Chapter 9 : Biofouling in the Oil Industry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in

Biofouling in the Oil Industry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap09-2.gif


This chapter describes the evolving models for biofilm development and highlights the role of biofouling in microbially related oil field problems and opportunities. Biofouling assessment methods based upon changes in heat transfer resistance, differential pressure, or optical attenuation have been developed for other industries, usually for sidestream systems, but these have not yet been applied to oil industry systems due to their complexity and cost. Scanning confocal laser microscopy and fluorescence in situ hybridization, combined with denaturing gradient gel electrophoresis, are now in routine use to monitor biofilms in heating systems and could be directly applied to the oil industry. Biofilms may grow to the extent that accumulated cells and extracellular polymer influence the hydraulic or thermal conductivity of their environment. Although uranium is present in minute concentrations in water, a surface biofilm may contain enough radioactive isotopes to be classified as a naturally occurring radioactive material, requiring special handling and safety measures during plant maintenance. Four major mechanisms have been proposed to account for this rapid inhibition of sulfide by nitrate-utilizing bacteria (NUB): outcompetition of SRB by NUB for organic nutrients, production of toxic intermediates such as nitrite, biological oxidation of sulfide by nitrate-reducing and sulfide-oxidizing bacteria, and switching SRB from sulfate to nitrate reduction.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
Restriction Fragment Length Polymorphism
Confocal Laser Scanning Microscopy
Highlighted Text: Show | Hide
Loading full text...

Full text loading...


Image of FIGURE 1

Schematic model for attachment of planktonic cells to a surface and growth of microcolonies, followed by detachment and reattachment of cell clusters.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2

Schematic model of the complex microstructure and architecture of a mature biofilm developed on a surface. The biofilm is composed primarily of secreted polymeric substances, with bacterial cells being embedded (and thus protected) in cell clusters. The presence of channels and voids assists mass transport and diffusion of nutrients and waste products, to maintain the activity of the biofilm.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3

Cell-cell communication (quorum sensing) in bacteria is associated with the accumulation of signal molecules such as HSLs that coregulate gene transcription. Communication may be inter- or intraspecies, and a wide variety of cellular functions (such as metabolic pathways, growth rate, and detachment) may be influenced in other bacteria by the secretion of signal molecules. The biofilm matrix enhances cell-cell communication, since bacterial cells are in close proximity to each other.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4

Positive and negative consequences of biofilm growth in the oil industry. For details on each numbered biofilm effect, see the text.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint


