion 97. Paper 211. NACE International, Houston, Tex.
32. Crolet, J.-L.,, N. Thevenot,, and S. Nesic. 1998. Role of conductive corrosion products on the protectiveness of corrosion layers. Corrosion 54:194203.
33. Crolet, J.-L.,, N. Thevenot,, and A. Dugstad. 1999. Role of free acetic acid on the CO2 corrosion of steels. In Corrosion 99. Paper 024. NACE International, Houston, Tex.
34. Daumas, S.,, M. Magot,, and J.-L. Crolet. 1993. Measurement of the net production of acidity by a sulfate-reducing bacterium: experimental checking of theoretical models of microbially influenced corrosion. Res. Microbiol. 144:327332.
35. Dzierzewicz, Z.,, B. Cwalina,, L. Weglarz,, and S. Glab. 1992. Isolation and evaluation of corrosive aggressivity of wild strains of sulfate-reducing bacteria. Acta Microbiol. Pol. 41:211221.
36. Farquhar, G. B.,, C. A. Lacey,, and S. D. Deans. 1993. Laboratory screening of commercial biocides for use in oilfield production. Mater. Perform. 44:4952.
37. Freiter, E. 1992. Effects of a corrosion inhibitor on bacterial and microbial influenced corrosion. Corrosion 48:266276.
38. Gaboriau-Soubrier, C.,, and C. Sinicki,. 1988. Study of biocorrosion inhibitor with electrochemical methods, p. 5365. In C. C. Gaylarde, and L. H. G. Morton (ed.), Biocorrosion. Biodeterioration Society occasional publication 5. Biodeterioration Society, Kew, United Kingdom.
39. Gaines, R. H. 1910. Bacterial activity as a corrosive influence in the soil. J. Eng. Ind. Chem. 2: 128135.
40. Gaylarde, C. C. 1992. Sulfate-reducing bacteria which do not induce accelerated corrosion. Int. Biodeter. Biodegradation 30:331338.
41. Gibson, G. R. 1990. Physiology and ecology of sulfate-reducing bacteria. J. Appl. Bacteriol. 69:769797.
42. Hamilton, W. A. 1998. Sulfate-reducing bacteria: physiology determines their environmental impact. Geomicrobiol. J. 15:1928.
43. Heisler, L.,, and J. Moritz. 1975. Problems in treatment and production of sour natural gas from ultra deep wells, p. 409422. In Proceedings of the 9th World Petroleum Congress. Applied Science Publishers, Ltd., Barking, Essex, United Kingdom.
44. Hurtevent, C.,, M. Magot,, and J.-L. Crolet. 1992. Selection of biocides on sessile sulfate-reducing bacteria. In UK Corrosion 92, vol. 3. The Institute of Metals, London, United Kingdom.
45. Jean, L. A. 1973. Problems and techniques in producing wells in southwest France. Erdöl Erdgas Z. 89:107110.
46. Jorgensen, B. B.,, and F. Bak. 1991. Pathways and microbiology of thiosulfate transformation and sulfate reduction in a marine sediment. Appl. Environ. Microbiol. 57:847856.
47. Kermani, M. B.,, and A. Morshed. 2003. Carbon dioxide corrosion in oil and gas production—a compendium. Corrosion 59:659682.
48. Lacombe, P.,, B. Baroux,, and G. Beranger. 1993. Stainless Steels. EDP Sciences, Les Ulis, France.
49. Little, B.,, P. Wagner,, and F. Mansfeld. 1992. An overview of microbiologically influenced corrosion. Electrochim. Acta 37:21852194.
50. Little, B. J.,, P. A. Wagner,, K. R. Hart,, and R. I. Ray. 1996. Spatial relationships between bacteria and localized corrosion. In Corrosion 96. Paper 278. NACE International, Houston, Tex.
51. Magot, M. 1996. Similar bacteria in remote oil fields. Nature 379:681.
52. Magot, M.,, L. Mondeil,, J. Ausseur,, and J. Seureau,. 1988. Detection of sulfate-reducing bacteria, p. 3752. In C. C. Gaylarde, and L. H. G. Morton (ed.), Biocorrosion. Biodeterioration Society occasional publication 5. Biodeterioration Society, Kew, United Kingdom.
53. Magot, M.,, C. Hurtevent,, and J.-L. Crolet,. 1993. Reservoir souring and well souring. p. 573575. In J. M. Costa, and A. D. Mercer (ed.), Progress in the Understanding and Prevention of Corrosion, vol. 1. The Institute of Metals, London, United Kingdom.
54. Magot, M.,, C. Tardy-Jacquenod,, and J.-L. Crolet,. 1997. An updated portrait of the sulfidogenic bacteria potentially involved in the microbial corrosion of steel, p. 39. In D. Thierry (ed.), Microbially Induced Corrosion. European Federation of Corrosion publication 22. The Institute of Metals, London, United Kingdom.
55. Magot, M.,, B. Ollivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103106.
