1887

Chapter 9 : Biofouling in the Oil Industry

MyBook is a cheap paperback edition of the original book and will be sold at uniform, low price.

Preview this chapter:
Zoom in
Zoomout

Biofouling in the Oil Industry, Page 1 of 2

| /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap09-1.gif /docserver/preview/fulltext/10.1128/9781555817589/9781555813277_Chap09-2.gif

Abstract:

This chapter describes the evolving models for biofilm development and highlights the role of biofouling in microbially related oil field problems and opportunities. Biofouling assessment methods based upon changes in heat transfer resistance, differential pressure, or optical attenuation have been developed for other industries, usually for sidestream systems, but these have not yet been applied to oil industry systems due to their complexity and cost. Scanning confocal laser microscopy and fluorescence in situ hybridization, combined with denaturing gradient gel electrophoresis, are now in routine use to monitor biofilms in heating systems and could be directly applied to the oil industry. Biofilms may grow to the extent that accumulated cells and extracellular polymer influence the hydraulic or thermal conductivity of their environment. Although uranium is present in minute concentrations in water, a surface biofilm may contain enough radioactive isotopes to be classified as a naturally occurring radioactive material, requiring special handling and safety measures during plant maintenance. Four major mechanisms have been proposed to account for this rapid inhibition of sulfide by nitrate-utilizing bacteria (NUB): outcompetition of SRB by NUB for organic nutrients, production of toxic intermediates such as nitrite, biological oxidation of sulfide by nitrate-reducing and sulfide-oxidizing bacteria, and switching SRB from sulfate to nitrate reduction.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9

Key Concept Ranking

Denaturing Gradient Gel Electrophoresis
0.4478603
Restriction Fragment Length Polymorphism
0.43930244
Confocal Laser Scanning Microscopy
0.42035398
0.4478603
Highlighted Text: Show | Hide
Loading full text...

Full text loading...

Figures

Image of FIGURE 1
FIGURE 1

Schematic model for attachment of planktonic cells to a surface and growth of microcolonies, followed by detachment and reattachment of cell clusters.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 2
FIGURE 2

Schematic model of the complex microstructure and architecture of a mature biofilm developed on a surface. The biofilm is composed primarily of secreted polymeric substances, with bacterial cells being embedded (and thus protected) in cell clusters. The presence of channels and voids assists mass transport and diffusion of nutrients and waste products, to maintain the activity of the biofilm.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 3
FIGURE 3

Cell-cell communication (quorum sensing) in bacteria is associated with the accumulation of signal molecules such as HSLs that coregulate gene transcription. Communication may be inter- or intraspecies, and a wide variety of cellular functions (such as metabolic pathways, growth rate, and detachment) may be influenced in other bacteria by the secretion of signal molecules. The biofilm matrix enhances cell-cell communication, since bacterial cells are in close proximity to each other.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint
Image of FIGURE 4
FIGURE 4

Positive and negative consequences of biofilm growth in the oil industry. For details on each numbered biofilm effect, see the text.

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9
Permissions and Reprints Request Permissions
Download as Powerpoint