1. Al-Wehaimid, A. A.,, T. Ahmed,, T. M. Al-Ibrahim,, R. B. Chen,, and H. R. Rosser. 1994. Incorporation of system demand in the criteria for optimization of Saudi Aramco's seawater injection system bactericide treatment program, paper O-25, p.225234. In Proceedings of the 2nd International Conference on Chemistry in Industry.
2. American Petroleum Institute.1982. Biological Analysis for Subsurface Injection Waters . RP-38 American Petroleum Institute, Philadelphia, Pa.
3. American Society for Testing and Materials. 2001. Standard Test Method for the Quantification of a Pseudomonas aeruginosa Biofilm Grown with Shear and Continuous Flow Using a Rotating Disk Reactor. ASTM E-2196-02. American Society for Testing and Materials, West Conshohocken, Pa.
4. Anderl, J. N.,, J. Zahller,, F. Roe,, and P. S. Stewart. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47:12511256.
5. Angles, M. L.,, K.C. Marshall and A.E. Goodman.1993.111; Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl. Environ. Microbiol. 59:843850.
6. Borenstein, S. W.,, and G. J. Licina. 1994. An overview of monitoring techniques for the study of microbiologically influenced corrosion. In NACE 1994. Paper 611. NACE International, Houston, Tex.
7. Boyd, A.,, and A. M. Chakrabarty. 1994. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60:23552359.
8. Brown, M. R. W.,, D. G. Allison,, and P. Gilbert. 1988. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22:777783.
9. Burger, E. D. 2004. Synergism of anthraquinone with an oilfield biocide to inhibit sulfide generation from sulfate-reducing bacteria. In NACE 2004. Paper 04750. NACE International, Houston, Tex.
10. Camper, A. C.,, M. A. Hamilton,, K. R. Johnson,, P. Stoodley,, G. J. Harkin,, and D. S. Daly. 1994. Bacterial colonization of surfaces in flowing systems: methods and analysis. Ultrapure Water 11:2635.
11. Characklis, W. G., 1990.Microbial biofouling control,p.585633. In W. G. Characklis, and K. C. Marshall (ed.), Biofilms. J. Wiley & Sons, Inc., New York, N.Y.
12. Characklis, W. G.,, and K. C. Marshall. 1990. Biofilms. John Wiley & Sons, Inc., New York, N.Y.
13. Chattoraj, M.,, M.J. Fehr,, S.R. Hatch,, and E.J. Allain. 2002. Online measurement and control of microbiological activity in industrial water systems. Mater. Perform. April: 4045.
14. Cooling, F. B.,, C. L. Maloney,, E. Nagel,, J. Tabinowski,, and J. M. Odom. 1996. Inhibition of sulfate reducing respiration by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62:29993010.
15. Costerton, J.W.,, and P. Stoodley,. 2003. Microbial biofilms:protective niches in ancient and modern geomicrobiology. Preface. In W. E. Krumbein,, D. M. Paterson,, and G. A. Zavarzin (ed), Fossil and Recent Biofilms: a Natural History of Life on Earth. Kluwer Academic Publishers, Dordrecht, The Netherlands.
16. Costerton, J. W.,, G. G. Geesey,, and G. K. Cheng. 1978. How bacteria stick. Sci. Am. 238:8695.
17. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49:711745.
18. Costerton, J. W.,, Z. Lewandowski,, D. DeBeer,, D. Caldwell,, D. Korber,, and G. James. 1994. Biofilms, the customized microniche. J. Bacteriol. 176:21372142.
19. Cunningham, A. B.,, R. R. Sharp,, R. Hiebert,, and G. James. 2003. Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Bioremediation J. 7:113.
20. Dalton, H. M.,, A. E. Goodman,, and K. C. Marshall. 1996. Diversity in surface colonization behavior in marine bacteria. J. Ind. Microbiol. 17:228234.
21. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280:295298.
22. de Beer, D.,, P. Stoodley,, F. Roe,, and Z. Lewandowski. 1994a. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43:11311138.
23. de Beer, D.,, R. Srinivasan,, and P. S. Stewart. 1994b. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60:43394344.
24. Dickinson, W. H.,, and Z. Lewandowski. 1996. Manganese biofouling and the corrosion behavior of stainless steel. Biofouling 10:7993.
25. Dow, J. M.,, L. Crossman,, K. Findlay,, Y. Q. He,, J. X. Feng,, and J. L. Tang. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100:1099511000.
26. Dunsmore, B. C.,, T. B. Whitfield,, P. A. Lawson,, and M. D. Collins. 2004. Corrosion by sulphate-reducing bacteria that utilize nitrate. In NACE .2004 Paper 04763. NACE International, Houston, Tex.