56. McCoy, W. F.,, J. D. Bryers,, J. Robbins,, and J. Costerton. 1981. Observations of fouling biofilm formation. Can. J. Microbiol. 27:910917.
57. McNeil, M. B.,, J. M. Jones,, and B. J. Little. 1991. Mineralogical fingerprints for corrosion processes induced by sulfate-reducing bacteria. In Corrosion 91. Paper 580. NACE International, Houston, Tex.
58. Meyer, F. H.,, O. L. Riggs,, R. L. McGlasson,, and J. D. Sudburry. 1958. Corrosion products of mild steel in hydrogen sulfide environments. Corrosion 14:6975.
59. Pankhania, I. 1988. Hydrogen metabolism in sulfate- reducing bacteria and its role in anaerobic corrosion. Biofouling 1:2747.
60. Penkala, J. E.,, M. D. Law,, A. L. Dickinson,, D. Horaska,, J. Conaway,, and H. Soto. 2004. Acrolein 2-propenal, a versatile microbiocide for control of bacteria in oilfield systems. In Corrosion 2004. Paper 749. NACE International, Houston, Tex.
61. Place, M. C. 1979. Corrosion control—deep sour gas production. In Proceedings of the 54th Annual Fall Technical Conference. Society of Petroleum Engineers, Richardson, Tex.
62. Postgate, J. R. 1966. Media for sulfur bacteria. Lab. Pract. 15:12391244.
63. Postgate, J. R. 1984. The Sulfate-Reducing Bacteria. Cambridge University Press, Cambridge, United Kingdom.
64. Prasad, R. 1994. Biocide comparison: aldehyde versus mixture of aldehyde and quaternary amine. In Corrosion 94. Paper 273. NACE International, Houston, Tex.
65. Rhodes, P. R. 1976. Corrosion mechanism of carbon steel in aqueous H2S solutions. Electrochem. Soc. Abstr. 76:300.
66. Smith, J. S.,, and J. D. A. Miller. 1975. Nature of sulfides and their corrosive effect on ferrous metals: a review. Br. Corrosion J. 10:136143.
67. Smith, S. N.,, and E. J. Wright. 1994. Prediction of minimum H2S levels required for slightly sour corrosion. In Corrosion 94. Paper 011. NACE International, Houston, Tex.
68. Sunde, E.,, B.-L. P. Lillebø,, and T. Thorstensson. 2004. H2S inhibition by nitrate injection on the Gullfaks field. In Corrosion 2004. Paper 760. NACE International, Houston, Tex.
69. Süry, P. 1976. Similarities in the corrosion behavior of iron, cobalt, and nickel in acid solutions. A review with special reference to the sulfide adsorption. Corrosion Sci. 16:879901.
70. Tanner, R. S. 1989. Monitoring sulfate-reducing bacteria: comparison of enumeration media. J. Microbiol. Methods 10:8390.
71. Tatnall, R. E.,, K. M. Stanton,, and R. C. Ebersole. 1988. Testing for the presence of sulfate-reducing bacteria. Mater. Perform. 27:7180.
72. Tewari, P. H.,, G. Wallace,, and A. B. Campbell. 1978. The Solubility of Iron Sulfides and Their Role in Mass Transport in Girdler-Sulfide Heavy Water Plants. AECL report 5960. Atomic Energy of Canada Limited, Chalk River, Ontario, Canada.
73. Tewari, P. H.,, M. G. Bailey,, and A. B. Campbell. 1979. The erosion-corrosion of carbon steel in aqueous H2S solutions up to 120°C and 1.6 MPa pressure. Corrosion Sci. 19:573585.
74. Tuttle, R. N.,, and R. D. Kane. 1981. H2S Corrosion in Oil and Gas Production—a Compilation of Classic Papers. NACE International, Houston, Tex.
75. Thierry, D.,, and R. Gubner. 2003. Microbial Corrosion Network. Final report, European Union contract ERB BRRT-CT98-5084. European Union, Brussels, Belgium.
76. Von Wolzogen Kuhr, C. A. H.,, and I. S. Van der Vlugt. 1934. De graphiteering van gietijzer ais electrobiochemisch proces in anaerobe gronden. Water 18:147165.
77. Widdel, F., 1988. Microbiology and ecology of sulfate reducing bacteria, p. 469585. In A. J. B. Zehnder (ed.), Biology of Anaerobic Microorganisms. John Wiley, New York, N.Y.
78. Widdel, F., 1992. Microbial corrosion, p. 261295. In R. K. Finn,, P. Prve,, M. Schlingmann,, W. Crueger,, K. Esser,, R. Thauer,, and F. Wagner (ed.), Biotechnology Focus 3. Hanser, Munich, Germany.
79. Zitter, H. 1973. Korrosionserscheinungen in Sauergassonden. Erdöl Erdgas Z. 89:101106.

Tables

Generic image for table
TABLE 1

Relevant orders of magnitude for steel corrosion in various units

Citation: Crolet J. 2005. Microbial Corrosion in the Oil Industry: A Corrosionist's View, p 143-170. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch8

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error