References

/content/book/10.1128/9781555817589.chap9
1. Al-Wehaimid, A. A.,, T. Ahmed,, T. M. Al-Ibrahim,, R. B. Chen,, and H. R. Rosser. 1994. Incorporation of system demand in the criteria for optimization of Saudi Aramco's seawater injection system bactericide treatment program, paper O-25, p. 225 234. In Proceedings of the 2nd International Conference on Chemistry in Industry.
2. American Petroleum Institute. 1982. Biological Analysis for Subsurface Injection Waters . RP-38 American Petroleum Institute, Philadelphia, Pa.
3. American Society for Testing and Materials. 2001. Standard Test Method for the Quantification of a Pseudomonas aeruginosa Biofilm Grown with Shear and Continuous Flow Using a Rotating Disk Reactor. ASTM E-2196-02. American Society for Testing and Materials, West Conshohocken, Pa.
4. Anderl, J. N.,, J. Zahller,, F. Roe,, and P. S. Stewart. 2003. Role of nutrient limitation and stationary-phase existence in Klebsiella pneumoniae biofilm resistance to ampicillin and ciprofloxacin. Antimicrob. Agents Chemother. 47: 1251 1256.
5. Angles, M. L.,, K.C. Marshall and A.E. Goodman. 1993. 111; Plasmid transfer between marine bacteria in the aqueous phase and biofilms in reactor microcosms. Appl. Environ. Microbiol. 59: 843 850.
6. Borenstein, S. W.,, and G. J. Licina. 1994. An overview of monitoring techniques for the study of microbiologically influenced corrosion. In NACE 1994. Paper 611. NACE International, Houston, Tex.
7. Boyd, A.,, and A. M. Chakrabarty. 1994. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl. Environ. Microbiol. 60: 2355 2359.
8. Brown, M. R. W.,, D. G. Allison,, and P. Gilbert. 1988. Resistance of bacterial biofilms to antibiotics: a growth-rate related effect? J. Antimicrob. Chemother. 22: 777 783.
9. Burger, E. D. 2004. Synergism of anthraquinone with an oilfield biocide to inhibit sulfide generation from sulfate-reducing bacteria. In NACE 2004. Paper 04750. NACE International, Houston, Tex.
10. Camper, A. C.,, M. A. Hamilton,, K. R. Johnson,, P. Stoodley,, G. J. Harkin,, and D. S. Daly. 1994. Bacterial colonization of surfaces in flowing systems: methods and analysis. Ultrapure Water 11: 26 35.
11. Characklis, W. G., 1990. Microbial biofouling control,p. 585 633. In W. G. Characklis, and K. C. Marshall (ed.), Biofilms. J. Wiley & Sons, Inc., New York, N.Y.
12. Characklis, W. G.,, and K. C. Marshall. 1990. Biofilms. John Wiley & Sons, Inc., New York, N.Y.
13. Chattoraj, M.,, M.J. Fehr,, S.R. Hatch,, and E.J. Allain. 2002. Online measurement and control of microbiological activity in industrial water systems. Mater. Perform. April: 40 45.
14. Cooling, F. B.,, C. L. Maloney,, E. Nagel,, J. Tabinowski,, and J. M. Odom. 1996. Inhibition of sulfate reducing respiration by 1,8-dihydroxyanthraquinone and other anthraquinone derivatives. Appl. Environ. Microbiol. 62: 2999 3010.
15. Costerton, J.W.,, and P. Stoodley,. 2003. Microbial biofilms:protective niches in ancient and modern geomicrobiology. Preface. In W. E. Krumbein,, D. M. Paterson,, and G. A. Zavarzin (ed), Fossil and Recent Biofilms: a Natural History of Life on Earth. Kluwer Academic Publishers, Dordrecht, The Netherlands.
16. Costerton, J. W.,, G. G. Geesey,, and G. K. Cheng. 1978. How bacteria stick. Sci. Am. 238: 86 95.