27. Flemming, H.-C. 2003. Role and levels of real-time monitoring for successful anti-fouling strategies— an overview. Water Sci. Technol. 47:18.
28. Fuqua, C.,, S. C. Winans,, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50:727751.
29. Gardner, L. R.,, and P. S. Stewart. 2002. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol. 29:354.
30. Geesey, G. G. 2001. Bacterial behavior at surfaces. Curr. Opin. Microbiol. 4:296300.
31. Geesey, G.,, I. Beech,, P. Bremer,, B. Webster,, and D. Wells,. 2000. Biocorrosion, p. 281325. In J. Bryers (ed.), Biofilms II: Process Analysis and Applications. Wiley-Liss, Inc., New York, N.Y.
32. Ghigo, J.-M. 2001. Natural conjugative plasmids induce biofilm development. Nature 412:442445.
33. Gilbert, P.,, and M. R. W. Brown,. 1995. Mechanisms of the protection of bacterial biofilms from antimicrobial agents, p. 118130. In H. M. Lappin-Scott, and J. W. Costerton(ed.), Microbial Biofilms. Cambridge University Press, Cambridge, United Kingdom.
34. Hengge-Aronis, R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase regulation in Escherichia coli. Cell 72:165168.
35. Hentzer, M.,, and M. Givskov. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Investig. 112:13001307.
36. Hitzman, D.O.,, and D.M. Dennis. 1998. Sulfide removal and prevention in gas wells.SPE 50980. Reservoir Eval.EngAugust:367371.
37. James, G. A.,, L. Beaudette,, and J. W. Costerton. 1995. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. 15:257262.
38. Jayaraman, A.,, J. C. Earthman,, and T. K. Wood. 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 6268.
39. Jenneman, G. E.,, R. H. Webb,, E. Holle,, K. L. Sublette,, C. Mehta,, A. Peacock,, and G. Davis. 2004. Evaluation of an on-line biofilm detector and bio-traps for monitoring MIC in produced oilfield brine. In Corrosion 2004. Paper 04758. NACE International, Houston, Tex.
40. Kjellerup, B. V.,, B. H. Olesen,, J. L. Nielsen,, B. Frolund,, S. Odum,, and P. H. Nielsen. 2003. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci. Technol. 47:117122.
41. Kudo, H.,, and J. W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33:267272.
42. Lamed, R.,, and E. A. Bayer. 1986. Contact and cellulolysis in Clostridium thermocellum via extensive surface organelles. Experimentia 42:7273.
43. Lappin-Scott, H. M.,, C. J. Bass,, K. M. McAlpine,, and P. F. Sanders. 1994. Survival mechanisms of hydrogen sulphide-producing bacteria isolated from extreme environments and their role in corrosion. Int. Biodeterior. Biodeg. 34:305319.
44. Larsen, J.,, P. F. Sanders,, and R. E. Talbot. 2000. Experience with the use of tetrakis hydroxymethyl phosphonium sulfate (THPS) for the control of downhole hydrogen sulfide. In Corrosion 2000. Paper 00123. NACE International, Houston, Tex.
45. Larsen, J.,, M. H. Rod,, and S. Zwolle. 2004. Prevention of reservoir souring in the Halfdan field by nitrate injection. In Corrosion 2004. Paper 04761. NACE International, Houston Tex.
46. Lewandowski, Z., 2000. Structure and function of biofilms, p.117. In L. V. Evans, (ed.) Biofilms: Recent Advances in Their Study and Control. Harwood Academic Publishers, New York, N.Y.
47. Lewandowski, Z.,, and H. Beyenal,. 2003. Mass transport in heterogeneous biofilms, p. 147175. In S. Wuertz,, P. Bishop,, and P. Wilderer (ed.), Biofilms in Wastewater Treatment: an Interdisciplinary Approach. IWA Publishing, London, United Kingdom
48. Lewandowski, Z.,, R. Avci,, M. Geiser,, X. Shi,, K. Braughton,and N. Yurt. 2002. Biofouling andcorrosion of stainless steels in natural waters. Water Sci.Technol.Water Supply 2:6572.
49. Lewandowski, Z.,, G. Walser,, and W. G. Characklis. 1991. Reaction kinetics in biofilms. Biotechnol. Bioeng. 38:877882.
50. Liu, Y.,, and J. H. Tay. 2001. Metabolic response of biofilm to shear stress in fixed-film culture. J. Appl. Microbiol. 90:337342.
51. Ludensky, M. L., 1999. Biofilm monitoring in industrial applications, p. 8189. In J. Wimpenny,, P. Gilbert,, J. Walker,, M. Brading,, and R. Bayson (ed.), Biofilms: the Good, the Bad and the Ugly. BioLine, Cardiff, United Kingdom.
52. Macleod, F. A.,, S. R. Guiot,, and J. W. Costerton. 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56:15891607.