17. Costerton, J. W.,, Z. Lewandowski,, D. E. Caldwell,, D. R. Korber,, and H. M. Lappin- Scott. 1995. Microbial biofilms. Annu. Rev. Microbiol. 49: 711 745.
18. Costerton, J. W.,, Z. Lewandowski,, D. DeBeer,, D. Caldwell,, D. Korber,, and G. James. 1994. Biofilms, the customized microniche. J. Bacteriol. 176: 2137 2142.
19. Cunningham, A. B.,, R. R. Sharp,, R. Hiebert,, and G. James. 2003. Subsurface biofilm barriers for the containment and remediation of contaminated groundwater. Bioremediation J. 7: 1 13.
20. Dalton, H. M.,, A. E. Goodman,, and K. C. Marshall. 1996. Diversity in surface colonization behavior in marine bacteria. J. Ind. Microbiol. 17: 228 234.
21. Davies, D. G.,, M. R. Parsek,, J. P. Pearson,, B. H. Iglewski,, J. W. Costerton,, and E. P. Greenberg. 1998. The involvement of cell-to-cell signals in the development of a bacterial biofilm. Science 280: 295 298.
22. de Beer, D.,, P. Stoodley,, F. Roe,, and Z. Lewandowski. 1994a. Effects of biofilm structures on oxygen distribution and mass transport. Biotechnol. Bioeng. 43: 1131 1138.
23. de Beer, D.,, R. Srinivasan,, and P. S. Stewart. 1994b. Direct measurement of chlorine penetration into biofilms during disinfection. Appl. Environ. Microbiol. 60: 4339 4344.
24. Dickinson, W. H.,, and Z. Lewandowski. 1996. Manganese biofouling and the corrosion behavior of stainless steel. Biofouling 10: 79 93.
25. Dow, J. M.,, L. Crossman,, K. Findlay,, Y. Q. He,, J. X. Feng,, and J. L. Tang. 2003. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc. Natl. Acad. Sci. USA 100: 10995 11000.
26. Dunsmore, B. C.,, T. B. Whitfield,, P. A. Lawson,, and M. D. Collins. 2004. Corrosion by sulphate-reducing bacteria that utilize nitrate. In NACE . 2004 Paper 04763. NACE International, Houston, Tex.
27. Flemming, H.-C. 2003. Role and levels of real-time monitoring for successful anti-fouling strategies— an overview. Water Sci. Technol. 47: 1 8.
28. Fuqua, C.,, S. C. Winans,, and E. P. Greenberg. 1996. Census and consensus in bacterial ecosystems: the LuxR-LuxI family of quorum-sensing transcriptional regulators. Annu. Rev. Microbiol. 50: 727 751.
29. Gardner, L. R.,, and P. S. Stewart. 2002. Action of glutaraldehyde and nitrite against sulfate-reducing bacterial biofilms. J. Ind. Microbiol. Biotechnol. 29: 354.
30. Geesey, G. G. 2001. Bacterial behavior at surfaces. Curr. Opin. Microbiol. 4: 296 300.
31. Geesey, G.,, I. Beech,, P. Bremer,, B. Webster,, and D. Wells,. 2000. Biocorrosion, p. 281 325. In J. Bryers (ed.), Biofilms II: Process Analysis and Applications. Wiley-Liss, Inc., New York, N.Y.
32. Ghigo, J.-M. 2001. Natural conjugative plasmids induce biofilm development. Nature 412: 442 445.
33. Gilbert, P.,, and M. R. W. Brown,. 1995. Mechanisms of the protection of bacterial biofilms from antimicrobial agents, p. 118 130. In H. M. Lappin-Scott, and J. W. Costerton(ed.), Microbial Biofilms. Cambridge University Press, Cambridge, United Kingdom.
34. Hengge-Aronis, R. 1993. Survival of hunger and stress: the role of rpoS in early stationary phase regulation in Escherichia coli. Cell 72: 165 168.
35. Hentzer, M.,, and M. Givskov. 2003. Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J. Clin. Investig. 112: 1300 1307.
36. Hitzman, D.O.,, and D.M. Dennis. 1998. Sulfide removal and prevention in gas wells.SPE 50980. Reservoir Eval.Eng August: 367 371.
37. James, G. A.,, L. Beaudette,, and J. W. Costerton. 1995. Interspecies bacterial interactions in biofilms. J. Ind. Microbiol. 15: 257 262.
38. Jayaraman, A.,, J. C. Earthman,, and T. K. Wood. 1997. Corrosion inhibition by aerobic biofilms on SAE 1018 steel. Appl. Microbiol. Biotechnol. 47: 62 68.
39. Jenneman, G. E.,, R. H. Webb,, E. Holle,, K. L. Sublette,, C. Mehta,, A. Peacock,, and G. Davis. 2004. Evaluation of an on-line biofilm detector and bio-traps for monitoring MIC in produced oilfield brine. In Corrosion 2004. Paper 04758. NACE International, Houston, Tex.
40. Kjellerup, B. V.,, B. H. Olesen,, J. L. Nielsen,, B. Frolund,, S. Odum,, and P. H. Nielsen. 2003. Monitoring and characterisation of bacteria in corroding district heating systems using fluorescence in situ hybridisation and microautoradiography. Water Sci. Technol. 47: 117 122.
41. Kudo, H.,, and J. W. Costerton. 1987. Interactions between Treponema bryantii and cellulolytic bacteria in the in vitro degradation of straw cellulose. Can. J. Microbiol. 33: 267 272.
42. Lamed, R.,, and E. A. Bayer. 1986. Contact and cellulolysis in Clostridium thermocellum via extensive surface organelles. Experimentia 42: 72 73.
43. Lappin-Scott, H. M.,, C. J. Bass,, K. M. McAlpine,, and P. F. Sanders. 1994. Survival mechanisms of hydrogen sulphide-producing bacteria isolated from extreme environments and their role in corrosion. Int. Biodeterior. Biodeg. 34: 305 319.
44. Larsen, J.,, P. F. Sanders,, and R. E. Talbot. 2000. Experience with the use of tetrakis hydroxymethyl phosphonium sulfate (THPS) for the control of downhole hydrogen sulfide. In Corrosion 2000. Paper 00123. NACE International, Houston, Tex.
45. Larsen, J.,, M. H. Rod,, and S. Zwolle. 2004. Prevention of reservoir souring in the Halfdan field by nitrate injection. In Corrosion 2004. Paper 04761. NACE International, Houston Tex.
46. Lewandowski, Z., 2000. Structure and function of biofilms, p. 1 17. In L. V. Evans, (ed.) Biofilms: Recent Advances in Their Study and Control. Harwood Academic Publishers, New York, N.Y.
47. Lewandowski, Z.,, and H. Beyenal,. 2003. Mass transport in heterogeneous biofilms, p. 147 175. In S. Wuertz,, P. Bishop,, and P. Wilderer (ed.), Biofilms in Wastewater Treatment: an Interdisciplinary Approach. IWA Publishing, London, United Kingdom
48. Lewandowski, Z.,, R. Avci,, M. Geiser,, X. Shi,, K. Braughton,and N. Yurt. 2002. Biofouling andcorrosion of stainless steels in natural waters. Water Sci.Technol.Water Supply 2: 65 72.
49. Lewandowski, Z.,, G. Walser,, and W. G. Characklis. 1991. Reaction kinetics in biofilms. Biotechnol. Bioeng. 38: 877 882.
50. Liu, Y.,, and J. H. Tay. 2001. Metabolic response of biofilm to shear stress in fixed-film culture. J . Appl. Microbiol. 90: 337 342.
51. Ludensky, M. L., 1999. Biofilm monitoring in industrial applications, p. 81 89. In J. Wimpenny,, P. Gilbert,, J. Walker,, M. Brading,, and R. Bayson (ed.), Biofilms: the Good, the Bad and the Ugly. BioLine, Cardiff, United Kingdom.
52. Macleod, F. A.,, S. R. Guiot,, and J. W. Costerton. 1990. Layered structure of bacterial aggregates produced in an upflow anaerobic sludge bed and filter reactor. Appl. Environ. Microbiol. 56: 1589 1607.
53. Magot, M.,, B. Olivier,, and B. K. C. Patel. 2000. Microbiology of petroleum reservoirs. Antonie Leeuwenhoek 77: 103 116.