53. Magot, M.,, B. Olivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77:103116.
54. Maxwell, S.,, C. Devine,, F. Rooney,, and I. Spark. 2004. Monitoring and control of bacterial biofilms in oilfield water handling systems. In Corrosion 2004. Paper 04752. NACE International, Houston, Tex.
55. McElhiney, J. E.,, and R. E. Davis. 2002. Desulfated seawater and its impact on tSRB activity: an alternative souring control methodology. In Corrosion 2002. Paper 02028. NACE International, Houston, Tex.
56. McInerney, M. J.,, and K. L. Sublette,. 1997. Petroleum microbiology: biofouling, souring, and improved oil recovery, p. 600607. In C. J. Hurst,, G. R. Knudsen,, M. J. McInerney,, L. D. Stetzenbach,, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.
57. McLean, R. J.,, M. Whiteley,, D. J. Stickler,, and W. C. Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154:259263.
58. Mollica, A.,, and P. Christiani. 2003. On-line biofilm monitoring by "Biox" electrochemical probe. Water Sci. Technol. 47:4549.
59. Murga, R.,, T. S. Forster,, E. Brown,, J. M. Pruckler,, B. S. Fields,, and R. M. Donlan. 2001. The role of biofilms in the survival of Legionella pneumophila in a model potable water system. Microbiology 147:31213126.
60. Nalco-Exxon Energy Chemicals. 1996. . European patent EP0706974.000
61. National Association of Corrosion Engineers.1990. Microbiologically Influenced Corrosion and Biofouling in Oilfield equipment. TPC publication 3.National Association of Corrosion Engineers, Houston, Tex.
62. National Association of Corrosion Engineers.1994. Field Monitoring of Bacterial Growth in Oilfield Systems. Tes method TM0194-94.National Association of Corrosion Engineers, Houston, Tex.
63. Nemati, M.,, G. E. Jenneman,, and G. Voordouw. 2001a. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol. Bioeng. 74:128136.
64. Nemati, M.,, T. J. Mazutinec,, G. E. Jenneman,, and G. Voordouw. 2001b. Control of biogenic H2S production with nitrite and molybdate. J. Ind. Microbiol. Biotechnol. 26:350355.
65. Nichols, W. W. 1991. Biofilms, antibiotics, and penetration. Rev. Med. Microbiol. 2:177181.
66. Nivens, D. E.,, R. J. Palme,, and D. C. White. 1995. Continuous non-destructive monitoring of microbial biofilms—a review of analytical techniques. J. Ind. Microb. 15:263276.
67. O'Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30:295304.
68. Percival, S. L. 1999. The effect of molybdenum on biofilm development. J. Ind. Microbiol. Biotechnol. 23:112117.
69. Puskas, A.,, E. P. Greenberg,, S. Kaplan,, and A. L. Schaefer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179:75307537.
70. Rice, A. R.,, M. A. Hamilton,, and A. K. Camper. 2000. Apparent surface associated lag time in growth of primary biofilm cells. Microb. Ecol. 40:815.
71. Riedel K.,, M. Hentzer,, O. Geisenberger,, B. Huber,, A. Steidle,, H. Wu,, N. Høiby,, M. Givskov,, S. Molin,, and L. Eberl. 2001. NAcylhomoserine- lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:23493262.
72. Sanders, P. F., 1988. Monitoring and control of sessile microbes: cost effective ways to reduce microbial corrosion, p. 191223. In C. A. C. Sequeira, and A. K. Tiller (ed.) Microbial Corrosion, vol. 1. Elsevier Applied Science, London, United Kingdom.
73. Sanders, P. F. 1992. Rapid methods for detecting microbial corrosion. In Proceedings of UK Corrosion '92, vol. 3. United Kingdom Institute of Corrosion, London, United Kingdom.
74. Sanders, P. F. 2002. Conventional versus novel microbial control strategies, paper OFC-1. In Proceedings of the 5th International Conference and Exhibition on Chemistry in Industry.
75. Sanders, P. F.,, and W. A. Hamilton,. 1985. Biological and corrosion activities of sulphatereducing bacteria in industrial process plant, p. 4768. In S. Dexter (ed.), Biological Corrosion. NACE 8. National Association of Corrosion Engineers, Houston, Tex.
76. Sanders, P. F.,, and D. L. Robinson,. 1992. Corrosion control using continuous residual chlorine, p. 198209. In C. A. C. Sequeira, and A. K. Tiller (ed.), Microbial Corrosion. European Federation of Corrosion publication 8. Institute of Materials, London, United Kingdom.
77. Sauer, K.,, and A. K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183:65796589.
78. Sauer, K.,, A. K. Camper,, G. D. Ehrlich,, J. W. Costerton,, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 11401154.