54. Maxwell, S.,, C. Devine,, F. Rooney,, and I. Spark. 2004. Monitoring and control of bacterial biofilms in oilfield water handling systems. In Corrosion 2004. Paper 04752. NACE International, Houston, Tex.
55. McElhiney, J. E.,, and R. E. Davis. 2002. Desulfated seawater and its impact on tSRB activity: an alternative souring control methodology. In Corrosion 2002. Paper 02028. NACE International, Houston, Tex.
56. McInerney, M. J.,, and K. L. Sublette,. 1997. Petroleum microbiology: biofouling, souring, and improved oil recovery, p. 600 607. In C. J. Hurst,, G. R. Knudsen,, M. J. McInerney,, L. D. Stetzenbach,, and M. V. Walter (ed.), Manual of Environmental Microbiology. ASM Press, Washington, D.C.
57. McLean, R. J.,, M. Whiteley,, D. J. Stickler,, and W. C. Fuqua. 1997. Evidence of autoinducer activity in naturally occurring biofilms. FEMS Microbiol. Lett. 154: 259 263.
58. Mollica, A.,, and P. Christiani. 2003. On-line biofilm monitoring by " Biox" electrochemical probe. Water Sci. Technol. 47: 45 49.
59. Murga, R.,, T. S. Forster,, E. Brown,, J. M. Pruckler,, B. S. Fields,, and R. M. Donlan. 2001. The role of biofilms in the survival of Legionella pneumophila in a model potable water system. Microbiology 147: 3121 3126.
60. Nalco-Exxon Energy Chemicals. 1996. . European patent EP0706974.000
61. National Association of Corrosion Engineers. 1990. Microbiologically Influenced Corrosion and Biofouling in Oilfield equipment. TPC publication 3.National Association of Corrosion Engineers, Houston, Tex.
62. National Association of Corrosion Engineers. 1994. Field Monitoring of Bacterial Growth in Oilfield Systems. Tes method TM0194-94. National Association of Corrosion Engineers, Houston, Tex.
63. Nemati, M.,, G. E. Jenneman,, and G. Voordouw. 2001a. Mechanistic study of microbial control of hydrogen sulfide production in oil reservoirs. Biotechnol. Bioeng. 74: 128 136.
64. Nemati, M.,, T. J. Mazutinec,, G. E. Jenneman,, and G. Voordouw. 2001b. Control of biogenic H2S production with nitrite and molybdate. J. Ind. Microbiol. Biotechnol. 26: 350 355.
65. Nichols, W. W. 1991. Biofilms, antibiotics, and penetration. Rev. Med. Microbiol. 2: 177 181.
66. Nivens, D. E.,, R. J. Palme,, and D. C. White. 1995. Continuous non-destructive monitoring of microbial biofilms—a review of analytical techniques. J. Ind. Microb. 15: 263 276.
67. O'Toole, G. A.,, and R. Kolter. 1998. Flagellar and twitching motility are necessary for Pseudomonas aeruginosa biofilm development. Mol. Microbiol. 30: 295 304.
68. Percival, S. L. 1999. The effect of molybdenum on biofilm development. J. Ind. Microbiol. Biotechnol. 23: 112 117.
69. Puskas, A.,, E. P. Greenberg,, S. Kaplan,, and A. L. Schaefer. 1997. A quorum-sensing system in the free-living photosynthetic bacterium Rhodobacter sphaeroides. J. Bacteriol. 179: 7530 7537.
70. Rice, A. R.,, M. A. Hamilton,, and A. K. Camper. 2000. Apparent surface associated lag time in growth of primary biofilm cells. Microb. Ecol. 40: 8 15.
71. Riedel K.,, M. Hentzer,, O. Geisenberger,, B. Huber,, A. Steidle,, H. Wu,, N. Høiby,, M. Givskov,, S. Molin,, and L. Eberl. 2001. NAcylhomoserine- lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147: 2349 3262.
72. Sanders, P. F., 1988. Monitoring and control of sessile microbes: cost effective ways to reduce microbial corrosion, p. 191 223. In C. A. C. Sequeira, and A. K. Tiller (ed.) Microbial Corrosion, vol. 1. Elsevier Applied Science, London, United Kingdom.
73. Sanders, P. F. 1992. Rapid methods for detecting microbial corrosion. In Proceedings of UK Corrosion '92, vol. 3. United Kingdom Institute of Corrosion, London, United Kingdom.
74. Sanders, P. F. 2002. Conventional versus novel microbial control strategies, paper OFC-1. In Proceedings of the 5th International Conference and Exhibition on Chemistry in Industry.
75. Sanders, P. F.,, and W. A. Hamilton,. 1985. Biological and corrosion activities of sulphatereducing bacteria in industrial process plant, p. 47 68. In S. Dexter (ed.), Biological Corrosion. NACE 8. National Association of Corrosion Engineers, Houston, Tex.
76. Sanders, P. F.,, and D. L. Robinson,. 1992. Corrosion control using continuous residual chlorine, p. 198 209. In C. A. C. Sequeira, and A. K. Tiller (ed.), Microbial Corrosion. European Federation of Corrosion publication 8. Institute of Materials, London, United Kingdom.
77. Sauer, K.,, and A. K. Camper. 2001. Characterization of phenotypic changes in Pseudomonas putida in response to surface-associated growth. J. Bacteriol. 183: 6579 6589.
78. Sauer, K.,, A. K. Camper,, G. D. Ehrlich,, J. W. Costerton,, and D. G. Davies. 2002. Pseudomonas aeruginosa displays multiple phenotypes during development as a biofilm. J. Bacteriol. 184: 1140 1154.
79. Stewart, P.,, G. McFeters,, and C. Huang,. 2000. Biofilm control by antimicrobial agents, p. 373 405. In J. Bryers (ed.), Biofilms II: Process Analysis and Applications. Wiley-Liss, Inc., New York, N.Y.
80. Stewart, P. S.,, A. K. Camper,, S. D. Handran,, C.-T. Huang,, and M. Warnecke. 1997. Spatial distribution and coexistence of Klebsiella pneumoniae and Pseudomonas aeruginosa in biofilms. Microb. Ecol. 33: 2 10.
81. Stoodley, P.,, Z. Lewandowksi,, J. D. Boyle,, and H. M. Lappin-Scott. 1999a. Structural deformation of bacterial biofilms caused by short-term fluctuations in fluid shear: an in situ investigation of biofilm rheology. Biotechnol. Bioeng. 65: 83 92.
82. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1999b. The formation of migratory ripples in a mixed species bacterial biofilm growing in turbulent flow. J. Environ. Microbiol. 1: 447 455.
83. Stoodley, P.,, J. D. Boyle,, D. DeBeer,, and H. M. Lappin-Scott. 1999c. Evolving perspectives of biofilm structure. Biofouling 14: 75 90.
84. Stoodley, P.,, Z. Lewandowski,, J. D. Boyle,, and H. M. Lappin-Scott. 1998. Oscillation characteristics of biofilm streamers in turbulent flowing water as related to drag and pressure drop. Biotechnol. Bioeng. 57: 536 544.
85. Stoodley, P.,, K. Sauer,, D. G. Davies,, and J. W. Costerton. 2002. Biofilms as complex differentiated communities. Annu. Rev. Microbiol. 56: 187 209.
86. Stoodley, P.,, S. Wilson,, L. Hall-Stoodley,, J. D. Boyle,, H. M. Lappin-Scott,, and J. W. Costerton. 2001. Growth and detachment of cell clusters from mature mixed species biofilms. Appl. Environ. Microbiol. 67: 5608 5613.
87. Stoodley, P.,, S. Yang,, H. Lappin-Scott,, and Z. Lewandowski. 1997. Relationship between mass transfer coefficient and liquid flow velocity in heterogenous biofilms using microelectrodes and confocalmicroscopy. Biotechnol. Bioeng. 56: 681 688.