79. Stewart, P.,, G. McFeters,, and C. Huang,. 2000. Biofilm control by antimicrobial agents, p. 373405. In J. Bryers (ed.), Biofilms II: Process Analysis and Applications. Wiley-Liss, Inc., New York, N.Y.
80. Stewart, P. S.,, A. K. Camper,, S. D. Handran,, C.-T. Huang,, and M. Warnecke. 1997. Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33:210.
81. Stoodley, P.,, Z. Lewandowksi,, J. D. Boyle,, and H. M. Lappin-Scott. 1999a. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol. Bioeng. 65: 8392.
82. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1999b. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. J. Environ. Microbiol. 1:447455.
83. Stoodley, P.,, J. D. Boyle,, D. DeBeer,, and H. M. Lappin-Scott. 1999c. Evolving perspectives of biofilm structure. Biofouling 14:7590.
84. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1998. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol. Bioeng. 57:536544.
85. Stoodley, P.,, K. Sauer,, D. G. Davies,, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56:187209.
86. Stoodley, P.,, S. Wilson,, L. Hall-Stoodley,, J. D. Boyle,, H. M. Lappin-Scott,, and J. W. Costerton. 2001. Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 67:56085613.
87. Stoodley, P.,, S. Yang,, H. Lappin-Scott,, and Z. Lewandowski. 1997. Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocalmicroscopy. Biotechnol. Bioeng. 56:681688.
88. Sturman, P. J.,, and D. M. Goeres. 1999. Control of hydrogen sulfide in oil and gas wells with nitrite injection. SPE 56772. Society of Petroleum Engineers, Richardson, Tex.
89. Sturman, P. J.,, W. L. Jones,, and W. G. Characklis. 1994. Interspecies competition in colonized porous pellets. Water Res. 28:831839.
90. Sturman, P. J.,, P. S. Stewart,, A. B. Cunningham,, E. J. Bouwer,, and J. H. Wolfram. 1995. Engineering scale-up of in situ bioremediation processes: a review. J. Contam. Hydrol. 19:171203.
91. Sunde, E.,, B.-L. P. Lillebø,, G. Bodtker,, T. Torsvik,, and T. Thorstenson. 2004. H2S inhibition by nitrate injection on the Gullfaks Field. In Corrosion 2004. Paper 04760. NACE International, Houston, Tex.
92. Syrett, B. C.,, P. J. Arps,, J. C. Earthman,, F. Mansfeld,, and T. K. Wood. 2002. Biofilms that prevent corrosion, p. 145. In B. Little (ed.), Proceedings of the NACE Research Topical Symposium. National Association of Corrosion Engineers, Houston, Tex.
93. Tolker-Nielsen, T.,, U. C. Brinch,, P. C. Ragas,, J. B. Andersen,, C. S. Jacobsen,, and S. Molin. 2000. Development and dynamics of Pseudomonas sp. biofilms. J. Bacteriol. 182:64826489.
94. van Leeuwenhoek, A. 1684. An abstract of a letter from Mr. Anthony Leeuwenhoek at Delft dated Sept. 17, 1683 about some microscopical observations about animals in the scurf of the teeth. Philos. Trans. R. Soc. Lond. 14:568574.
95. Veazey, M. V. 2003. Plant uses unique strategy to fight MIC. Mater. Perform. December 16-18.
96. Videla, H. A.,, P. S. Guiamet,, S. G. de Saravia,, L. K. Herrera,, and C. Gaylarde. 2004. Environmentally friendly approaches to inhibit biocorrosion. An overview. In Corrosion 2004. Paper 04574. NACE International, Houston, Tex.
97. Voordouw, G. M.,, M. Nemati,, and G. E. Jenneman. 2002. Use of nitrate-reducing, sulfide oxidizing bacteria to reduce souring in oilfields: interactions with SRB and effects on corrosion. In Corrosion 2002. Paper 02034. NACE International, Houston, Tex.
98. Voordouw, G.,, and A. J. Telang,. 1999. A genome probe survey of the microbial community in oil fields. In C. R. Bell,, M. Brylinsky,, and P. Johnson- Green (ed.), Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
99. Wanner, O.,, and W. Gujer. 1986. A multispecies biofilm model. Biotechnol. Bioeng. 28:314328.
100. Williamson, K.,, and P. L. McCarty. 1976. Model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48:924.
101. Xu, X.,, P. S. Stewart,, and X. Chen. 1996. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol. Bioeng. 49:93100.
102. ZoBell, C. E. 1943. The effect of solid surfaces on bacterial activity. J. Bacteriol. 46:3945.


Generic image for table

Methods being developed for biofilm assessment in oil field applications

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error