88. Sturman, P. J.,, and D. M. Goeres. 1999. Control of hydrogen sulfide in oil and gas wells with nitrite injection. SPE 56772. Society of Petroleum Engineers, Richardson, Tex.
89. Sturman, P. J.,, W. L. Jones,, and W. G. Characklis. 1994. Interspecies competition in colonized porous pellets. Water Res. 28: 831 839.
90. Sturman, P. J.,, P. S. Stewart,, A. B. Cunningham,, E. J. Bouwer,, and J. H. Wolfram. 1995. Engineering scale-up of in situ bioremediation processes: a review. J. Contam. Hydrol. 19: 171 203.
91. Sunde, E.,, B.-L. P. Lillebø,, G. Bodtker,, T. Torsvik,, and T. Thorstenson. 2004. H2S inhibition by nitrate injection on the Gullfaks Field. In Corrosion 2004. Paper 04760. NACE International, Houston, Tex.
92. Syrett, B. C.,, P. J. Arps,, J. C. Earthman,, F. Mansfeld,, and T. K. Wood. 2002. Biofilms that prevent corrosion, p. 145. In B. Little (ed.), Proceedings of the NACE Research Topical Symposium. National Association of Corrosion Engineers, Houston, Tex.
93. Tolker-Nielsen, T.,, U. C. Brinch,, P. C. Ragas,, J. B. Andersen,, C. S. Jacobsen,, and S. Molin. 2000. Development and dynamics of Pseudomonas sp. biofilms. J. Bacteriol. 182: 6482 6489.
94. van Leeuwenhoek, A. 1684. An abstract of a letter from Mr. Anthony Leeuwenhoek at Delft dated Sept. 17, 1683 about some microscopical observations about animals in the scurf of the teeth. Philos. Trans. R. Soc. Lond. 14: 568 574.
95. Veazey, M. V. 2003. Plant uses unique strategy to fight MIC. Mater. Perform. December 16-18.
96. Videla, H. A.,, P. S. Guiamet,, S. G. de Saravia,, L. K. Herrera,, and C. Gaylarde. 2004. Environmentally friendly approaches to inhibit biocorrosion. An overview. In Corrosion 2004. Paper 04574. NACE International, Houston, Tex.
97. Voordouw, G. M.,, M. Nemati,, and G. E. Jenneman. 2002. Use of nitrate-reducing, sulfide oxidizing bacteria to reduce souring in oilfields: interactions with SRB and effects on corrosion. In Corrosion 2002. Paper 02034. NACE International, Houston, Tex.
98. Voordouw, G.,, and A. J. Telang,. 1999. A genome probe survey of the microbial community in oil fields. In C. R. Bell,, M. Brylinsky,, and P. Johnson- Green (ed.), Microbial Biosystems: New Frontiers. Proceedings of the 8th International Symposium on Microbial Ecology. Atlantic Canada Society for Microbial Ecology, Halifax, Canada.
99. Wanner, O.,, and W. Gujer. 1986. A multispecies biofilm model. Biotechnol. Bioeng. 28: 314 328.
100. Williamson, K.,, and P. L. McCarty. 1976. Model of substrate utilization by bacterial films. J. Water Pollut. Control Fed. 48: 9 24.
101. Xu, X.,, P. S. Stewart,, and X. Chen. 1996. Transport limitation of chlorine disinfection of Pseudomonas aeruginosa entrapped in alginate beads. Biotechnol. Bioeng. 49: 93 100.
102. ZoBell, C. E. 1943. The effect of solid surfaces on bacterial activity. J. Bacteriol. 46: 39 45.

Tables

Generic image for table
TABLE 1

Methods being developed for biofilm assessment in oil field applications

Citation: Sanders P, Sturman P. 2005. Biofouling in the Oil Industry, p 171-198. In Ollivier B, Magot M (ed), Petroleum Microbiology. ASM Press, Washington, DC. doi: 10.1128/9781555817589.ch9

This is a required field
Please enter a valid email address
Please check the format of the address you have entered.
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error